mutter/cogl/cogl-pipeline-private.h
Neil Roberts 6d51a18e7c Add support for per-vertex point sizes
This adds a new function to enable per-vertex point size on a
pipeline. This can be set with
cogl_pipeline_set_per_vertex_point_size(). Once enabled the point size
can be set either by drawing with an attribute named
'cogl_point_size_in' or by writing to the 'cogl_point_size_out'
builtin from a snippet.

There is a feature flag which must be checked for before using
per-vertex point sizes. This will only be set on GL >= 2.0 or on GLES
2.0. GL will only let you set a per-vertex point size from GLSL by
writing to gl_PointSize. This is only available in GL2 and not in the
older GLSL extensions.

The per-vertex point size has its own pipeline state flag so that it
can be part of the state that affects vertex shader generation.

Having to enable the per vertex point size with a separate function is
a bit awkward. Ideally it would work like the color attribute where
you can just set it for every vertex in your primitive with
cogl_pipeline_set_color or set it per-vertex by just using the
attribute. This is harder to get working with the point size because
we need to generate a different vertex shader depending on what
attributes are bound. I think if we wanted to make this work
transparently we would still want to internally have a pipeline
property describing whether the shader was generated with per-vertex
support so that it would work with the shader cache correctly.
Potentially we could make the per-vertex property internal and
automatically make a weak pipeline whenever the attribute is bound.
However we would then also need to automatically detect when an
application is writing to cogl_point_size_out from a snippet.

Reviewed-by: Robert Bragg <robert@linux.intel.com>

(cherry picked from commit 8495d9c1c15ce389885a9356d965eabd97758115)

Conflicts:
	cogl/cogl-context.c
	cogl/cogl-pipeline-private.h
	cogl/cogl-pipeline.c
	cogl/cogl-private.h
	cogl/driver/gl/cogl-pipeline-progend-fixed.c
	cogl/driver/gl/gl/cogl-pipeline-progend-fixed-arbfp.c
2013-06-07 16:53:29 +01:00

991 lines
33 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2008,2009,2010,2011 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
*
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#ifndef __COGL_PIPELINE_PRIVATE_H
#define __COGL_PIPELINE_PRIVATE_H
#include "cogl-node-private.h"
#include "cogl-pipeline-layer-private.h"
#include "cogl-pipeline.h"
#include "cogl-matrix.h"
#include "cogl-object-private.h"
#include "cogl-profile.h"
#include "cogl-queue.h"
#include "cogl-boxed-value.h"
#include "cogl-pipeline-snippet-private.h"
#include "cogl-pipeline-state.h"
#include "cogl-framebuffer.h"
#include "cogl-bitmask.h"
#include <glib.h>
#ifdef HAVE_COGL_GL
#define COGL_PIPELINE_PROGEND_FIXED_ARBFP 0
#define COGL_PIPELINE_PROGEND_FIXED 1
#define COGL_PIPELINE_PROGEND_GLSL 2
#define COGL_PIPELINE_N_PROGENDS 3
#define COGL_PIPELINE_VERTEND_FIXED 0
#define COGL_PIPELINE_VERTEND_GLSL 1
#define COGL_PIPELINE_N_VERTENDS 2
#define COGL_PIPELINE_FRAGEND_ARBFP 0
#define COGL_PIPELINE_FRAGEND_FIXED 1
#define COGL_PIPELINE_FRAGEND_GLSL 2
#define COGL_PIPELINE_N_FRAGENDS 3
#else /* HAVE_COGL_GL */
#ifdef HAVE_COGL_GLES2
#define COGL_PIPELINE_PROGEND_GLSL 0
#define COGL_PIPELINE_VERTEND_GLSL 0
#define COGL_PIPELINE_FRAGEND_GLSL 0
#ifdef HAVE_COGL_GLES
#define COGL_PIPELINE_PROGEND_FIXED 1
#define COGL_PIPELINE_VERTEND_FIXED 1
#define COGL_PIPELINE_FRAGEND_FIXED 1
#define COGL_PIPELINE_N_PROGENDS 2
#define COGL_PIPELINE_N_VERTENDS 2
#define COGL_PIPELINE_N_FRAGENDS 2
#else
#define COGL_PIPELINE_N_PROGENDS 1
#define COGL_PIPELINE_N_VERTENDS 1
#define COGL_PIPELINE_N_FRAGENDS 1
#endif
#else /* HAVE_COGL_GLES2 */
#ifdef HAVE_COGL_GLES
#define COGL_PIPELINE_PROGEND_FIXED 0
#define COGL_PIPELINE_VERTEND_FIXED 0
#define COGL_PIPELINE_FRAGEND_FIXED 0
#define COGL_PIPELINE_N_PROGENDS 1
#define COGL_PIPELINE_N_VERTENDS 1
#define COGL_PIPELINE_N_FRAGENDS 1
#else
#error No drivers defined
#endif
#endif /* HAVE_COGL_GLES2 */
#endif /* HAVE_COGL_GL */
#define COGL_PIPELINE_PROGEND_DEFAULT 0
#define COGL_PIPELINE_PROGEND_UNDEFINED 3
/* XXX: should I rename these as
* COGL_PIPELINE_STATE_INDEX_XYZ... ?
