mutter/src/backends/native/meta-kms-connector.c

1633 lines
48 KiB
C
Raw Normal View History

/*
* Copyright (C) 2019 Red Hat
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
* 02111-1307, USA.
*/
#include "config.h"
#include "backends/meta-output.h"
#include "backends/native/meta-kms-connector.h"
#include "backends/native/meta-kms-connector-private.h"
#include <errno.h>
#include "backends/native/meta-kms-crtc.h"
#include "backends/native/meta-kms-device-private.h"
#include "backends/native/meta-kms-impl-device.h"
#include "backends/native/meta-kms-mode-private.h"
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
#include "backends/native/meta-kms-update-private.h"
/* CTA-861.3 HDR Static Metadata Extension, Table 3,
* Electro-Optical Transfer Function */
typedef enum
{
HDR_METADATA_EOTF_TRADITIONAL_GAMMA_SDR = 0,
HDR_METADATA_EOTF_TRADITIONAL_GAMMA_HDR = 1,
HDR_METADATA_EOTF_PERCEPTUAL_QUANTIZER = 2,
HDR_METADATA_EOTF_HYBRID_LOG_GAMMA = 3,
} HdrMetadataEotf;
/* CTA-861.3 HDR Static Metadata Extension, Table 4,
* Static_Metadata_Descriptor_ID */
typedef enum
{
HDR_STATIC_METADATA_TYPE_1 = 0,
} HdrStaticMetadataType;
typedef struct _MetaKmsConnectorPropTable
{
MetaKmsProp props[META_KMS_CONNECTOR_N_PROPS];
MetaKmsEnum dpms_enum[META_KMS_CONNECTOR_DPMS_N_PROPS];
MetaKmsEnum underscan_enum[META_KMS_CONNECTOR_UNDERSCAN_N_PROPS];
MetaKmsEnum privacy_screen_sw_enum[META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS];
MetaKmsEnum privacy_screen_hw_enum[META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS];
MetaKmsEnum scaling_mode_enum[META_KMS_CONNECTOR_SCALING_MODE_N_PROPS];
MetaKmsEnum panel_orientation_enum[META_KMS_CONNECTOR_PANEL_ORIENTATION_N_PROPS];
MetaKmsEnum colorspace_enum[META_KMS_CONNECTOR_COLORSPACE_N_PROPS];
} MetaKmsConnectorPropTable;
struct _MetaKmsConnector
{
GObject parent;
MetaKmsDevice *device;
uint32_t id;
uint32_t type;
uint32_t type_id;
char *name;
drmModeConnection connection;
MetaKmsConnectorState *current_state;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
MetaKmsConnectorPropTable prop_table;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
uint32_t edid_blob_id;
uint32_t tile_blob_id;
gboolean fd_held;
};
G_DEFINE_TYPE (MetaKmsConnector, meta_kms_connector, G_TYPE_OBJECT)
typedef enum _MetaKmsPrivacyScreenHwState
{
META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED,
META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED,
META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED_LOCKED,
META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED_LOCKED,
} MetaKmsPrivacyScreenHwState;
MetaKmsDevice *
meta_kms_connector_get_device (MetaKmsConnector *connector)
{
return connector->device;
}
uint32_t
meta_kms_connector_get_prop_id (MetaKmsConnector *connector,
MetaKmsConnectorProp prop)
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
{
return connector->prop_table.props[prop].prop_id;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
}
const char *
meta_kms_connector_get_prop_name (MetaKmsConnector *connector,
MetaKmsConnectorProp prop)
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
{
return connector->prop_table.props[prop].name;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
}
uint64_t
meta_kms_connector_get_prop_drm_value (MetaKmsConnector *connector,
MetaKmsConnectorProp property,
uint64_t value)
{
MetaKmsProp *prop = &connector->prop_table.props[property];
return meta_kms_prop_convert_value (prop, value);
}
uint32_t
meta_kms_connector_get_connector_type (MetaKmsConnector *connector)
{
return connector->type;
}
uint32_t
meta_kms_connector_get_id (MetaKmsConnector *connector)
{
return connector->id;
}
const char *
meta_kms_connector_get_name (MetaKmsConnector *connector)
{
return connector->name;
}
gboolean
meta_kms_connector_can_clone (MetaKmsConnector *connector,
MetaKmsConnector *other_connector)
{
MetaKmsConnectorState *state = connector->current_state;
MetaKmsConnectorState *other_state = other_connector->current_state;
if (state->common_possible_clones == 0 ||
other_state->common_possible_clones == 0)
return FALSE;
if (state->encoder_device_idxs != other_state->encoder_device_idxs)
return FALSE;
return TRUE;
}
MetaKmsMode *
meta_kms_connector_get_preferred_mode (MetaKmsConnector *connector)
{
const MetaKmsConnectorState *state;
GList *l;
state = meta_kms_connector_get_current_state (connector);
for (l = state->modes; l; l = l->next)
{
MetaKmsMode *mode = l->data;
const drmModeModeInfo *drm_mode;
drm_mode = meta_kms_mode_get_drm_mode (mode);
if (drm_mode->type & DRM_MODE_TYPE_PREFERRED)
return mode;
}
return NULL;
}
const MetaKmsConnectorState *
meta_kms_connector_get_current_state (MetaKmsConnector *connector)
{
return connector->current_state;
}
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
gboolean
meta_kms_connector_is_underscanning_supported (MetaKmsConnector *connector)
{
uint32_t underscan_prop_id;
underscan_prop_id =
meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_UNDERSCAN);
return underscan_prop_id != 0;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
}
gboolean
meta_kms_connector_is_privacy_screen_supported (MetaKmsConnector *connector)
{
return meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_HW_STATE) != 0;
}
static gboolean
has_privacy_screen_software_toggle (MetaKmsConnector *connector)
{
return meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_SW_STATE) != 0;
}
const MetaKmsRange *
meta_kms_connector_get_max_bpc (MetaKmsConnector *connector)
