mutter/cogl/cogl.h
Robert Bragg 1a638b6fd6 kms: Adds api to get at the kms file descriptor
This adds a cogl_kms_renderer_get_kms_fd() function that lets developers
access the kms file descriptor being used for controlling the kernel
mode setting.

Reviewed-by: Neil Roberts <neil@linux.intel.com>
2012-02-08 17:00:25 +00:00

1435 lines
44 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
#ifndef __COGL_H__
#define __COGL_H__
#include <glib.h>
#define __COGL_H_INSIDE__
#ifdef COGL_ENABLE_EXPERIMENTAL_2_0_API
#ifndef COGL_ENABLE_EXPERIMENTAL_API
#define COGL_ENABLE_EXPERIMENTAL_API
#endif
#endif
/* We currently keep gtype integration delimited in case we eventually
* want to split it out into a separate utility library when Cogl
* becomes a standalone project. (like cairo-gobject.so)
*/
#define _COGL_SUPPORTS_GTYPE_INTEGRATION
#include <cogl/cogl-defines.h>
#include <cogl/cogl-object.h>
#include <cogl/cogl-bitmap.h>
#include <cogl/cogl-color.h>
#include <cogl/cogl-fixed.h>
#include <cogl/cogl-material-compat.h>
#include <cogl/cogl-matrix.h>
#include <cogl/cogl-offscreen.h>
#include <cogl/cogl-primitives.h>
#ifdef COGL_ENABLE_EXPERIMENTAL_2_0_API
#include <cogl/cogl2-path.h>
#include <cogl/cogl2-clip-state.h>
#else
#include <cogl/cogl-path.h>
#include <cogl/cogl-clip-state.h>
#endif
#include <cogl/cogl-shader.h>
#include <cogl/cogl-texture.h>
#include <cogl/cogl-types.h>
#include <cogl/cogl-vertex-buffer.h>
#include <cogl/cogl-enum-types.h>
#include <cogl/cogl-deprecated.h>
typedef struct _CoglFramebuffer CoglFramebuffer;
#if defined (COGL_ENABLE_EXPERIMENTAL_API)
#include <cogl/cogl-swap-chain.h>
#include <cogl/cogl-renderer.h>
#include <cogl/cogl-display.h>
#include <cogl/cogl-context.h>
#include <cogl/cogl-buffer.h>
#include <cogl/cogl-pixel-buffer.h>
#include <cogl/cogl-vector.h>
#include <cogl/cogl-euler.h>
#include <cogl/cogl-quaternion.h>
#include <cogl/cogl-texture-2d.h>
#include <cogl/cogl-texture-rectangle.h>
#include <cogl/cogl-texture-3d.h>
#include <cogl/cogl-texture-2d-sliced.h>
#include <cogl/cogl-sub-texture.h>
#include <cogl/cogl-meta-texture.h>
#include <cogl/cogl-index-buffer.h>
#include <cogl/cogl-attribute-buffer.h>
#include <cogl/cogl-indices.h>
#include <cogl/cogl-attribute.h>
#include <cogl/cogl-primitive.h>
#include <cogl/cogl-depth-state.h>
#include <cogl/cogl-pipeline.h>
#include <cogl/cogl-pipeline-state.h>
#include <cogl/cogl-pipeline-layer-state.h>
#include <cogl/cogl-snippet.h>
#include <cogl/cogl-framebuffer.h>
#include <cogl/cogl-onscreen.h>
#include <cogl/cogl-poll.h>
#if defined (COGL_HAS_EGL_PLATFORM_KMS_SUPPORT)
#include <cogl/cogl-kms-renderer.h>
#endif
#if defined (COGL_HAS_EGL_PLATFORM_WAYLAND_SUPPORT)
#include <cogl/cogl-wayland-renderer.h>
#endif
#if COGL_HAS_WIN32_SUPPORT
#include <cogl/cogl-win32-renderer.h>
#endif
#ifdef COGL_HAS_GLIB_SUPPORT
#include <cogl/cogl-glib-source.h>
#endif
/* XXX: This will definitly go away once all the Clutter winsys
* code has been migrated down into Cogl! */
#include <cogl/cogl-clutter.h>
#endif
G_BEGIN_DECLS
/**
* SECTION:cogl
* @short_description: General purpose API
*
* General utility functions for COGL.
*/
/**
* cogl_get_option_group:
*
* Retrieves the #GOptionGroup used by COGL to parse the command
* line options. Clutter uses this to handle the COGL command line
* options during its initialization process.
*
* Return value: a #GOptionGroup
*
* Since: 1.0
*/
GOptionGroup *
cogl_get_option_group (void);
/* Misc */
/**
* cogl_get_features:
*
* Returns all of the features supported by COGL.
*
* Return value: A logical OR of all the supported COGL features.
*
* Since: 0.8
*/
CoglFeatureFlags
cogl_get_features (void);
/**
* cogl_features_available:
* @features: A bitmask of features to check for
*
* Checks whether the given COGL features are available. Multiple
* features can be checked for by or-ing them together with the '|'
* operator. %TRUE is only returned if all of the requested features
* are available.
*
* Return value: %TRUE if the features are available, %FALSE otherwise.
*/
gboolean
cogl_features_available (CoglFeatureFlags features);
/* XXX: not guarded by the EXPERIMENTAL_2_0_API defines to avoid
* upsetting glib-mkenums, but this can still be considered implicitly
* experimental since it's only useable with experimental API... */
/**
* CoglFeatureID:
* @COGL_FEATURE_ID_TEXTURE_NPOT_BASIC: The hardware supports non power
* of two textures, but you also need to check the
* %COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP and %COGL_FEATURE_ID_TEXTURE_NPOT_REPEAT
* features to know if the hardware supports npot texture mipmaps
* or repeat modes other than
* %COGL_RENDERER_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE respectively.