*/
typedef enum
{
/* sparse state */
COGL_PIPELINE_STATE_COLOR_INDEX,
COGL_PIPELINE_STATE_BLEND_ENABLE_INDEX,
COGL_PIPELINE_STATE_LAYERS_INDEX,
COGL_PIPELINE_STATE_LIGHTING_INDEX,
COGL_PIPELINE_STATE_ALPHA_FUNC_INDEX,
COGL_PIPELINE_STATE_ALPHA_FUNC_REFERENCE_INDEX,
COGL_PIPELINE_STATE_BLEND_INDEX,
COGL_PIPELINE_STATE_USER_SHADER_INDEX,
COGL_PIPELINE_STATE_DEPTH_INDEX,
COGL_PIPELINE_STATE_FOG_INDEX,
COGL_PIPELINE_STATE_POINT_SIZE_INDEX,
COGL_PIPELINE_STATE_PER_VERTEX_POINT_SIZE_INDEX,
COGL_PIPELINE_STATE_LOGIC_OPS_INDEX,
COGL_PIPELINE_STATE_CULL_FACE_INDEX,
COGL_PIPELINE_STATE_UNIFORMS_INDEX,
COGL_PIPELINE_STATE_VERTEX_SNIPPETS_INDEX,
COGL_PIPELINE_STATE_FRAGMENT_SNIPPETS_INDEX,
/* non-sparse */
COGL_PIPELINE_STATE_REAL_BLEND_ENABLE_INDEX,
COGL_PIPELINE_STATE_COUNT
} CoglPipelineStateIndex;
#define COGL_PIPELINE_STATE_SPARSE_COUNT (COGL_PIPELINE_STATE_COUNT - 1)
/* Used in pipeline->differences masks and for notifying pipeline
* state changes.
*
* XXX: If you add or remove state groups here you may need to update
* some of the state masks following this enum too!
*
* FIXME: perhaps it would be better to rename this enum to
* CoglPipelineStateGroup to better convey the fact that a single enum
* here can map to multiple properties.
*/
typedef enum _CoglPipelineState
{
COGL_PIPELINE_STATE_COLOR =
1L<<COGL_PIPELINE_STATE_COLOR_INDEX,
COGL_PIPELINE_STATE_BLEND_ENABLE =
1L<<COGL_PIPELINE_STATE_BLEND_ENABLE_INDEX,
COGL_PIPELINE_STATE_LAYERS =
1L<<COGL_PIPELINE_STATE_LAYERS_INDEX,
COGL_PIPELINE_STATE_LIGHTING =
1L<<COGL_PIPELINE_STATE_LIGHTING_INDEX,
COGL_PIPELINE_STATE_ALPHA_FUNC =
1L<<COGL_PIPELINE_STATE_ALPHA_FUNC_INDEX,
COGL_PIPELINE_STATE_ALPHA_FUNC_REFERENCE =
1L<<COGL_PIPELINE_STATE_ALPHA_FUNC_REFERENCE_INDEX,
COGL_PIPELINE_STATE_BLEND =
1L<<COGL_PIPELINE_STATE_BLEND_INDEX,
COGL_PIPELINE_STATE_USER_SHADER =
1L<<COGL_PIPELINE_STATE_USER_SHADER_INDEX,
COGL_PIPELINE_STATE_DEPTH =
1L<<COGL_PIPELINE_STATE_DEPTH_INDEX,
COGL_PIPELINE_STATE_FOG =
1L<<COGL_PIPELINE_STATE_FOG_INDEX,
COGL_PIPELINE_STATE_POINT_SIZE =
1L<<COGL_PIPELINE_STATE_POINT_SIZE_INDEX,
COGL_PIPELINE_STATE_PER_VERTEX_POINT_SIZE =
1L<<COGL_PIPELINE_STATE_PER_VERTEX_POINT_SIZE_INDEX,
COGL_PIPELINE_STATE_LOGIC_OPS =
1L<<COGL_PIPELINE_STATE_LOGIC_OPS_INDEX,
COGL_PIPELINE_STATE_CULL_FACE =
1L<<COGL_PIPELINE_STATE_CULL_FACE_INDEX,
COGL_PIPELINE_STATE_UNIFORMS =
1L<<COGL_PIPELINE_STATE_UNIFORMS_INDEX,
COGL_PIPELINE_STATE_VERTEX_SNIPPETS =
1L<<COGL_PIPELINE_STATE_VERTEX_SNIPPETS_INDEX,
COGL_PIPELINE_STATE_FRAGMENT_SNIPPETS =
1L<<COGL_PIPELINE_STATE_FRAGMENT_SNIPPETS_INDEX,
COGL_PIPELINE_STATE_REAL_BLEND_ENABLE =
1L<<COGL_PIPELINE_STATE_REAL_BLEND_ENABLE_INDEX,
} CoglPipelineState;
/*
* Various special masks that tag state-groups in different ways...