{
const MetaKmsRange *range = NULL;
if (connector->current_state &&
meta_kms_connector_get_prop_id (connector,
META_KMS_CONNECTOR_PROP_MAX_BPC))
range = &connector->current_state->max_bpc;
return range;
}
static void
sync_fd_held (MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device)
{
gboolean should_hold_fd;
should_hold_fd =
connector->current_state &&
connector->current_state->current_crtc_id != 0;
if (connector->fd_held == should_hold_fd)
return;
if (should_hold_fd)
meta_kms_impl_device_hold_fd (impl_device);
else
meta_kms_impl_device_unhold_fd (impl_device);
connector->fd_held = should_hold_fd;
}
gboolean
meta_kms_connector_is_color_space_supported (MetaKmsConnector *connector,
MetaOutputColorspace color_space)
{
return !!(connector->current_state->colorspace.supported & (1 << color_space));
}
gboolean
meta_kms_connector_is_hdr_metadata_supported (MetaKmsConnector *connector)
{
return connector->current_state->hdr.supported;
}
static void
set_panel_orientation (MetaKmsConnectorState *state,
MetaKmsProp *panel_orientation)
{
MetaMonitorTransform transform;
MetaKmsConnectorPanelOrientation orientation = panel_orientation->value;
switch (orientation)
{
case META_KMS_CONNECTOR_PANEL_ORIENTATION_UPSIDE_DOWN:
transform = META_MONITOR_TRANSFORM_180;
break;
case META_KMS_CONNECTOR_PANEL_ORIENTATION_LEFT_SIDE_UP:
transform = META_MONITOR_TRANSFORM_90;
break;
case META_KMS_CONNECTOR_PANEL_ORIENTATION_RIGHT_SIDE_UP:
transform = META_MONITOR_TRANSFORM_270;
break;
default:
transform = META_MONITOR_TRANSFORM_NORMAL;
break;
}
state->panel_orientation_transform = transform;
}
static void
set_privacy_screen (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsProp *hw_state)
{
MetaKmsConnectorPrivacyScreen privacy_screen = hw_state->value;
if (!meta_kms_connector_is_privacy_screen_supported (connector))
return;
switch (privacy_screen)
{
case META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED:
state->privacy_screen_state = META_PRIVACY_SCREEN_DISABLED;
break;
case META_KMS_PRIVACY_SCREEN_HW_STATE_DISABLED_LOCKED:
state->privacy_screen_state = META_PRIVACY_SCREEN_DISABLED;
state->privacy_screen_state |= META_PRIVACY_SCREEN_LOCKED;
break;
case META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED:
state->privacy_screen_state = META_PRIVACY_SCREEN_ENABLED;
break;
case META_KMS_PRIVACY_SCREEN_HW_STATE_ENABLED_LOCKED:
state->privacy_screen_state = META_PRIVACY_SCREEN_ENABLED;
state->privacy_screen_state |= META_PRIVACY_SCREEN_LOCKED;
break;
default:
state->privacy_screen_state = META_PRIVACY_SCREEN_DISABLED;
g_warning ("Unknown privacy screen state: %u", privacy_screen);
}
if (!has_privacy_screen_software_toggle (connector))
state->privacy_screen_state |= META_PRIVACY_SCREEN_LOCKED;
}
static MetaOutputColorspace
drm_color_spaces_to_output_color_spaces (uint64_t drm_color_space)
{
switch (drm_color_space)
{
case META_KMS_CONNECTOR_COLORSPACE_DEFAULT:
return META_OUTPUT_COLORSPACE_DEFAULT;
case META_KMS_CONNECTOR_COLORSPACE_BT2020_RGB:
return META_OUTPUT_COLORSPACE_BT2020;
default:
return META_OUTPUT_COLORSPACE_UNKNOWN;
}
}
static uint64_t
supported_drm_color_spaces_to_output_color_spaces (uint64_t drm_support)
{
uint64_t supported = 0;
if (drm_support & (1 << META_KMS_CONNECTOR_COLORSPACE_DEFAULT))
supported |= (1 << META_OUTPUT_COLORSPACE_DEFAULT);
if (drm_support & (1 << META_KMS_CONNECTOR_COLORSPACE_BT2020_RGB))
supported |= (1 << META_OUTPUT_COLORSPACE_BT2020);
return supported;
}
uint64_t
meta_output_color_space_to_drm_color_space (MetaOutputColorspace color_space)
{
switch (color_space)
{
case META_OUTPUT_COLORSPACE_BT2020:
return META_KMS_CONNECTOR_COLORSPACE_BT2020_RGB;
case META_OUTPUT_COLORSPACE_UNKNOWN:
case META_OUTPUT_COLORSPACE_DEFAULT:
default:
return META_KMS_CONNECTOR_COLORSPACE_DEFAULT;
}
}
static void
state_set_properties (MetaKmsConnectorState *state,
MetaKmsImplDevice *impl_device,
MetaKmsConnector *connector,
drmModeConnector *drm_connector)
{
MetaKmsProp *props = connector->prop_table.props;
MetaKmsProp *prop;
prop = &props[META_KMS_CONNECTOR_PROP_SUGGESTED_X];
if (prop->prop_id)
state->suggested_x = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_SUGGESTED_Y];
if (prop->prop_id)
state->suggested_y = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_HOTPLUG_MODE_UPDATE];
if (prop->prop_id)
state->hotplug_mode_update = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_SCALING_MODE];
if (prop->prop_id)
state->has_scaling = TRUE;
prop = &props[META_KMS_CONNECTOR_PROP_PANEL_ORIENTATION];
if (prop->prop_id)
set_panel_orientation (state, prop);
prop = &props[META_KMS_CONNECTOR_PROP_NON_DESKTOP];
if (prop->prop_id)
state->non_desktop = prop->value;
prop = &props[META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_HW_STATE];
if (prop->prop_id)
set_privacy_screen (state, connector, prop);
prop = &props[META_KMS_CONNECTOR_PROP_MAX_BPC];
if (prop->prop_id)
{
state->max_bpc.value = prop->value;
state->max_bpc.min_value = prop->range_min;
state->max_bpc.max_value = prop->range_max;
}
prop = &props[META_KMS_CONNECTOR_PROP_COLORSPACE];
if (prop->prop_id)
{
state->colorspace.value =
drm_color_spaces_to_output_color_spaces (prop->value);
state->colorspace.supported =
supported_drm_color_spaces_to_output_color_spaces (prop->supported_variants);
}
}
static CoglSubpixelOrder
drm_subpixel_order_to_cogl_subpixel_order (drmModeSubPixel subpixel)
{
switch (subpixel)
{
case DRM_MODE_SUBPIXEL_NONE:
return COGL_SUBPIXEL_ORDER_NONE;
break;
