mutter/src/compositor/meta-surface-actor-x11.c

425 lines
12 KiB
C
Raw Normal View History

window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
/*
* Copyright (C) 2013 Red Hat
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*
* Written by:
* Owen Taylor <otaylor@redhat.com>
* Jasper St. Pierre <jstpierre@mecheye.net>
*/
#include "config.h"
#include "compositor/meta-surface-actor-x11.h"
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
#include <X11/extensions/Xcomposite.h>
#include "cogl/winsys/cogl-texture-pixmap-x11.h"
#include "compositor/meta-cullable.h"
#include "compositor/meta-shaped-texture-private.h"
#include "compositor/meta-window-actor-private.h"
#include "core/window-private.h"
#include "meta/meta-x11-errors.h"
#include "x11/meta-x11-display-private.h"
#include "x11/window-x11.h"
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
struct _MetaSurfaceActorX11
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
MetaSurfaceActor parent;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
MetaWindow *window;
MetaDisplay *display;
CoglTexture *texture;
Pixmap pixmap;
Damage damage;
int last_width;
int last_height;
/* This is used to detect fullscreen windows that need to be unredirected */
guint full_damage_frames_count;
guint does_full_damage : 1;
/* Other state... */
guint received_damage : 1;
guint size_changed : 1;
guint unredirected : 1;
};
G_DEFINE_TYPE (MetaSurfaceActorX11,
meta_surface_actor_x11,
META_TYPE_SURFACE_ACTOR)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
static void
free_damage (MetaSurfaceActorX11 *self)
{
MetaDisplay *display = self->display;
Display *xdisplay;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (self->damage == None)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return;
xdisplay = meta_x11_display_get_xdisplay (display->x11_display);
meta_x11_error_trap_push (display->x11_display);
XDamageDestroy (xdisplay, self->damage);
self->damage = None;
meta_x11_error_trap_pop (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
detach_pixmap (MetaSurfaceActorX11 *self)
{
MetaDisplay *display = self->display;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (self));
Display *xdisplay;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (self->pixmap == None)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return;
xdisplay = meta_x11_display_get_xdisplay (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
/* Get rid of all references to the pixmap before freeing it; it's unclear whether
* you are supposed to be able to free a GLXPixmap after freeing the underlying
* pixmap, but it certainly doesn't work with current DRI/Mesa
*/
meta_shaped_texture_set_texture (stex, NULL);
cogl_flush ();
meta_x11_error_trap_push (display->x11_display);
XFreePixmap (xdisplay, self->pixmap);
self->pixmap = None;
meta_x11_error_trap_pop (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
g_clear_pointer (&self->texture, cogl_object_unref);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
set_pixmap (MetaSurfaceActorX11 *self,
Pixmap pixmap)
{
CoglContext *ctx = clutter_backend_get_cogl_context (clutter_get_default_backend ());
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (self));
GError *error = NULL;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
CoglTexture *texture;
g_assert (self->pixmap == None);
self->pixmap = pixmap;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
texture = COGL_TEXTURE (cogl_texture_pixmap_x11_new (ctx, self->pixmap, FALSE, &error));
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (error != NULL)
{
g_warning ("Failed to allocate stex texture: %s", error->message);
g_error_free (error);
}
else if (G_UNLIKELY (!cogl_texture_pixmap_x11_is_using_tfp_extension (COGL_TEXTURE_PIXMAP_X11 (texture))))
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
g_warning ("NOTE: Not using GLX TFP!\n");
self->texture = texture;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
meta_shaped_texture_set_texture (stex, texture);
}
static void
update_pixmap (MetaSurfaceActorX11 *self)
{
MetaDisplay *display = self->display;
Display *xdisplay = meta_x11_display_get_xdisplay (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (self->size_changed)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
detach_pixmap (self);
self->size_changed = FALSE;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
if (self->pixmap == None)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
Pixmap new_pixmap;
Window xwindow = meta_window_x11_get_toplevel_xwindow (self->window);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
meta_x11_error_trap_push (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
new_pixmap = XCompositeNameWindowPixmap (xdisplay, xwindow);
if (meta_x11_error_trap_pop_with_return (display->x11_display) != Success)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
/* Probably a BadMatch if the window isn't viewable; we could
* GrabServer/GetWindowAttributes/NameWindowPixmap/UngrabServer/Sync
* to avoid this, but there's no reason to take two round trips
* when one will do. (We need that Sync if we want to handle failures
* for any reason other than !viewable. That's unlikely, but maybe
* we'll BadAlloc or something.)