*/
#define COGL_PIPELINE_STATE_ALL \
((1L<<COGL_PIPELINE_STATE_COUNT) - 1)
#define COGL_PIPELINE_STATE_ALL_SPARSE \
(COGL_PIPELINE_STATE_ALL \
& ~COGL_PIPELINE_STATE_REAL_BLEND_ENABLE)
#define COGL_PIPELINE_STATE_AFFECTS_BLENDING \
(COGL_PIPELINE_STATE_COLOR | \
COGL_PIPELINE_STATE_BLEND_ENABLE | \
COGL_PIPELINE_STATE_LAYERS | \
COGL_PIPELINE_STATE_LIGHTING | \
COGL_PIPELINE_STATE_BLEND | \
COGL_PIPELINE_STATE_USER_SHADER | \
COGL_PIPELINE_STATE_VERTEX_SNIPPETS | \
COGL_PIPELINE_STATE_FRAGMENT_SNIPPETS)
#define COGL_PIPELINE_STATE_NEEDS_BIG_STATE \
(COGL_PIPELINE_STATE_LIGHTING | \
COGL_PIPELINE_STATE_ALPHA_FUNC | \
COGL_PIPELINE_STATE_ALPHA_FUNC_REFERENCE | \
COGL_PIPELINE_STATE_BLEND | \
COGL_PIPELINE_STATE_USER_SHADER | \
COGL_PIPELINE_STATE_DEPTH | \
COGL_PIPELINE_STATE_FOG | \
COGL_PIPELINE_STATE_POINT_SIZE | \
COGL_PIPELINE_STATE_PER_VERTEX_POINT_SIZE | \
COGL_PIPELINE_STATE_LOGIC_OPS | \
COGL_PIPELINE_STATE_CULL_FACE | \
COGL_PIPELINE_STATE_UNIFORMS | \
COGL_PIPELINE_STATE_VERTEX_SNIPPETS | \
COGL_PIPELINE_STATE_FRAGMENT_SNIPPETS)
#define COGL_PIPELINE_STATE_MULTI_PROPERTY \
(COGL_PIPELINE_STATE_LAYERS | \
COGL_PIPELINE_STATE_LIGHTING | \
COGL_PIPELINE_STATE_BLEND | \
COGL_PIPELINE_STATE_DEPTH | \
COGL_PIPELINE_STATE_FOG | \
COGL_PIPELINE_STATE_LOGIC_OPS | \
COGL_PIPELINE_STATE_CULL_FACE | \
COGL_PIPELINE_STATE_UNIFORMS | \
COGL_PIPELINE_STATE_VERTEX_SNIPPETS | \
COGL_PIPELINE_STATE_FRAGMENT_SNIPPETS)
#define COGL_PIPELINE_STATE_AFFECTS_VERTEX_CODEGEN \
(COGL_PIPELINE_STATE_LAYERS | \
COGL_PIPELINE_STATE_USER_SHADER | \
COGL_PIPELINE_STATE_PER_VERTEX_POINT_SIZE | \
COGL_PIPELINE_STATE_VERTEX_SNIPPETS)
typedef enum
{
COGL_PIPELINE_LIGHTING_STATE_PROPERTY_AMBIENT = 1,
COGL_PIPELINE_LIGHTING_STATE_PROPERTY_DIFFUSE,
COGL_PIPELINE_LIGHTING_STATE_PROPERTY_SPECULAR,
COGL_PIPELINE_LIGHTING_STATE_PROPERTY_EMISSION,
COGL_PIPELINE_LIGHTING_STATE_PROPERTY_SHININESS
} CoglPipelineLightingStateProperty;
typedef struct
{
/* Standard OpenGL lighting model attributes */
float ambient[4];
float diffuse[4];
float specular[4];
float emission[4];
float shininess;
} CoglPipelineLightingState;
typedef struct
{
/* Determines what fragments are discarded based on their alpha */
CoglPipelineAlphaFunc alpha_func;
float alpha_func_reference;
} CoglPipelineAlphaFuncState;
typedef enum _CoglPipelineBlendEnable
{
/* XXX: we want to detect users mistakenly using TRUE or FALSE
* so start the enum at 2. */
COGL_PIPELINE_BLEND_ENABLE_ENABLED = 2,
COGL_PIPELINE_BLEND_ENABLE_DISABLED,
COGL_PIPELINE_BLEND_ENABLE_AUTOMATIC
} CoglPipelineBlendEnable;
typedef struct
{
/* Determines how this pipeline is blended with other primitives */
#if defined(HAVE_COGL_GLES2) || defined(HAVE_COGL_GL)