case DRM_MODE_SUBPIXEL_HORIZONTAL_RGB:
return COGL_SUBPIXEL_ORDER_HORIZONTAL_RGB;
break;
case DRM_MODE_SUBPIXEL_HORIZONTAL_BGR:
return COGL_SUBPIXEL_ORDER_HORIZONTAL_BGR;
break;
case DRM_MODE_SUBPIXEL_VERTICAL_RGB:
return COGL_SUBPIXEL_ORDER_VERTICAL_RGB;
break;
case DRM_MODE_SUBPIXEL_VERTICAL_BGR:
return COGL_SUBPIXEL_ORDER_VERTICAL_BGR;
break;
case DRM_MODE_SUBPIXEL_UNKNOWN:
return COGL_SUBPIXEL_ORDER_UNKNOWN;
}
return COGL_SUBPIXEL_ORDER_UNKNOWN;
}
static void
state_set_edid (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
uint32_t blob_id)
{
int fd;
drmModePropertyBlobPtr edid_blob;
GBytes *edid_data;
fd = meta_kms_impl_device_get_fd (impl_device);
edid_blob = drmModeGetPropertyBlob (fd, blob_id);
if (!edid_blob)
{
g_warning ("Failed to read EDID of connector %s: %s",
connector->name, g_strerror (errno));
return;
}
edid_data = g_bytes_new (edid_blob->data, edid_blob->length);
drmModeFreePropertyBlob (edid_blob);
state->edid_data = edid_data;
}
static void
state_set_tile_info (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
uint32_t blob_id)
{
int fd;
drmModePropertyBlobPtr tile_blob;
state->tile_info = (MetaTileInfo) { 0 };
fd = meta_kms_impl_device_get_fd (impl_device);
tile_blob = drmModeGetPropertyBlob (fd, blob_id);
if (!tile_blob)
{
g_warning ("Failed to read TILE of connector %s: %s",
connector->name, strerror (errno));
return;
}
if (tile_blob->length > 0)
{
if (sscanf ((char *) tile_blob->data, "%d:%d:%d:%d:%d:%d:%d:%d",
&state->tile_info.group_id,
&state->tile_info.flags,
&state->tile_info.max_h_tiles,
&state->tile_info.max_v_tiles,
&state->tile_info.loc_h_tile,
&state->tile_info.loc_v_tile,
&state->tile_info.tile_w,
&state->tile_info.tile_h) != 8)
{
g_warning ("Couldn't understand TILE property blob of connector %s",
connector->name);
state->tile_info = (MetaTileInfo) { 0 };
}
}
drmModeFreePropertyBlob (tile_blob);
}
static double
decode_u16_chromaticity (uint16_t value)
{
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
return MIN (value * 0.00002, 1.0);
}
static double
decode_u16_min_luminance (uint16_t value)
{
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
return value * 0.0001;
}
gboolean
set_output_hdr_metadata (struct hdr_output_metadata *drm_metadata,
MetaOutputHdrMetadata *metadata)
{
struct hdr_metadata_infoframe *infoframe;
if (drm_metadata->metadata_type != HDR_STATIC_METADATA_TYPE_1)
return FALSE;
infoframe = &drm_metadata->hdmi_metadata_type1;
if (infoframe->metadata_type != HDR_STATIC_METADATA_TYPE_1)
return FALSE;
switch (infoframe->eotf)
{
case HDR_METADATA_EOTF_TRADITIONAL_GAMMA_SDR:
metadata->eotf = META_OUTPUT_HDR_METADATA_EOTF_TRADITIONAL_GAMMA_SDR;
break;
case HDR_METADATA_EOTF_TRADITIONAL_GAMMA_HDR:
metadata->eotf = META_OUTPUT_HDR_METADATA_EOTF_TRADITIONAL_GAMMA_HDR;
break;
case HDR_METADATA_EOTF_PERCEPTUAL_QUANTIZER:
metadata->eotf = META_OUTPUT_HDR_METADATA_EOTF_PQ;
break;
case HDR_METADATA_EOTF_HYBRID_LOG_GAMMA:
metadata->eotf = META_OUTPUT_HDR_METADATA_EOTF_HLG;
break;
}
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
metadata->mastering_display_primaries[0].x =
decode_u16_chromaticity (infoframe->display_primaries[0].x);
metadata->mastering_display_primaries[0].y =
decode_u16_chromaticity (infoframe->display_primaries[0].y);
metadata->mastering_display_primaries[1].x =
decode_u16_chromaticity (infoframe->display_primaries[1].x);
metadata->mastering_display_primaries[1].y =
decode_u16_chromaticity (infoframe->display_primaries[1].y);
metadata->mastering_display_primaries[2].x =
decode_u16_chromaticity (infoframe->display_primaries[2].x);
metadata->mastering_display_primaries[2].y =
decode_u16_chromaticity (infoframe->display_primaries[2].y);
metadata->mastering_display_white_point.x =
decode_u16_chromaticity (infoframe->white_point.x);
metadata->mastering_display_white_point.y =
decode_u16_chromaticity (infoframe->white_point.y);
metadata->mastering_display_max_luminance =
infoframe->max_display_mastering_luminance;
metadata->mastering_display_min_luminance =
decode_u16_min_luminance (infoframe->min_display_mastering_luminance);
metadata->max_cll = infoframe->max_cll;
metadata->max_fall = infoframe->max_fall;
return TRUE;
}
static uint16_t
encode_u16_chromaticity (double value)
{
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
value = MAX (MIN (value, 1.0), 0.0);
return round (value / 0.00002);
}
static uint16_t
encode_u16_max_luminance (double value)
{
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
return round (MAX (MIN (value, 65535.0), 0.0));
}
static uint16_t
encode_u16_min_luminance (double value)
{
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
value = MAX (MIN (value, 6.5535), 0.0);
return round (value / 0.0001);
}
static uint16_t
encode_u16_max_cll (double value)
{
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
return round (MAX (MIN (value, 65535.0), 0.0));
}
static uint16_t
encode_u16_max_fall (double value)
{
/* CTA-861.3 HDR Static Metadata Extension, 3.2.1 Static Metadata Type 1 */
return round (MAX (MIN (value, 65535.0), 0.0));
}
void
meta_set_drm_hdr_metadata (MetaOutputHdrMetadata *metadata,
struct hdr_output_metadata *drm_metadata)
{
struct hdr_metadata_infoframe *infoframe = &drm_metadata->hdmi_metadata_type1;
drm_metadata->metadata_type = HDR_STATIC_METADATA_TYPE_1;
infoframe->metadata_type = HDR_STATIC_METADATA_TYPE_1;
switch (metadata->eotf)
{
case META_OUTPUT_HDR_METADATA_EOTF_TRADITIONAL_GAMMA_SDR:
infoframe->eotf = HDR_METADATA_EOTF_TRADITIONAL_GAMMA_SDR;
break;