* @COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP: Mipmapping is supported in
* conjuntion with non power of two textures.
* @COGL_FEATURE_ID_TEXTURE_NPOT_REPEAT: Repeat modes other than
* %COGL_RENDERER_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE are supported by the
* hardware.
* @COGL_FEATURE_ID_TEXTURE_NPOT: Non power of two textures are supported
* by the hardware. This is a equivalent to the
* %COGL_FEATURE_ID_TEXTURE_NPOT_BASIC, %COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP
* and %COGL_FEATURE_ID_TEXTURE_NPOT_REPEAT features combined.
* @COGL_FEATURE_ID_TEXTURE_RECTANGLE: Support for rectangular
* textures with non-normalized texture coordinates.
* @COGL_FEATURE_ID_TEXTURE_3D: 3D texture support
* @COGL_FEATURE_ID_OFFSCREEN: Offscreen rendering support
* @COGL_FEATURE_ID_OFFSCREEN_MULTISAMPLE: Multisample support for
* offscreen framebuffers
* @COGL_FEATURE_ID_ONSCREEN_MULTIPLE: Multiple onscreen framebuffers
* supported.
* @COGL_FEATURE_ID_GLSL: GLSL support
* @COGL_FEATURE_ID_ARBFP: ARBFP support
* @COGL_FEATURE_ID_UNSIGNED_INT_INDICES: Set if
* %COGL_RENDERER_INDICES_TYPE_UNSIGNED_INT is supported in
* cogl_indices_new().
* @COGL_FEATURE_ID_DEPTH_RANGE: cogl_pipeline_set_depth_range() support
* @COGL_FEATURE_ID_POINT_SPRITE: Whether
* cogl_pipeline_set_layer_point_sprite_coords_enabled() is supported.
* @COGL_FEATURE_ID_MAP_BUFFER_FOR_READ: Whether cogl_buffer_map() is
* supported with CoglBufferAccess including read support.
* @COGL_FEATURE_ID_MAP_BUFFER_FOR_WRITE: Whether cogl_buffer_map() is
* supported with CoglBufferAccess including write support.
* @COGL_FEATURE_ID_MIRRORED_REPEAT: Whether
* %COGL_PIPELINE_WRAP_MODE_MIRRORED_REPEAT is supported.
* @COGL_FEATURE_ID_SWAP_BUFFERS_EVENT:
* Available if the window system supports reporting an event
* for swap buffer completions.
*
* All the capabilities that can vary between different GPUs supported
* by Cogl. Applications that depend on any of these features should explicitly
* check for them using cogl_has_feature() or cogl_has_features().
*
* Since: 1.10
*/
typedef enum _CoglFeatureID
{
COGL_FEATURE_ID_TEXTURE_NPOT_BASIC = 1,
COGL_FEATURE_ID_TEXTURE_NPOT_MIPMAP,
COGL_FEATURE_ID_TEXTURE_NPOT_REPEAT,
COGL_FEATURE_ID_TEXTURE_NPOT,
COGL_FEATURE_ID_TEXTURE_RECTANGLE,
COGL_FEATURE_ID_TEXTURE_3D,
COGL_FEATURE_ID_GLSL,
COGL_FEATURE_ID_ARBFP,
COGL_FEATURE_ID_OFFSCREEN,
COGL_FEATURE_ID_OFFSCREEN_MULTISAMPLE,
COGL_FEATURE_ID_ONSCREEN_MULTIPLE,
COGL_FEATURE_ID_UNSIGNED_INT_INDICES,
COGL_FEATURE_ID_DEPTH_RANGE,
COGL_FEATURE_ID_POINT_SPRITE,
COGL_FEATURE_ID_MAP_BUFFER_FOR_READ,
COGL_FEATURE_ID_MAP_BUFFER_FOR_WRITE,
COGL_FEATURE_ID_MIRRORED_REPEAT,
COGL_FEATURE_ID_SWAP_BUFFERS_EVENT,
/*< private > */
_COGL_N_FEATURE_IDS
} CoglFeatureID;
#ifdef COGL_ENABLE_EXPERIMENTAL_2_0_API
/**
* cogl_has_feature:
* @context: A #CoglContext pointer
* @feature: A #CoglFeatureID
*
* Checks if a given @feature is currently available
*
* Cogl does not aim to be a lowest common denominator API, it aims to
* expose all the interesting features of GPUs to application which
* means applications have some responsibility to explicitly check
* that certain features are available before depending on them.
*
* Returns: %TRUE if the @feature is currently supported or %FALSE if
* not.
*
* Since: 1.10
* Stability: unstable
*/
gboolean
cogl_has_feature (CoglContext *context, CoglFeatureID feature);
/**
* cogl_has_features:
* @context: A #CoglContext pointer
* @...: A 0 terminated list of CoglFeatureID<!-- -->s
*
* Checks if a list of features are all currently available.
*
* This checks all of the listed features using cogl_has_feature() and
* returns %TRUE if all the features are available or %FALSE
* otherwise.
*
* Return value: %TRUE if all the features are available, %FALSE
* otherwise.
*
* Since: 1.10
* Stability: unstable
*/
gboolean
cogl_has_features (CoglContext *context, ...);
/**
* CoglFeatureCallback:
* @feature: A single feature currently supported by Cogl
* @user_data: A private pointer passed to cogl_foreach_feature().
*
* A callback used with cogl_foreach_feature() for enumerating all
* context level features supported by Cogl.