*/
new_pixmap = None;
}
if (new_pixmap == None)
{
meta_verbose ("Unable to get named pixmap for %s\n",
meta_window_get_description (self->window));
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return;
}
set_pixmap (self, new_pixmap);
}
}
gboolean
meta_surface_actor_x11_is_visible (MetaSurfaceActorX11 *self)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
return (self->pixmap != None) && !self->unredirected;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
meta_surface_actor_x11_process_damage (MetaSurfaceActor *actor,
int x, int y, int width, int height)
{
MetaSurfaceActorX11 *self = META_SURFACE_ACTOR_X11 (actor);
self->received_damage = TRUE;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (meta_window_is_fullscreen (self->window) && !self->unredirected && !self->does_full_damage)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
MetaRectangle window_rect;
meta_window_get_frame_rect (self->window, &window_rect);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (x == 0 &&
y == 0 &&
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
window_rect.width == width &&
window_rect.height == height)
self->full_damage_frames_count++;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
else
self->full_damage_frames_count = 0;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (self->full_damage_frames_count >= 100)
self->does_full_damage = TRUE;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
if (!meta_surface_actor_x11_is_visible (self))
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return;
cogl_texture_pixmap_x11_update_area (COGL_TEXTURE_PIXMAP_X11 (self->texture),
x, y, width, height);
meta_surface_actor_update_area (actor, x, y, width, height);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
meta_surface_actor_x11_pre_paint (MetaSurfaceActor *actor)
{
MetaSurfaceActorX11 *self = META_SURFACE_ACTOR_X11 (actor);
MetaDisplay *display = self->display;
Display *xdisplay = meta_x11_display_get_xdisplay (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (self->received_damage)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
meta_x11_error_trap_push (display->x11_display);
XDamageSubtract (xdisplay, self->damage, None, None);
meta_x11_error_trap_pop (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
self->received_damage = FALSE;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
update_pixmap (self);
}
static gboolean
meta_surface_actor_x11_is_opaque (MetaSurfaceActor *actor)
{
MetaSurfaceActorX11 *self = META_SURFACE_ACTOR_X11 (actor);
MetaShapedTexture *stex = meta_surface_actor_get_texture (actor);
if (meta_surface_actor_x11_is_unredirected (self))
return TRUE;
return meta_shaped_texture_is_opaque (stex);
}
gboolean
meta_surface_actor_x11_should_unredirect (MetaSurfaceActorX11 *self)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
if (!meta_surface_actor_x11_is_opaque (META_SURFACE_ACTOR (self)))
return FALSE;
if (!self->does_full_damage &&
!meta_window_is_override_redirect (self->window))
return FALSE;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return TRUE;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
sync_unredirected (MetaSurfaceActorX11 *self)
{
MetaDisplay *display = self->display;
Display *xdisplay = meta_x11_display_get_xdisplay (display->x11_display);
Window xwindow = meta_window_x11_get_toplevel_xwindow (self->window);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
meta_x11_error_trap_push (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (self->unredirected)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
XCompositeUnredirectWindow (xdisplay, xwindow, CompositeRedirectManual);
XSync (xdisplay, False);
detach_pixmap (self);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
else
{
XCompositeRedirectWindow (xdisplay, xwindow, CompositeRedirectManual);
XSync (xdisplay, False);
clutter_actor_queue_redraw (CLUTTER_ACTOR (self));
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
meta_x11_error_trap_pop (display->x11_display);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
void
meta_surface_actor_x11_set_unredirected (MetaSurfaceActorX11 *self,
gboolean unredirected)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
if (self->unredirected == unredirected)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return;
self->unredirected = unredirected;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
sync_unredirected (self);
}
gboolean
meta_surface_actor_x11_is_unredirected (MetaSurfaceActorX11 *self)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
{
return self->unredirected;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
release_x11_resources (MetaSurfaceActorX11 *self)
{
detach_pixmap (self);
free_damage (self);
}
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
static void
meta_surface_actor_x11_dispose (GObject *object)
{
MetaSurfaceActorX11 *self = META_SURFACE_ACTOR_X11 (object);
release_x11_resources (self);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
G_OBJECT_CLASS (meta_surface_actor_x11_parent_class)->dispose (object);
}
static void
meta_surface_actor_x11_class_init (MetaSurfaceActorX11Class *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
MetaSurfaceActorClass *surface_actor_class = META_SURFACE_ACTOR_CLASS (klass);
object_class->dispose = meta_surface_actor_x11_dispose;
surface_actor_class->process_damage = meta_surface_actor_x11_process_damage;
surface_actor_class->pre_paint = meta_surface_actor_x11_pre_paint;
surface_actor_class->is_opaque = meta_surface_actor_x11_is_opaque;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
meta_surface_actor_x11_init (MetaSurfaceActorX11 *self)
{
self->last_width = -1;
self->last_height = -1;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}
static void
create_damage (MetaSurfaceActorX11 *self)
{
Display *xdisplay = meta_x11_display_get_xdisplay (self->display->x11_display);
Window xwindow = meta_window_x11_get_toplevel_xwindow (self->window);
self->damage = XDamageCreate (xdisplay, xwindow, XDamageReportBoundingBox);
}
static void
window_decorated_notify (MetaWindow *window,
GParamSpec *pspec,
gpointer user_data)
{
MetaSurfaceActorX11 *self = META_SURFACE_ACTOR_X11 (user_data);
release_x11_resources (self);
create_damage (self);
}
static void
reset_texture (MetaSurfaceActorX11 *self)
{
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (self));
if (!self->texture)
return;
/* Setting the texture to NULL will cause all the FBO's cached by the
* shaped texture's MetaTextureTower to be discarded and recreated.