case META_OUTPUT_HDR_METADATA_EOTF_TRADITIONAL_GAMMA_HDR:
infoframe->eotf = HDR_METADATA_EOTF_TRADITIONAL_GAMMA_HDR;
break;
case META_OUTPUT_HDR_METADATA_EOTF_PQ:
infoframe->eotf = HDR_METADATA_EOTF_PERCEPTUAL_QUANTIZER;
break;
case META_OUTPUT_HDR_METADATA_EOTF_HLG:
infoframe->eotf = HDR_METADATA_EOTF_HYBRID_LOG_GAMMA;
break;
}
infoframe->display_primaries[0].x =
encode_u16_chromaticity (metadata->mastering_display_primaries[0].x);
infoframe->display_primaries[0].y =
encode_u16_chromaticity (metadata->mastering_display_primaries[0].y);
infoframe->display_primaries[1].x =
encode_u16_chromaticity (metadata->mastering_display_primaries[1].x);
infoframe->display_primaries[1].y =
encode_u16_chromaticity (metadata->mastering_display_primaries[1].y);
infoframe->display_primaries[2].x =
encode_u16_chromaticity (metadata->mastering_display_primaries[2].x);
infoframe->display_primaries[2].y =
encode_u16_chromaticity (metadata->mastering_display_primaries[2].y);
infoframe->white_point.x =
encode_u16_chromaticity (metadata->mastering_display_white_point.x);
infoframe->white_point.y =
encode_u16_chromaticity (metadata->mastering_display_white_point.y);
infoframe->max_display_mastering_luminance =
encode_u16_max_luminance (metadata->mastering_display_max_luminance);
infoframe->min_display_mastering_luminance =
encode_u16_min_luminance (metadata->mastering_display_min_luminance);
infoframe->max_cll = encode_u16_max_cll (metadata->max_cll);
infoframe->max_fall = encode_u16_max_fall (metadata->max_fall);
}
static void
state_set_hdr_output_metadata (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
uint32_t blob_id)
{
int fd;
drmModePropertyBlobPtr hdr_blob;
MetaOutputHdrMetadata *metadata = &state->hdr.value;
struct hdr_output_metadata *drm_metadata;
state->hdr.supported = TRUE;
state->hdr.unknown = FALSE;
metadata->active = TRUE;
if (!blob_id)
{
metadata->active = FALSE;
return;
}
fd = meta_kms_impl_device_get_fd (impl_device);
hdr_blob = drmModeGetPropertyBlob (fd, blob_id);
if (!hdr_blob)
{
metadata->active = FALSE;
return;
}
if (hdr_blob->length < sizeof (*drm_metadata))
{
g_warning ("HDR_OUTPUT_METADATA smaller than expected for type 1");
state->hdr.unknown = TRUE;
goto out;
}
drm_metadata = hdr_blob->data;
if (!set_output_hdr_metadata (drm_metadata, metadata))
{
state->hdr.unknown = TRUE;
goto out;
}
out:
drmModeFreePropertyBlob (hdr_blob);
}
static void
state_set_blobs (MetaKmsConnectorState *state,
MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector)
{
MetaKmsProp *props = connector->prop_table.props;
MetaKmsProp *prop;
prop = &props[META_KMS_CONNECTOR_PROP_EDID];
if (prop->prop_id && prop->value)
state_set_edid (state, connector, impl_device, prop->value);
prop = &props[META_KMS_CONNECTOR_PROP_TILE];
if (prop->prop_id && prop->value)
state_set_tile_info (state, connector, impl_device, prop->value);
prop = &props[META_KMS_CONNECTOR_PROP_HDR_OUTPUT_METADATA];
if (prop->prop_id)
state_set_hdr_output_metadata (state, connector, impl_device, prop->value);
}
static void
state_set_physical_dimensions (MetaKmsConnectorState *state,
drmModeConnector *drm_connector)
{
state->width_mm = drm_connector->mmWidth;
state->height_mm = drm_connector->mmHeight;
}
static void
state_set_modes (MetaKmsConnectorState *state,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector)
{
int i;
for (i = 0; i < drm_connector->count_modes; i++)
{
MetaKmsMode *mode;
mode = meta_kms_mode_new (impl_device, &drm_connector->modes[i],
META_KMS_MODE_FLAG_NONE);
state->modes = g_list_prepend (state->modes, mode);
}
state->modes = g_list_reverse (state->modes);
}
static void
set_encoder_device_idx_bit (uint32_t *encoder_device_idxs,
uint32_t encoder_id,
MetaKmsImplDevice *impl_device,
drmModeRes *drm_resources)
{
int fd;
int i;
fd = meta_kms_impl_device_get_fd (impl_device);
for (i = 0; i < drm_resources->count_encoders; i++)
{
drmModeEncoder *drm_encoder;
drm_encoder = drmModeGetEncoder (fd, drm_resources->encoders[i]);
if (!drm_encoder)
continue;
if (drm_encoder->encoder_id == encoder_id)
{
*encoder_device_idxs |= (1 << i);
drmModeFreeEncoder (drm_encoder);
break;
}
drmModeFreeEncoder (drm_encoder);
}
}
static void
state_set_crtc_state (MetaKmsConnectorState *state,
drmModeConnector *drm_connector,
MetaKmsImplDevice *impl_device,
drmModeRes *drm_resources)
{
int fd;
int i;
uint32_t common_possible_crtcs;
uint32_t common_possible_clones;
uint32_t encoder_device_idxs;
fd = meta_kms_impl_device_get_fd (impl_device);
common_possible_crtcs = UINT32_MAX;
common_possible_clones = UINT32_MAX;
encoder_device_idxs = 0;
for (i = 0; i < drm_connector->count_encoders; i++)
{
drmModeEncoder *drm_encoder;
drm_encoder = drmModeGetEncoder (fd, drm_connector->encoders[i]);
if (!drm_encoder)
continue;
common_possible_crtcs &= drm_encoder->possible_crtcs;
common_possible_clones &= drm_encoder->possible_clones;
set_encoder_device_idx_bit (&encoder_device_idxs,
drm_encoder->encoder_id,
impl_device,
drm_resources);
if (drm_connector->encoder_id == drm_encoder->encoder_id)
state->current_crtc_id = drm_encoder->crtc_id;
drmModeFreeEncoder (drm_encoder);
}
state->common_possible_crtcs = common_possible_crtcs;
state->common_possible_clones = common_possible_clones;
state->encoder_device_idxs = encoder_device_idxs;
}
static MetaKmsConnectorState *
meta_kms_connector_state_new (void)
{
MetaKmsConnectorState *state;
state = g_new0 (MetaKmsConnectorState, 1);
state->suggested_x = -1;
state->suggested_y = -1;
return state;
}
static void