*
* Since: 1.10
* Stability: unstable
*/
typedef void (*CoglFeatureCallback) (CoglFeatureID feature, void *user_data);
/**
* cogl_foreach_feature:
* @context: A #CoglContext pointer
* @callback: A #CoglFeatureCallback called for each supported feature
* @user_data: Private data to pass to the callback
*
* Iterates through all the context level features currently supported
* for a given @context and for each feature @callback is called.
*
* Since: 1.10
* Stability: unstable
*/
void
cogl_foreach_feature (CoglContext *context,
CoglFeatureCallback callback,
void *user_data);
#endif /* COGL_ENABLE_EXPERIMENTAL_2_0_API */
/**
* cogl_get_proc_address:
* @name: the name of the function.
*
* Gets a pointer to a given GL or GL ES extension function. This acts
* as a wrapper around glXGetProcAddress() or whatever is the
* appropriate function for the current backend.
*
* Return value: a pointer to the requested function or %NULL if the
* function is not available.
*/
CoglFuncPtr
cogl_get_proc_address (const char *name);
#ifndef COGL_DISABLE_DEPRECATED
/**
* cogl_check_extension:
* @name: extension to check for
* @ext: list of extensions
*
* Check whether @name occurs in list of extensions in @ext.
*
* Return value: %TRUE if the extension occurs in the list, %FALSE otherwise.
*
* Deprecated: 1.2: OpenGL is an implementation detail for Cogl and so it's
* not appropriate to expose OpenGL extensions through the Cogl API. This
* function can be replaced by the following equivalent code:
* |[
* gboolean retval = (strstr (ext, name) != NULL) ? TRUE : FALSE;
* ]|
*/
gboolean
cogl_check_extension (const char *name,
const char *ext) G_GNUC_DEPRECATED;
#endif /* COGL_DISABLE_DEPRECATED */
/**
* cogl_get_bitmasks:
* @red: (out): Return location for the number of red bits or %NULL
* @green: (out): Return location for the number of green bits or %NULL
* @blue: (out): Return location for the number of blue bits or %NULL
* @alpha: (out): Return location for the number of alpha bits or %NULL
*
* Gets the number of bitplanes used for each of the color components
* in the color buffer. Pass %NULL for any of the arguments if the
* value is not required.
*/
void
cogl_get_bitmasks (int *red,
int *green,
int *blue,
int *alpha);
/**
* cogl_perspective:
* @fovy: Vertical field of view angle in degrees.
* @aspect: The (width over height) aspect ratio for display
* @z_near: The distance to the near clipping plane (Must be positive)
* @z_far: The distance to the far clipping plane (Must be positive)
*
* Replaces the current projection matrix with a perspective matrix
* based on the provided values.
*
* <note>You should be careful not to have to great a @z_far / @z_near
* ratio since that will reduce the effectiveness of depth testing
* since there wont be enough precision to identify the depth of
* objects near to each other.</note>
*/
void
cogl_perspective (float fovy,
float aspect,
float z_near,
float z_far);
/**
* cogl_frustum:
* @left: X position of the left clipping plane where it
* intersects the near clipping plane
* @right: X position of the right clipping plane where it
* intersects the near clipping plane
* @bottom: Y position of the bottom clipping plane where it
* intersects the near clipping plane
* @top: Y position of the top clipping plane where it intersects
* the near clipping plane
* @z_near: The distance to the near clipping plane (Must be positive)
* @z_far: The distance to the far clipping plane (Must be positive)
*
* Replaces the current projection matrix with a perspective matrix
* for a given viewing frustum defined by 4 side clip planes that
* all cross through the origin and 2 near and far clip planes.
*
* Since: 0.8.2
*/
void
cogl_frustum (float left,
float right,
float bottom,
float top,
float z_near,
float z_far);
/**
* cogl_ortho:
* @left: The coordinate for the left clipping plane
* @right: The coordinate for the right clipping plane
* @bottom: The coordinate for the bottom clipping plane
* @top: The coordinate for the top clipping plane
* @near: The <emphasis>distance</emphasis> to the near clipping
* plane (negative if the plane is behind the viewer)
* @far: The <emphasis>distance</emphasis> for the far clipping
* plane (negative if the plane is behind the viewer)
*
* Replaces the current projection matrix with an orthographic projection
* matrix. See <xref linkend="cogl-ortho-matrix"/> to see how the matrix is
* calculated.
*
* <figure id="cogl-ortho-matrix">
* <title></title>
* <graphic fileref="cogl_ortho.png" format="PNG"/>
* </figure>
*
* <note>This function copies the arguments from OpenGL's glOrtho() even
* though they are unnecessarily confusing due to the z near and z far
* arguments actually being a "distance" from the origin, where
* negative values are behind the viewer, instead of coordinates for
* the z clipping planes which would have been consistent with the
* left, right bottom and top arguments.</note>
*
* Since: 1.0
*/
void
cogl_ortho (float left,
float right,
float bottom,
float top,
float near,
float far);
#ifndef COGL_DISABLE_DEPRECATED
/**
* cogl_viewport:
* @width: Width of the viewport
* @height: Height of the viewport
*
* Replace the current viewport with the given values.
*
* Since: 0.8.2
*
* Deprecated: 1.2: Use cogl_set_viewport() instead
*/
void
cogl_viewport (unsigned int width,
unsigned int height) G_GNUC_DEPRECATED;
#endif /* COGL_DISABLE_DEPRECATED */
/**
* cogl_set_viewport:
* @x: X offset of the viewport
* @y: Y offset of the viewport
* @width: Width of the viewport
* @height: Height of the viewport
*
* Replaces the current viewport with the given values.
*
* Since: 1.2
*/
void
cogl_set_viewport (int x,
int y,
int width,
int height);
/**
* cogl_push_matrix:
*
* Stores the current model-view matrix on the matrix stack. The matrix
* can later be restored with cogl_pop_matrix().