GLenum blend_equation_rgb;
GLenum blend_equation_alpha;
GLint blend_src_factor_alpha;
GLint blend_dst_factor_alpha;
CoglColor blend_constant;
#endif
GLint blend_src_factor_rgb;
GLint blend_dst_factor_rgb;
} CoglPipelineBlendState;
typedef struct
{
CoglBool enabled;
CoglColor color;
CoglFogMode mode;
float density;
float z_near;
float z_far;
} CoglPipelineFogState;
typedef struct
{
CoglColorMask color_mask;
} CoglPipelineLogicOpsState;
typedef struct
{
CoglPipelineCullFaceMode mode;
CoglWinding front_winding;
} CoglPipelineCullFaceState;
typedef struct
{
CoglBitmask override_mask;
/* This is an array of values. Only the uniforms that have a bit set
in override_mask have a corresponding value here. The uniform's
location is implicit from the order in this array */
CoglBoxedValue *override_values;
/* Uniforms that have been modified since this pipeline was last
flushed */
CoglBitmask changed_mask;
} CoglPipelineUniformsState;
typedef struct
{
CoglPipelineLightingState lighting_state;
CoglPipelineAlphaFuncState alpha_state;
CoglPipelineBlendState blend_state;
CoglHandle user_program;
CoglDepthState depth_state;
CoglPipelineFogState fog_state;
float point_size;
CoglBool per_vertex_point_size;
CoglPipelineLogicOpsState logic_ops_state;
CoglPipelineCullFaceState cull_face_state;
CoglPipelineUniformsState uniforms_state;
CoglPipelineSnippetList vertex_snippets;
CoglPipelineSnippetList fragment_snippets;
} CoglPipelineBigState;
typedef struct
{
CoglPipeline *owner;
CoglPipelineLayer *layer;
} CoglPipelineLayerCacheEntry;
typedef struct _CoglPipelineHashState
{
unsigned long layer_differences;
CoglPipelineEvalFlags flags;
unsigned int hash;
} CoglPipelineHashState;
/*
* CoglPipelineDestroyCallback
* @pipeline: The #CoglPipeline that has been destroyed
* @user_data: The private data associated with the callback
*
* Notifies when a weak pipeline has been destroyed because one
* of its ancestors has been freed or modified.
*/
typedef void (*CoglPipelineDestroyCallback)(CoglPipeline *pipeline,
void *user_data);
struct _CoglPipeline
{
/* XXX: Please think twice about adding members that *have* be
* initialized during a cogl_pipeline_copy. We are aiming to have
* copies be as cheap as possible and copies may be done by the
* primitives APIs which means they may happen in performance
* critical code paths.
*
* XXX: If you are extending the state we track please consider if
* the state is expected to vary frequently across many pipelines or
* if the state can be shared among many derived pipelines instead.
* This will determine if the state should be added directly to this
* structure which will increase the memory overhead for *all*
* pipelines or if instead it can go under ->big_state.