meta_kms_connector_state_free (MetaKmsConnectorState *state)
{
g_clear_pointer (&state->edid_data, g_bytes_unref);
g_list_free_full (state->modes, (GDestroyNotify) meta_kms_mode_free);
g_free (state);
}
G_DEFINE_AUTOPTR_CLEANUP_FUNC (MetaKmsConnectorState,
meta_kms_connector_state_free);
static gboolean
kms_modes_equal (GList *modes,
GList *other_modes)
{
GList *l;
if (g_list_length (modes) != g_list_length (other_modes))
return FALSE;
for (l = modes; l; l = l->next)
{
GList *k;
MetaKmsMode *mode = l->data;
for (k = other_modes; k; k = k->next)
{
MetaKmsMode *other_mode = k->data;
if (!meta_kms_mode_equal (mode, other_mode))
return FALSE;
}
}
return TRUE;
}
static gboolean
hdr_primaries_equal (double x1, double x2)
{
return fabs (x1 - x2) < (0.00002 - DBL_EPSILON);
}
static gboolean
hdr_nits_equal (double x1, double x2)
{
return fabs (x1 - x2) < (1.0 - DBL_EPSILON);
}
static gboolean
hdr_min_luminance_equal (double x1, double x2)
{
return fabs (x1 - x2) < (0.0001 - DBL_EPSILON);
}
gboolean
hdr_metadata_equal (MetaOutputHdrMetadata *metadata,
MetaOutputHdrMetadata *other_metadata)
{
if (!metadata->active && !other_metadata->active)
return TRUE;
if (metadata->active != other_metadata->active)
return FALSE;
if (metadata->eotf != other_metadata->eotf)
return FALSE;
if (!hdr_primaries_equal (metadata->mastering_display_primaries[0].x,
other_metadata->mastering_display_primaries[0].x) ||
!hdr_primaries_equal (metadata->mastering_display_primaries[0].y,
other_metadata->mastering_display_primaries[0].y) ||
!hdr_primaries_equal (metadata->mastering_display_primaries[1].x,
other_metadata->mastering_display_primaries[1].x) ||
!hdr_primaries_equal (metadata->mastering_display_primaries[1].y,
other_metadata->mastering_display_primaries[1].y) ||
!hdr_primaries_equal (metadata->mastering_display_primaries[2].x,
other_metadata->mastering_display_primaries[2].x) ||
!hdr_primaries_equal (metadata->mastering_display_primaries[2].y,
other_metadata->mastering_display_primaries[2].y) ||
!hdr_primaries_equal (metadata->mastering_display_white_point.x,
other_metadata->mastering_display_white_point.x) ||
!hdr_primaries_equal (metadata->mastering_display_white_point.y,
other_metadata->mastering_display_white_point.y))
return FALSE;
if (!hdr_nits_equal (metadata->mastering_display_max_luminance,
other_metadata->mastering_display_max_luminance))
return FALSE;
if (!hdr_min_luminance_equal (metadata->mastering_display_min_luminance,
other_metadata->mastering_display_min_luminance))
return FALSE;
if (!hdr_nits_equal (metadata->max_cll, other_metadata->max_cll) ||
!hdr_nits_equal (metadata->max_fall, other_metadata->max_fall))
return FALSE;
return TRUE;
}
static MetaKmsResourceChanges
meta_kms_connector_state_changes (MetaKmsConnectorState *state,
MetaKmsConnectorState *new_state)
{
if (state->current_crtc_id != new_state->current_crtc_id)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->common_possible_crtcs != new_state->common_possible_crtcs)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->common_possible_clones != new_state->common_possible_clones)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->encoder_device_idxs != new_state->encoder_device_idxs)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->width_mm != new_state->width_mm)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->height_mm != new_state->height_mm)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->has_scaling != new_state->has_scaling)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->non_desktop != new_state->non_desktop)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->subpixel_order != new_state->subpixel_order)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->suggested_x != new_state->suggested_x)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->suggested_y != new_state->suggested_y)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->hotplug_mode_update != new_state->hotplug_mode_update)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->panel_orientation_transform !=
new_state->panel_orientation_transform)
return META_KMS_RESOURCE_CHANGE_FULL;
if (!meta_tile_info_equal (&state->tile_info, &new_state->tile_info))
return META_KMS_RESOURCE_CHANGE_FULL;
if ((state->edid_data && !new_state->edid_data) || !state->edid_data ||
!g_bytes_equal (state->edid_data, new_state->edid_data))
return META_KMS_RESOURCE_CHANGE_FULL;
if (!kms_modes_equal (state->modes, new_state->modes))
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->max_bpc.value != new_state->max_bpc.value ||
state->max_bpc.min_value != new_state->max_bpc.min_value ||
state->max_bpc.max_value != new_state->max_bpc.max_value)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->colorspace.value != new_state->colorspace.value ||
state->colorspace.supported != new_state->colorspace.supported)
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->hdr.supported != new_state->hdr.supported ||
state->hdr.unknown != new_state->hdr.unknown ||
!hdr_metadata_equal (&state->hdr.value, &new_state->hdr.value))
return META_KMS_RESOURCE_CHANGE_FULL;
if (state->privacy_screen_state != new_state->privacy_screen_state)
return META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN;
return META_KMS_RESOURCE_CHANGE_NONE;
}
static void
meta_kms_connector_update_state_changes (MetaKmsConnector *connector,
MetaKmsResourceChanges changes,
MetaKmsConnectorState *new_state)
{
MetaKmsConnectorState *current_state = connector->current_state;