*/
void
cogl_push_matrix (void);
/**
* cogl_pop_matrix:
*
* Restores the current model-view matrix from the matrix stack.
*/
void
cogl_pop_matrix (void);
/**
* cogl_scale:
* @x: Amount to scale along the x-axis
* @y: Amount to scale along the y-axis
* @z: Amount to scale along the z-axis
*
* Multiplies the current model-view matrix by one that scales the x,
* y and z axes by the given values.
*/
void
cogl_scale (float x,
float y,
float z);
/**
* cogl_translate:
* @x: Distance to translate along the x-axis
* @y: Distance to translate along the y-axis
* @z: Distance to translate along the z-axis
*
* Multiplies the current model-view matrix by one that translates the
* model along all three axes according to the given values.
*/
void
cogl_translate (float x,
float y,
float z);
/**
* cogl_rotate:
* @angle: Angle in degrees to rotate.
* @x: X-component of vertex to rotate around.
* @y: Y-component of vertex to rotate around.
* @z: Z-component of vertex to rotate around.
*
* Multiplies the current model-view matrix by one that rotates the
* model around the vertex specified by @x, @y and @z. The rotation
* follows the right-hand thumb rule so for example rotating by 10
* degrees about the vertex (0, 0, 1) causes a small counter-clockwise
* rotation.
*/
void
cogl_rotate (float angle,
float x,
float y,
float z);
/**
* cogl_transform:
* @matrix: the matrix to multiply with the current model-view
*
* Multiplies the current model-view matrix by the given matrix.
*
* Since: 1.4
*/
void
cogl_transform (const CoglMatrix *matrix);
/**
* cogl_get_modelview_matrix:
* @matrix: (out): return location for the model-view matrix
*
* Stores the current model-view matrix in @matrix.
*/
void
cogl_get_modelview_matrix (CoglMatrix *matrix);
/**
* cogl_set_modelview_matrix:
* @matrix: the new model-view matrix
*
* Loads @matrix as the new model-view matrix.
*/
void
cogl_set_modelview_matrix (CoglMatrix *matrix);
/**
* cogl_get_projection_matrix:
* @matrix: (out): return location for the projection matrix
*
* Stores the current projection matrix in @matrix.
*/
void
cogl_get_projection_matrix (CoglMatrix *matrix);
/**
* cogl_set_projection_matrix:
* @matrix: the new projection matrix
*
* Loads matrix as the new projection matrix.
*/
void
cogl_set_projection_matrix (CoglMatrix *matrix);
/**
* cogl_get_viewport:
* @v: (out) (array fixed-size=4): pointer to a 4 element array
* of #float<!-- -->s to receive the viewport dimensions.
*
* Stores the current viewport in @v. @v[0] and @v[1] get the x and y
* position of the viewport and @v[2] and @v[3] get the width and
* height.
*/
void
cogl_get_viewport (float v[4]);
/**
* cogl_set_depth_test_enabled:
* @setting: %TRUE to enable depth testing or %FALSE to disable.
*
* Sets whether depth testing is enabled. If it is disabled then the
* order that actors are layered on the screen depends solely on the
* order specified using clutter_actor_raise() and
* clutter_actor_lower(), otherwise it will also take into account the
* actor's depth. Depth testing is disabled by default.
*
* Deprecated: 1.4: Use cogl_material_set_depth_test_enabled()
* instead.
*/
void
cogl_set_depth_test_enabled (gboolean setting);
/**
* cogl_get_depth_test_enabled:
*
* Queries if depth testing has been enabled via cogl_set_depth_test_enable()
*
* Return value: %TRUE if depth testing is enabled, and %FALSE otherwise
*
* Deprecated: 1.4: Use cogl_material_get_depth_test_enabled()
* instead.
*/
gboolean
cogl_get_depth_test_enabled (void);
/**
* cogl_set_backface_culling_enabled:
* @setting: %TRUE to enable backface culling or %FALSE to disable.
*
* Sets whether textures positioned so that their backface is showing
* should be hidden. This can be used to efficiently draw two-sided
* textures or fully closed cubes without enabling depth testing. This
* only affects calls to the cogl_rectangle* family of functions and
* cogl_vertex_buffer_draw*. Backface culling is disabled by default.
*/
void
cogl_set_backface_culling_enabled (gboolean setting);
/**
* cogl_get_backface_culling_enabled:
*
* Queries if backface culling has been enabled via
* cogl_set_backface_culling_enabled()
*
* Return value: %TRUE if backface culling is enabled, and %FALSE otherwise
*/
gboolean
cogl_get_backface_culling_enabled (void);
/**
* cogl_set_fog:
* @fog_color: The color of the fog
* @mode: A #CoglFogMode that determines the equation used to calculate the
* fogging blend factor.
* @density: Used by %COGL_FOG_MODE_EXPONENTIAL and by
* %COGL_FOG_MODE_EXPONENTIAL_SQUARED equations.
* @z_near: Position along Z axis where no fogging should be applied
* @z_far: Position along Z axis where full fogging should be applied
*
* Enables fogging. Fogging causes vertices that are further away from the eye
* to be rendered with a different color. The color is determined according to
* the chosen fog mode; at it's simplest the color is linearly interpolated so
* that vertices at @z_near are drawn fully with their original color and
* vertices at @z_far are drawn fully with @fog_color. Fogging will remain
* enabled until you call cogl_disable_fog().