*/
meta_shaped_texture_set_texture (stex, NULL);
meta_shaped_texture_set_texture (stex, self->texture);
}
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
MetaSurfaceActor *
meta_surface_actor_x11_new (MetaWindow *window)
{
MetaSurfaceActorX11 *self = g_object_new (META_TYPE_SURFACE_ACTOR_X11, NULL);
MetaDisplay *display = meta_window_get_display (window);
g_assert (!meta_is_wayland_compositor ());
self->window = window;
self->display = display;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
g_signal_connect_object (self->display, "gl-video-memory-purged",
G_CALLBACK (reset_texture), self, G_CONNECT_SWAPPED);
create_damage (self);
g_signal_connect_object (self->window, "notify::decorated",
G_CALLBACK (window_decorated_notify), self, 0);
g_signal_connect_object (meta_window_actor_from_window (window), "destroy",
G_CALLBACK (release_x11_resources), self,
G_CONNECT_SWAPPED);
self->unredirected = FALSE;
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
sync_unredirected (self);
clutter_actor_set_reactive (CLUTTER_ACTOR (self), TRUE);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return META_SURFACE_ACTOR (self);
}
void
meta_surface_actor_x11_set_size (MetaSurfaceActorX11 *self,
int width, int height)
{
MetaShapedTexture *stex = meta_surface_actor_get_texture (META_SURFACE_ACTOR (self));
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
if (self->last_width == width &&
self->last_height == height)
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
return;
self->size_changed = TRUE;
self->last_width = width;
self->last_height = height;
meta_shaped_texture_set_fallback_size (stex, width, height);
window-actor: Split into two subclasses of MetaSurfaceActor The rendering logic before was somewhat complex. We had three independent cases to take into account when doing rendering: * X11 compositor. In this case, we're a traditional X11 compositor, not a Wayland compositor. We use XCompositeNameWindowPixmap to get the backing pixmap for the window, and deal with the COMPOSITE extension messiness. In this case, meta_is_wayland_compositor() is FALSE. * Wayland clients. In this case, we're a Wayland compositor managing Wayland surfaces. The rendering for this is fairly straightforward, as Cogl handles most of the complexity with EGL and SHM buffers... Wayland clients give us the input and opaque regions through wl_surface. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_WAYLAND. * XWayland clients. In this case, we're a Wayland compositor, like above, and XWayland hands us Wayland surfaces. XWayland handles the COMPOSITE extension messiness for us, and hands us a buffer like any other Wayland client. We have to fetch the input and opaque regions from the X11 window ourselves. In this case, meta_is_wayland_compositor() is TRUE and priv->window->client_type == META_WINDOW_CLIENT_TYPE_X11. We now split the rendering logic into two subclasses, which are: * MetaSurfaceActorX11, which handles the X11 compositor case, in that it uses XCompositeNameWindowPixmap to get the backing pixmap, and deal with all the COMPOSITE extension messiness. * MetaSurfaceActorWayland, which handles the Wayland compositor case for both native Wayland clients and XWayland clients. XWayland handles COMPOSITE for us, and handles pushing a surface over through the xf86-video-wayland DDX. Frame sync is still in MetaWindowActor, as it needs to work for both the X11 compositor and XWayland client cases. When Wayland's video display protocol lands, this will need to be significantly overhauled, as it would have to work for any wl_surface, including subsurfaces, so we would need surface-level discretion. https://bugzilla.gnome.org/show_bug.cgi?id=720631
2014-02-01 17:21:11 -05:00
}