g_return_if_fail (changes != META_KMS_RESOURCE_CHANGE_FULL);
if (changes & META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN)
current_state->privacy_screen_state = new_state->privacy_screen_state;
}
static MetaKmsResourceChanges
meta_kms_connector_read_state (MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector,
drmModeRes *drm_resources)
{
g_autoptr (MetaKmsConnectorState) state = NULL;
g_autoptr (MetaKmsConnectorState) current_state = NULL;
MetaKmsResourceChanges connector_changes;
MetaKmsResourceChanges changes;
current_state = g_steal_pointer (&connector->current_state);
changes = META_KMS_RESOURCE_CHANGE_NONE;
meta_kms_impl_device_update_prop_table (impl_device,
drm_connector->props,
drm_connector->prop_values,
drm_connector->count_props,
connector->prop_table.props,
META_KMS_CONNECTOR_N_PROPS);
if (!drm_connector)
{
if (current_state)
changes = META_KMS_RESOURCE_CHANGE_FULL;
goto out;
}
if (drm_connector->connection != DRM_MODE_CONNECTED)
{
if (drm_connector->connection != connector->connection)
{
connector->connection = drm_connector->connection;
changes |= META_KMS_RESOURCE_CHANGE_FULL;
}
goto out;
}
state = meta_kms_connector_state_new ();
state_set_blobs (state, connector, impl_device, drm_connector);
state_set_properties (state, impl_device, connector, drm_connector);
state->subpixel_order =
drm_subpixel_order_to_cogl_subpixel_order (drm_connector->subpixel);
state_set_physical_dimensions (state, drm_connector);
state_set_modes (state, impl_device, drm_connector);
state_set_crtc_state (state, drm_connector, impl_device, drm_resources);
if (drm_connector->connection != connector->connection)
{
connector->connection = drm_connector->connection;
changes |= META_KMS_RESOURCE_CHANGE_FULL;
}
if (!current_state)
connector_changes = META_KMS_RESOURCE_CHANGE_FULL;
else
connector_changes = meta_kms_connector_state_changes (current_state, state);
changes |= connector_changes;
if (!(changes & META_KMS_RESOURCE_CHANGE_FULL))
{
meta_kms_connector_update_state_changes (connector,
connector_changes,
state);
connector->current_state = g_steal_pointer (&current_state);
}
else
{
connector->current_state = g_steal_pointer (&state);
}
out:
sync_fd_held (connector, impl_device);
return changes;
}
MetaKmsResourceChanges
meta_kms_connector_update_state_in_impl (MetaKmsConnector *connector,
drmModeRes *drm_resources,
drmModeConnector *drm_connector)
{
MetaKmsImplDevice *impl_device;
MetaKmsResourceChanges changes;
impl_device = meta_kms_device_get_impl_device (connector->device);
changes = meta_kms_connector_read_state (connector, impl_device,
drm_connector,
drm_resources);
return changes;
}
void
meta_kms_connector_disable_in_impl (MetaKmsConnector *connector)
{
MetaKmsConnectorState *current_state;
current_state = connector->current_state;
if (!current_state)
return;
current_state->current_crtc_id = 0;
}
MetaKmsResourceChanges
meta_kms_connector_predict_state_in_impl (MetaKmsConnector *connector,
MetaKmsUpdate *update)
{
MetaKmsImplDevice *impl_device;
MetaKmsConnectorState *current_state;
GList *mode_sets;
GList *l;
MetaKmsResourceChanges changes = META_KMS_RESOURCE_CHANGE_NONE;
GList *connector_updates;
current_state = connector->current_state;
if (!current_state)
return META_KMS_RESOURCE_CHANGE_NONE;
mode_sets = meta_kms_update_get_mode_sets (update);
for (l = mode_sets; l; l = l->next)
{
MetaKmsModeSet *mode_set = l->data;
MetaKmsCrtc *crtc = mode_set->crtc;
if (current_state->current_crtc_id == meta_kms_crtc_get_id (crtc))
{
if (g_list_find (mode_set->connectors, connector))
break;
else
current_state->current_crtc_id = 0;
}
else
{
if (g_list_find (mode_set->connectors, connector))
{
current_state->current_crtc_id = meta_kms_crtc_get_id (crtc);
break;
}
}
}
connector_updates = meta_kms_update_get_connector_updates (update);
for (l = connector_updates; l; l = l->next)
{
MetaKmsConnectorUpdate *connector_update = l->data;
if (connector_update->connector != connector)
continue;
if (has_privacy_screen_software_toggle (connector) &&
connector_update->privacy_screen.has_update &&
!(current_state->privacy_screen_state &
META_PRIVACY_SCREEN_LOCKED))
{
if (connector_update->privacy_screen.is_enabled)
{
if (current_state->privacy_screen_state !=
META_PRIVACY_SCREEN_ENABLED)
changes |= META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN;
current_state->privacy_screen_state =
META_PRIVACY_SCREEN_ENABLED;
}
else
{
if (current_state->privacy_screen_state !=
META_PRIVACY_SCREEN_DISABLED)
changes |= META_KMS_RESOURCE_CHANGE_PRIVACY_SCREEN;
current_state->privacy_screen_state =
META_PRIVACY_SCREEN_DISABLED;
}
}
if (connector_update->colorspace.has_update)
{
g_warn_if_fail (meta_kms_connector_is_color_space_supported (
connector,
connector_update->colorspace.value));
current_state->colorspace.value = connector_update->colorspace.value;
}
if (connector_update->hdr.has_update)
{
g_warn_if_fail (meta_kms_connector_is_hdr_metadata_supported (
connector));
current_state->hdr.value = connector_update->hdr.value;
}
}
impl_device = meta_kms_device_get_impl_device (connector->device);
sync_fd_held (connector, impl_device);
return changes;
}
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
static void
init_properties (MetaKmsConnector *connector,
MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector)
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
{
MetaKmsConnectorPropTable *prop_table = &connector->prop_table;
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