*
* <note>The fogging functions only work correctly when primitives use
* unmultiplied alpha colors. By default Cogl will premultiply textures
* and cogl_set_source_color() will premultiply colors, so unless you
* explicitly load your textures requesting an unmultiplied internal format
* and use cogl_material_set_color() you can only use fogging with fully
* opaque primitives. This might improve in the future when we can depend
* on fragment shaders.</note>
*/
void
cogl_set_fog (const CoglColor *fog_color,
CoglFogMode mode,
float density,
float z_near,
float z_far);
/**
* cogl_disable_fog:
*
* This function disables fogging, so primitives drawn afterwards will not be
* blended with any previously set fog color.
*/
void
cogl_disable_fog (void);
/**
* CoglBufferBit:
* @COGL_BUFFER_BIT_COLOR: Selects the primary color buffer
* @COGL_BUFFER_BIT_DEPTH: Selects the depth buffer
* @COGL_BUFFER_BIT_STENCIL: Selects the stencil buffer
*
* Types of auxiliary buffers
*
* Since: 1.0
*/
typedef enum {
COGL_BUFFER_BIT_COLOR = 1L<<0,
COGL_BUFFER_BIT_DEPTH = 1L<<1,
COGL_BUFFER_BIT_STENCIL = 1L<<2
} CoglBufferBit;
/**
* cogl_clear:
* @color: Background color to clear to
* @buffers: A mask of #CoglBufferBit<!-- -->'s identifying which auxiliary
* buffers to clear
*
* Clears all the auxiliary buffers identified in the @buffers mask, and if
* that includes the color buffer then the specified @color is used.
*/
void
cogl_clear (const CoglColor *color,
unsigned long buffers);
/**
* cogl_set_source:
* @material: A #CoglMaterial
*
* This function changes the material at the top of the source stack.
* The material at the top of this stack defines the GPU state used to
* process subsequent primitives, such as rectangles drawn with
* cogl_rectangle() or vertices drawn using cogl_vertex_buffer_draw().
*
* Since: 1.0
*/
void
cogl_set_source (void *material);
/**
* cogl_get_source:
*
* Returns the current source material as previously set using
* cogl_set_source().
*
* <note>You should typically consider the returned material immutable
* and not try to change any of its properties unless you own a
* reference to that material. At times you may be able to get a
* reference to an internally managed materials and the result of
* modifying such materials is undefined.</note>
*
* Return value: The current source material.
*
* Since: 1.6
*/
void *
cogl_get_source (void);
/**
* cogl_push_source:
* @material: A #CoglMaterial
*
* Pushes the given @material to the top of the source stack. The
* material at the top of this stack defines the GPU state used to
* process later primitives as defined by cogl_set_source().
*
* Since: 1.6
*/
void
cogl_push_source (void *material);
/**
* cogl_pop_source:
*
* Removes the material at the top of the source stack. The material
* at the top of this stack defines the GPU state used to process
* later primitives as defined by cogl_set_source().
*
* Since: 1.6
*/
void
cogl_pop_source (void);
/**
* cogl_set_source_color:
* @color: a #CoglColor
*
* This is a convenience function for creating a solid fill source material
* from the given color. This color will be used for any subsequent drawing
* operation.
*
* The color will be premultiplied by Cogl, so the color should be
* non-premultiplied. For example: use (1.0, 0.0, 0.0, 0.5) for
* semi-transparent red.
*
* See also cogl_set_source_color4ub() and cogl_set_source_color4f()
* if you already have the color components.
*
* Since: 1.0
*/
void
cogl_set_source_color (const CoglColor *color);
/**
* cogl_set_source_color4ub:
* @red: value of the red channel, between 0 and 255
* @green: value of the green channel, between 0 and 255
* @blue: value of the blue channel, between 0 and 255
* @alpha: value of the alpha channel, between 0 and 255
*
* This is a convenience function for creating a solid fill source material
* from the given color using unsigned bytes for each component. This
* color will be used for any subsequent drawing operation.
*
* The value for each component is an unsigned byte in the range
* between 0 and 255.
*
* Since: 1.0
*/
void
cogl_set_source_color4ub (guint8 red,
guint8 green,
guint8 blue,
guint8 alpha);
/**
* cogl_set_source_color4f:
* @red: value of the red channel, between 0 and %1.0
* @green: value of the green channel, between 0 and %1.0
* @blue: value of the blue channel, between 0 and %1.0
* @alpha: value of the alpha channel, between 0 and %1.0
*
* This is a convenience function for creating a solid fill source material
* from the given color using normalized values for each component. This color
* will be used for any subsequent drawing operation.
*
* The value for each component is a fixed point number in the range
* between 0 and %1.0. If the values passed in are outside that
* range, they will be clamped.
*
* Since: 1.0
*/
void
cogl_set_source_color4f (float red,
float green,
float blue,
float alpha);
/**
* cogl_set_source_texture:
* @texture: The #CoglTexture you want as your source
*
* This is a convenience function for creating a material with the first
* layer set to @texture and setting that material as the source with
* cogl_set_source.
*
* Note: There is no interaction between calls to cogl_set_source_color
* and cogl_set_source_texture. If you need to blend a texture with a color then
* you can create a simple material like this:
* <programlisting>
* material = cogl_material_new ();
* cogl_material_set_color4ub (material, 0xff, 0x00, 0x00, 0x80);
* cogl_material_set_layer (material, 0, tex_handle);
* cogl_set_source (material);
* </programlisting>
*
* Since: 1.0
*/
void
cogl_set_source_texture (CoglTexture *texture);
/**
* SECTION:cogl-clipping
* @short_description: Fuctions for manipulating a stack of clipping regions
*
* To support clipping your geometry to rectangles or paths Cogl exposes a
* stack based API whereby each clip region you push onto the stack is
* intersected with the previous region.
*/
#ifndef COGL_DISABLE_DEPRECATED
/**
* cogl_clip_push_window_rect:
* @x_offset: left edge of the clip rectangle in window coordinates
* @y_offset: top edge of the clip rectangle in window coordinates
* @width: width of the clip rectangle
* @height: height of the clip rectangle
*
* Specifies a rectangular clipping area for all subsequent drawing
* operations. Any drawing commands that extend outside the rectangle
* will be clipped so that only the portion inside the rectangle will
* be displayed. The rectangle dimensions are not transformed by the
* current model-view matrix.
*
* The rectangle is intersected with the current clip region. To undo
* the effect of this function, call cogl_clip_pop().
*
* Deprecated: 1.2: Use cogl_clip_push_window_rectangle() instead
*/
void
cogl_clip_push_window_rect (float x_offset,
float y_offset,
float width,
float height) G_GNUC_DEPRECATED;
#endif /* COGL_DISABLE_DEPRECATED */
/**
* cogl_clip_push_window_rectangle:
* @x_offset: left edge of the clip rectangle in window coordinates
* @y_offset: top edge of the clip rectangle in window coordinates
* @width: width of the clip rectangle
* @height: height of the clip rectangle
*
* Specifies a rectangular clipping area for all subsequent drawing
* operations. Any drawing commands that extend outside the rectangle
* will be clipped so that only the portion inside the rectangle will
* be displayed. The rectangle dimensions are not transformed by the
* current model-view matrix.
*
* The rectangle is intersected with the current clip region. To undo
* the effect of this function, call cogl_clip_pop().
*
* Since: 1.2
*/
void
cogl_clip_push_window_rectangle (int x_offset,
int y_offset,
int width,
int height);
#ifndef COGL_DISABLE_DEPRECATED
/**
* cogl_clip_push:
* @x_offset: left edge of the clip rectangle
* @y_offset: top edge of the clip rectangle
* @width: width of the clip rectangle
* @height: height of the clip rectangle
*
* Specifies a rectangular clipping area for all subsequent drawing
* operations. Any drawing commands that extend outside the rectangle
* will be clipped so that only the portion inside the rectangle will
* be displayed. The rectangle dimensions are transformed by the
* current model-view matrix.
*
* The rectangle is intersected with the current clip region. To undo
* the effect of this function, call cogl_clip_pop().
*
* Deprecated: 1.2: The x, y, width, height arguments are inconsistent
* with other API that specify rectangles in model space, and when used
* with a coordinate space that puts the origin at the center and y+
* extending up, it's awkward to use. Please use cogl_clip_push_rectangle()
* instead
*/
void
cogl_clip_push (float x_offset,
float y_offset,
float width,
float height) G_GNUC_DEPRECATED;
#endif /* COGL_DISABLE_DEPRECATED */
/**
* cogl_clip_push_rectangle:
* @x0: x coordinate for top left corner of the clip rectangle
* @y0: y coordinate for top left corner of the clip rectangle
* @x1: x coordinate for bottom right corner of the clip rectangle
* @y1: y coordinate for bottom right corner of the clip rectangle
*
* Specifies a rectangular clipping area for all subsequent drawing
* operations. Any drawing commands that extend outside the rectangle
* will be clipped so that only the portion inside the rectangle will
* be displayed. The rectangle dimensions are transformed by the
* current model-view matrix.
*
* The rectangle is intersected with the current clip region. To undo
* the effect of this function, call cogl_clip_pop().
*
* Since: 1.2
*/
void
cogl_clip_push_rectangle (float x0,
float y0,
float x1,
float y1);
/**
* cogl_clip_push_from_path_preserve:
*
* Sets a new clipping area using the current path. The current path
* is then cleared. The clipping area is intersected with the previous
* clipping area. To restore the previous clipping area, call
* cogl_clip_pop().
*
* Since: 1.0
*/
void
cogl_clip_push_from_path_preserve (void);
#ifdef COGL_ENABLE_EXPERIMENTAL_2_0_API
/**
* cogl_clip_push_primitive:
* @primitive: A #CoglPrimitive describing a flat 2D shape
* @bounds_x1: x coordinate for the top-left corner of the primitives
* bounds
* @bounds_y1: y coordinate for the top-left corner of the primitives
* bounds
* @bounds_x2: x coordinate for the top-left corner of the primitives
* bounds
* @bounds_y2: x coordinate for the bottom-right corner of the
* primitives bounds.
* @bounds_x1: y coordinate for the bottom-right corner of the
* primitives bounds.
*
* Sets a new clipping area using a 2D shaped described with a
* #CoglPrimitive. The shape must not contain self overlapping
* geometry and must lie on a single 2D plane. A bounding box of the
* 2D shape in local coordinates (the same coordinates used to
* describe the shape) must be given. It is acceptable for the bounds
* to be larger than the true bounds but behaviour is undefined if the
* bounds are smaller than the true bounds.
*
* The primitive is transformed by the current model-view matrix and
* the silhouette is intersected with the previous clipping area. To
* restore the previous clipping area, call
* cogl_clip_pop().
*
* Since: 1.10
* Stability: unstable
*/
void
cogl_clip_push_primitive (CoglPrimitive *primitive,
float bounds_x1,
float bounds_y1,
float bounds_x2,
float bounds_y2);
#endif
/**
* cogl_clip_pop:
*
* Reverts the clipping region to the state before the last call to
* cogl_clip_push().
*/
void
cogl_clip_pop (void);
#ifndef COGL_DISABLE_DEPRECATED
/**
* cogl_clip_ensure:
*
* Ensures that the current clipping region has been set in GL. This
* will automatically be called before any Cogl primitives but it
* maybe be neccessary to call if you are using raw GL calls with
* clipping.