*prop_table = (MetaKmsConnectorPropTable) {
.props = {
[META_KMS_CONNECTOR_PROP_CRTC_ID] =
{
.name = "CRTC_ID",
.type = DRM_MODE_PROP_OBJECT,
},
[META_KMS_CONNECTOR_PROP_DPMS] =
{
.name = "DPMS",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->dpms_enum,
.num_enum_values = META_KMS_CONNECTOR_DPMS_N_PROPS,
},
[META_KMS_CONNECTOR_PROP_UNDERSCAN] =
{
.name = "underscan",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->underscan_enum,
.num_enum_values = META_KMS_CONNECTOR_UNDERSCAN_N_PROPS,
.default_value = META_KMS_CONNECTOR_UNDERSCAN_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_UNDERSCAN_HBORDER] =
{
.name = "underscan hborder",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_UNDERSCAN_VBORDER] =
{
.name = "underscan vborder",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_SW_STATE] =
{
.name = "privacy-screen sw-state",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->privacy_screen_sw_enum,
.num_enum_values = META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS,
.default_value = META_KMS_CONNECTOR_PRIVACY_SCREEN_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_PRIVACY_SCREEN_HW_STATE] =
{
.name = "privacy-screen hw-state",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->privacy_screen_hw_enum,
.num_enum_values = META_KMS_CONNECTOR_PRIVACY_SCREEN_N_PROPS,
.default_value = META_KMS_CONNECTOR_PRIVACY_SCREEN_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_EDID] =
{
.name = "EDID",
.type = DRM_MODE_PROP_BLOB,
},
[META_KMS_CONNECTOR_PROP_TILE] =
{
.name = "TILE",
.type = DRM_MODE_PROP_BLOB,
},
[META_KMS_CONNECTOR_PROP_SUGGESTED_X] =
{
.name = "suggested X",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_SUGGESTED_Y] =
{
.name = "suggested Y",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_HOTPLUG_MODE_UPDATE] =
{
.name = "hotplug_mode_update",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_SCALING_MODE] =
{
.name = "scaling mode",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->scaling_mode_enum,
.num_enum_values = META_KMS_CONNECTOR_SCALING_MODE_N_PROPS,
.default_value = META_KMS_CONNECTOR_SCALING_MODE_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_PANEL_ORIENTATION] =
{
.name = "panel orientation",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->panel_orientation_enum,
.num_enum_values = META_KMS_CONNECTOR_PANEL_ORIENTATION_N_PROPS,
.default_value = META_KMS_CONNECTOR_PANEL_ORIENTATION_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_NON_DESKTOP] =
{
.name = "non-desktop",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_MAX_BPC] =
{
.name = "max bpc",
.type = DRM_MODE_PROP_RANGE,
},
[META_KMS_CONNECTOR_PROP_COLORSPACE] =
{
.name = "Colorspace",
.type = DRM_MODE_PROP_ENUM,
.enum_values = prop_table->colorspace_enum,
.num_enum_values = META_KMS_CONNECTOR_COLORSPACE_N_PROPS,
.default_value = META_KMS_CONNECTOR_COLORSPACE_UNKNOWN,
},
[META_KMS_CONNECTOR_PROP_HDR_OUTPUT_METADATA] =
{
.name = "HDR_OUTPUT_METADATA",
.type = DRM_MODE_PROP_BLOB,
},
},
.dpms_enum = {
[META_KMS_CONNECTOR_DPMS_ON] =
{
.name = "On",
},
[META_KMS_CONNECTOR_DPMS_STANDBY] =
{
.name = "Standby",
},
[META_KMS_CONNECTOR_DPMS_SUSPEND] =
{
.name = "Suspend",
},
[META_KMS_CONNECTOR_DPMS_OFF] =
{
.name = "Off",
},
},
.underscan_enum = {
[META_KMS_CONNECTOR_UNDERSCAN_OFF] =
{
.name = "off",
},
[META_KMS_CONNECTOR_UNDERSCAN_ON] =
{
.name = "on",
},
[META_KMS_CONNECTOR_UNDERSCAN_AUTO] =
{
.name = "auto",
},
},
.privacy_screen_sw_enum = {
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED] =
{
.name = "Enabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED] =
{
.name = "Disabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED_LOCKED] =
{
.name = "Enabled-locked",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED_LOCKED] =
{
.name = "Disabled-locked",
},
},
.privacy_screen_hw_enum = {
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED] =
{
.name = "Enabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED] =
{
.name = "Disabled",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_ENABLED_LOCKED] =
{
.name = "Enabled-locked",
},
[META_KMS_CONNECTOR_PRIVACY_SCREEN_DISABLED_LOCKED] =
{
.name = "Disabled-locked",
},
},
.scaling_mode_enum = {
[META_KMS_CONNECTOR_SCALING_MODE_NONE] =
{
.name = "None",
},
[META_KMS_CONNECTOR_SCALING_MODE_FULL] =
{
.name = "Full",
},
[META_KMS_CONNECTOR_SCALING_MODE_CENTER] =
{
.name = "Center",
},
[META_KMS_CONNECTOR_SCALING_MODE_FULL_ASPECT] =
{
.name = "Full aspect",
},
},
.panel_orientation_enum = {
[META_KMS_CONNECTOR_PANEL_ORIENTATION_NORMAL] =
{
.name = "Normal",
},
[META_KMS_CONNECTOR_PANEL_ORIENTATION_UPSIDE_DOWN] =
{
.name = "Upside Down",
},
[META_KMS_CONNECTOR_PANEL_ORIENTATION_LEFT_SIDE_UP] =
{
.name = "Left Side Up",
},
[META_KMS_CONNECTOR_PANEL_ORIENTATION_RIGHT_SIDE_UP] =
{
.name = "Right Side Up",
},
},
.colorspace_enum = {
[META_KMS_CONNECTOR_COLORSPACE_DEFAULT] =
{
.name = "Default",
},
[META_KMS_CONNECTOR_COLORSPACE_RGB_WIDE_GAMUT_FIXED_POINT] =
{
.name = "RGB_Wide_Gamut_Fixed_Point",
},
[META_KMS_CONNECTOR_COLORSPACE_RGB_WIDE_GAMUT_FLOATING_POINT] =
{
.name = "RGB_Wide_Gamut_Floating_Point",
},
[META_KMS_CONNECTOR_COLORSPACE_RGB_OPRGB] =
{
.name = "opRGB",
},
[META_KMS_CONNECTOR_COLORSPACE_RGB_DCI_P3_RGB_D65] =
{
.name = "DCI-P3_RGB_D65",
},
[META_KMS_CONNECTOR_COLORSPACE_BT2020_RGB] =
{
.name = "BT2020_RGB",
},
[META_KMS_CONNECTOR_COLORSPACE_BT601_YCC] =
{
.name = "BT601_YCC",
},
[META_KMS_CONNECTOR_COLORSPACE_BT709_YCC] =
{
.name = "BT709_YCC",
},