*
* Deprecated: 1.2: Calling this function has no effect
*
* Since: 1.0
*/
void
cogl_clip_ensure (void) G_GNUC_DEPRECATED;
/**
* cogl_clip_stack_save:
*
* Save the entire state of the clipping stack and then clear all
* clipping. The previous state can be returned to with
* cogl_clip_stack_restore(). Each call to cogl_clip_push() after this
* must be matched by a call to cogl_clip_pop() before calling
* cogl_clip_stack_restore().
*
* Deprecated: 1.2: This was originally added to allow us to save the
* clip stack when switching to an offscreen framebuffer, but it's
* not necessary anymore given that framebuffers now own separate
* clip stacks which will be automatically switched between when a
* new buffer is set. Calling this function has no effect
*
* Since: 0.8.2
*/
void
cogl_clip_stack_save (void) G_GNUC_DEPRECATED;
/**
* cogl_clip_stack_restore:
*
* Restore the state of the clipping stack that was previously saved
* by cogl_clip_stack_save().
*
* Deprecated: 1.2: This was originally added to allow us to restore
* the clip stack when switching back from an offscreen framebuffer,
* but it's not necessary anymore given that framebuffers now own
* separate clip stacks which will be automatically switched between
* when a new buffer is set. Calling this function has no effect
*
* Since: 0.8.2
*/
void
cogl_clip_stack_restore (void) G_GNUC_DEPRECATED;
#endif /* COGL_DISABLE_DEPRECATED */
/**
* cogl_set_framebuffer:
* @buffer: A #CoglFramebuffer object, either onscreen or offscreen.
*
* This redirects all subsequent drawing to the specified framebuffer. This can
* either be an offscreen buffer created with cogl_offscreen_new_to_texture ()
* or in the future it may be an onscreen framebuffers too.
*
* Since: 1.2
*/
void
cogl_set_framebuffer (CoglFramebuffer *buffer);
/**
* cogl_push_framebuffer:
* @buffer: A #CoglFramebuffer object, either onscreen or offscreen.
*
* Redirects all subsequent drawing to the specified framebuffer. This can
* either be an offscreen buffer created with cogl_offscreen_new_to_texture ()
* or in the future it may be an onscreen framebuffer too.
*
* You should understand that a framebuffer owns the following state:
* <itemizedlist>
* <listitem><simpara>The projection matrix</simpara></listitem>
* <listitem><simpara>The modelview matrix stack</simpara></listitem>
* <listitem><simpara>The viewport</simpara></listitem>
* <listitem><simpara>The clip stack</simpara></listitem>
* </itemizedlist>
* So these items will automatically be saved and restored when you
* push and pop between different framebuffers.
*
* Also remember a newly allocated framebuffer will have an identity matrix for
* the projection and modelview matrices which gives you a coordinate space
* like OpenGL with (-1, -1) corresponding to the top left of the viewport,
* (1, 1) corresponding to the bottom right and +z coming out towards the
* viewer.
*
* If you want to set up a coordinate space like Clutter does with (0, 0)
* corresponding to the top left and (framebuffer_width, framebuffer_height)
* corresponding to the bottom right you can do so like this:
*
* |[
* static void
* setup_viewport (unsigned int width,
* unsigned int height,
* float fovy,
* float aspect,
* float z_near,
* float z_far)
* {
* float z_camera;
* CoglMatrix projection_matrix;
* CoglMatrix mv_matrix;
*
* cogl_set_viewport (0, 0, width, height);
* cogl_perspective (fovy, aspect, z_near, z_far);
*
* cogl_get_projection_matrix (&amp;projection_matrix);
* z_camera = 0.5 * projection_matrix.xx;
*
* cogl_matrix_init_identity (&amp;mv_matrix);
* cogl_matrix_translate (&amp;mv_matrix, -0.5f, -0.5f, -z_camera);
* cogl_matrix_scale (&amp;mv_matrix, 1.0f / width, -1.0f / height, 1.0f / width);
* cogl_matrix_translate (&amp;mv_matrix, 0.0f, -1.0 * height, 0.0f);
* cogl_set_modelview_matrix (&amp;mv_matrix);
* }
*
* static void
* my_init_framebuffer (ClutterStage *stage,
* CoglFramebuffer *framebuffer,
* unsigned int framebuffer_width,
* unsigned int framebuffer_height)
* {
* ClutterPerspective perspective;
*
* clutter_stage_get_perspective (stage, &perspective);
*
* cogl_push_framebuffer (framebuffer);
* setup_viewport (framebuffer_width,
* framebuffer_height,
* perspective.fovy,
* perspective.aspect,
* perspective.z_near,
* perspective.z_far);
* }
* ]|
*
* The previous framebuffer can be restored by calling cogl_pop_framebuffer()
*
* Since: 1.2
*/
void
cogl_push_framebuffer (CoglFramebuffer *buffer);
/**
* cogl_pop_framebuffer:
*
* Restores the framebuffer that was previously at the top of the stack.
* All subsequent drawing will be redirected to this framebuffer.
*
* Since: 1.2
*/
void
cogl_pop_framebuffer (void);
#ifndef COGL_DISABLE_DEPRECATED
/**
* cogl_set_draw_buffer:
* @target: A #CoglBufferTarget that specifies what kind of framebuffer you
* are setting as the render target.
* @offscreen: If you are setting a framebuffer of type COGL_OFFSCREEN_BUFFER
* then this is a CoglHandle for the offscreen buffer.
*
* Redirects all subsequent drawing to the specified framebuffer. This
* can either be an offscreen buffer created with
* cogl_offscreen_new_to_texture () or you can revert to your original
* on screen window buffer.
*
* Deprecated: 1.2: The target argument was redundant since we could look at
* the type of CoglHandle given instead.
*/
void
cogl_set_draw_buffer (CoglBufferTarget target,
CoglHandle offscreen) G_GNUC_DEPRECATED;
/**
* cogl_push_draw_buffer:
*
* Save cogl_set_draw_buffer() state.