[META_KMS_CONNECTOR_COLORSPACE_XVYCC_601] =
{
.name = "XVYCC_601",
},
[META_KMS_CONNECTOR_COLORSPACE_XVYCC_709] =
{
.name = "XVYCC_709",
},
[META_KMS_CONNECTOR_COLORSPACE_SYCC_601] =
{
.name = "SYCC_601",
},
[META_KMS_CONNECTOR_COLORSPACE_OPYCC_601] =
{
.name = "opYCC_601",
},
[META_KMS_CONNECTOR_COLORSPACE_BT2020_CYCC] =
{
.name = "BT2020_CYCC",
},
[META_KMS_CONNECTOR_COLORSPACE_BT2020_YCC] =
{
.name = "BT2020_YCC",
},
[META_KMS_CONNECTOR_COLORSPACE_SMPTE_170M_YCC] =
{
.name = "SMPTE_170M_YCC",
},
[META_KMS_CONNECTOR_COLORSPACE_DCI_P3_RGB_THEATER] =
{
.name = "DCI-P3_RGB_Theater",
},
},
};
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
}
static char *
make_connector_name (drmModeConnector *drm_connector)
{
static const char * const connector_type_names[] = {
"None",
"VGA",
"DVI-I",
"DVI-D",
"DVI-A",
"Composite",
"SVIDEO",
"LVDS",
"Component",
"DIN",
"DP",
"HDMI",
"HDMI-B",
"TV",
"eDP",
"Virtual",
"DSI",
};
if (drm_connector->connector_type < G_N_ELEMENTS (connector_type_names))
return g_strdup_printf ("%s-%d",
connector_type_names[drm_connector->connector_type],
drm_connector->connector_type_id);
else
return g_strdup_printf ("Unknown%d-%d",
drm_connector->connector_type,
drm_connector->connector_type_id);
}
gboolean
meta_kms_connector_is_same_as (MetaKmsConnector *connector,
drmModeConnector *drm_connector)
{
return (connector->id == drm_connector->connector_id &&
connector->type == drm_connector->connector_type &&
connector->type_id == drm_connector->connector_type_id);
}
MetaKmsConnector *
meta_kms_connector_new (MetaKmsImplDevice *impl_device,
drmModeConnector *drm_connector,
drmModeRes *drm_resources)
{
MetaKmsConnector *connector;
g_assert (drm_connector);
connector = g_object_new (META_TYPE_KMS_CONNECTOR, NULL);
connector->device = meta_kms_impl_device_get_device (impl_device);
connector->id = drm_connector->connector_id;
connector->type = drm_connector->connector_type;
connector->type_id = drm_connector->connector_type_id;
connector->name = make_connector_name (drm_connector);
init_properties (connector, impl_device, drm_connector);
backend/native: Add and use transactional KMS API This commit introduces, and makes use of, a transactional API used for setting up KMS state, later to be applied, potentially atomically. From an API point of view, so is always the case, but in the current implementation, it still uses legacy drmMode* API to apply the state non-atomically. The API consists of various buliding blocks: * MetaKmsUpdate - a set of configuration changes, the higher level handle for handing over configuration to the impl backend. It's used to set mode, assign framebuffers to planes, queue page flips and set connector properties. * MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane. Currently used to map a framebuffer to the primary plane of a CRTC. In the legacy KMS implementation, the plane assignment is used to derive the framebuffer used for mode setting and page flipping. This also means various high level changes: State, excluding configuring the cursor plane and creating/destroying DRM framebuffer handles, are applied in the end of a clutter frame, in one go. From an API point of view, this is done atomically, but as mentioned, only the non-atomic implementation exists so far. From MetaRendererNative's point of view, a page flip now initially always succeeds; the handling of EBUSY errors are done asynchronously in the MetaKmsImpl backend (still by retrying at refresh rate, but postponing flip callbacks instead of manipulating the frame clock). Handling of falling back to mode setting instead of page flipping is notified after the fact by a more precise page flip feedback API. EGLStream based page flipping relies on the impl backend not being atomic, as the page flipping is done in the EGLStream backend (e.g. nvidia driver). It uses a 'custom' page flip queueing method, keeping the EGLStream logic inside meta-renderer-native.c. Page flip handling is moved to meta-kms-impl-device.c from meta-gpu-kms.c. It goes via an extra idle callback before reaching meta-renderer-native.c to make sure callbacks are invoked outside of the impl context. While dummy power save page flipping is kept in meta-renderer-native.c, the EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the frame clock, actual page flip callbacks are postponed until all EBUSY retries have either succeeded or failed due to some other error than EBUSY. This effectively inhibits new frames to be drawn, meaning we won't stall waiting on the file descriptor for pending page flips. https://gitlab.gnome.org/GNOME/mutter/issues/548 https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
2019-04-04 20:36:41 +00:00
meta_kms_connector_read_state (connector, impl_device,
drm_connector,
drm_resources);
return connector;
}
static void
meta_kms_connector_finalize (GObject *object)
{
MetaKmsConnector *connector = META_KMS_CONNECTOR (object);
if (connector->fd_held)
{
MetaKmsImplDevice *impl_device;
impl_device = meta_kms_device_get_impl_device (connector->device);
meta_kms_impl_device_unhold_fd (impl_device);
}
g_clear_pointer (&connector->current_state, meta_kms_connector_state_free);
g_free (connector->name);
G_OBJECT_CLASS (meta_kms_connector_parent_class)->finalize (object);
}
static void
meta_kms_connector_init (MetaKmsConnector *connector)
{
}
static void
meta_kms_connector_class_init (MetaKmsConnectorClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->finalize = meta_kms_connector_finalize;
}