*
* Deprecated: 1.2: The draw buffer API was replaced with a framebuffer API
*/
void
cogl_push_draw_buffer (void) G_GNUC_DEPRECATED;
/**
* cogl_pop_draw_buffer:
*
* Restore cogl_set_draw_buffer() state.
*
* Deprecated: 1.2: The draw buffer API was replaced with a framebuffer API
*/
void
cogl_pop_draw_buffer (void) G_GNUC_DEPRECATED;
#endif /* COGL_DISABLE_DEPRECATED */
/**
* CoglReadPixelsFlags:
* @COGL_READ_PIXELS_COLOR_BUFFER: Read from the color buffer
*
* Flags for cogl_read_pixels()
*
* Since: 1.0
*/
typedef enum { /*< prefix=COGL_READ_PIXELS >*/
COGL_READ_PIXELS_COLOR_BUFFER = 1L << 0
} CoglReadPixelsFlags;
/**
* cogl_read_pixels:
* @x: The window x position to start reading from
* @y: The window y position to start reading from
* @width: The width of the rectangle you want to read
* @height: The height of the rectangle you want to read
* @source: Identifies which auxillary buffer you want to read
* (only COGL_READ_PIXELS_COLOR_BUFFER supported currently)
* @format: The pixel format you want the result in
* (only COGL_PIXEL_FORMAT_RGBA_8888 supported currently)
* @pixels: The location to write the pixel data.
*
* This reads a rectangle of pixels from the current framebuffer where
* position (0, 0) is the top left. The pixel at (x, y) is the first
* read, and the data is returned with a rowstride of (width * 4).
*
* Currently Cogl assumes that the framebuffer is in a premultiplied
* format so if @format is non-premultiplied it will convert it. To
* read the pixel values without any conversion you should either
* specify a format that doesn't use an alpha channel or use one of
* the formats ending in PRE.
*/
void
cogl_read_pixels (int x,
int y,
int width,
int height,
CoglReadPixelsFlags source,
CoglPixelFormat format,
guint8 *pixels);
/**
* cogl_flush:
*
* This function should only need to be called in exceptional circumstances.
*
* As an optimization Cogl drawing functions may batch up primitives
* internally, so if you are trying to use raw GL outside of Cogl you stand a
* better chance of being successful if you ask Cogl to flush any batched
* geometry before making your state changes.
*
* It only ensure that the underlying driver is issued all the commands
* necessary to draw the batched primitives. It provides no guarantees about
* when the driver will complete the rendering.
*
* This provides no guarantees about the GL state upon returning and to avoid
* confusing Cogl you should aim to restore any changes you make before
* resuming use of Cogl.
*
* If you are making state changes with the intention of affecting Cogl drawing
* primitives you are 100% on your own since you stand a good chance of
* conflicting with Cogl internals. For example clutter-gst which currently
* uses direct GL calls to bind ARBfp programs will very likely break when Cogl
* starts to use ARBfb programs itself for the material API.
*
* Since: 1.0
*/
void
cogl_flush (void);
/**
* cogl_begin_gl:
*
* We do not advise nor reliably support the interleaving of raw GL drawing and
* Cogl drawing functions, but if you insist, cogl_begin_gl() and cogl_end_gl()
* provide a simple mechanism that may at least give you a fighting chance of
* succeeding.
*
* Note: this doesn't help you modify the behaviour of Cogl drawing functions
* through the modification of GL state; that will never be reliably supported,
* but if you are trying to do something like:
*
* |[
* {
* - setup some OpenGL state.
* - draw using OpenGL (e.g. glDrawArrays() )
* - reset modified OpenGL state.
* - continue using Cogl to draw
* }
* ]|
*
* You should surround blocks of drawing using raw GL with cogl_begin_gl()
* and cogl_end_gl():
*
* |[
* {
* cogl_begin_gl ();
* - setup some OpenGL state.
* - draw using OpenGL (e.g. glDrawArrays() )
* - reset modified OpenGL state.
* cogl_end_gl ();
* - continue using Cogl to draw
* }
* ]|
*
* Don't ever try and do:
*
* |[
* {
* - setup some OpenGL state.
* - use Cogl to draw
* - reset modified OpenGL state.
* }
* ]|
*
* When the internals of Cogl evolves, this is very liable to break.
*
* This function will flush all batched primitives, and subsequently flush
* all internal Cogl state to OpenGL as if it were going to draw something
* itself.
*
* The result is that the OpenGL modelview matrix will be setup; the state
* corresponding to the current source material will be set up and other world
* state such as backface culling, depth and fogging enabledness will be sent
* to OpenGL.
*
* <note>No special material state is flushed, so if you want Cogl to setup a
* simplified material state it is your responsibility to set a simple source
* material before calling cogl_begin_gl(). E.g. by calling
* cogl_set_source_color4ub().</note>
*
* <note>It is your responsibility to restore any OpenGL state that you modify
* to how it was after calling cogl_begin_gl() if you don't do this then the
* result of further Cogl calls is undefined.</note>
*
* <note>You can not nest begin/end blocks.</note>
*
* Again we would like to stress, we do not advise the use of this API and if
* possible we would prefer to improve Cogl than have developers require raw
* OpenGL.
*
* Since: 1.0
*/
void
cogl_begin_gl (void);
/**
* cogl_end_gl:
*
* This is the counterpart to cogl_begin_gl() used to delimit blocks of drawing
* code using raw OpenGL. Please refer to cogl_begin_gl() for full details.
*
* Since: 1.0
*/
void
cogl_end_gl (void);
G_END_DECLS
#undef __COGL_H_INSIDE__
#endif /* __COGL_H__ */