*/
/* Layers represent their state in a tree structure where some of
* the state relating to a given pipeline or layer may actually be
* owned by one if is ancestors in the tree. We have a common data
* type to track the tree heirachy so we can share code... */
CoglNode _parent;
/* When weak pipelines are destroyed the user is notified via this
* callback */
CoglPipelineDestroyCallback destroy_callback;
/* When notifying that a weak pipeline has been destroyed this
* private data is passed to the above callback */
void *destroy_data;
/* We need to track if a pipeline is referenced in the journal
* because we can't allow modification to these pipelines without
* flushing the journal first */
unsigned int journal_ref_count;
/* A mask of which sparse state groups are different in this
* pipeline in comparison to its parent. */
unsigned int differences;
/* Whenever a pipeline is modified we increment the age. There's no
* guarantee that it won't wrap but it can nevertheless be a
* convenient mechanism to determine when a pipeline has been
* changed to you can invalidate some some associated cache that
* depends on the old state. */
unsigned int age;
/* This is the primary color of the pipeline.
*
* This is a sparse property, ref COGL_PIPELINE_STATE_COLOR */
CoglColor color;
/* A pipeline may be made up with multiple layers used to combine
* textures together.
*
* This is sparse state, ref COGL_PIPELINE_STATE_LAYERS */
unsigned int n_layers;
GList *layer_differences;
/* As a basic way to reduce memory usage we divide the pipeline
* state into two groups; the minimal state modified in 90% of
* all pipelines and the rest, so that the second group can
* be allocated dynamically when required... */
CoglPipelineBigState *big_state;
#ifdef COGL_DEBUG_ENABLED
/* For debugging purposes it's possible to associate a static const
* string with a pipeline which can be an aid when trying to trace
* where the pipeline originates from */
const char *static_breadcrumb;
#endif
/* Cached state... */
/* A cached, complete list of the layers this pipeline depends
* on sorted by layer->unit_index. */
CoglPipelineLayer **layers_cache;
/* To avoid a separate ->layers_cache allocation for common
* pipelines with only a few layers... */
CoglPipelineLayer *short_layers_cache[3];
/* The deprecated cogl_pipeline_get_layers() API returns a
* const GList of layers, which we track here... */
GList *deprecated_get_layers_list;
/* XXX: consider adding an authorities cache to speed up sparse
* property value lookups:
* CoglPipeline *authorities_cache[COGL_PIPELINE_N_SPARSE_PROPERTIES];
* and corresponding authorities_cache_dirty:1 bitfield
*/
/* bitfields */
/* Weak pipelines don't count as dependants on their parents which
* means that the parent pipeline can be modified without
* considering how the modifications may affect the weak pipeline.
*/
unsigned int is_weak:1;
/* Determines if pipeline->big_state is valid */
unsigned int has_big_state:1;
/* By default blending is enabled automatically depending on the
* unlit color, the lighting colors or the texture format. The user
* can override this to explicitly enable or disable blending.
*
* This is a sparse property */
unsigned int blend_enable:3;
/* There are many factors that can determine if we need to enable
* blending, this holds our final decision */
unsigned int real_blend_enable:1;
/* Since the code for deciding if blending really needs to be
* enabled for a particular pipeline is quite expensive we update
* the real_blend_enable flag lazily when flushing a pipeline if
* this dirty flag has been set. */
unsigned int dirty_real_blend_enable:1;
/* Whenever a pipeline is flushed we keep track of whether the
* pipeline was used with a color attribute where we don't know
* whether the colors are opaque. The real_blend_enable state
* depends on this, and must be updated whenever this changes (even
* if dirty_real_blend_enable isn't set) */
unsigned int unknown_color_alpha:1;
unsigned int layers_cache_dirty:1;
unsigned int deprecated_get_layers_list_dirty:1;
#ifdef COGL_DEBUG_ENABLED
/* For debugging purposes it's possible to associate a static const
* string with a pipeline which can be an aid when trying to trace
* where the pipeline originates from */
unsigned int has_static_breadcrumb:1;
#endif
/* There are multiple fragment and vertex processing backends for
* CoglPipeline, glsl, arbfp and fixed that are bundled under a
* "progend". This identifies the backend being used for the
* pipeline. */
unsigned int progend:3;
};
typedef struct _CoglPipelineFragend
{
void (*start) (CoglPipeline *pipeline,
int n_layers,
unsigned long pipelines_difference);
CoglBool (*add_layer) (CoglPipeline *pipeline,
CoglPipelineLayer *layer,
unsigned long layers_difference);
CoglBool (*passthrough) (CoglPipeline *pipeline);
CoglBool (*end) (CoglPipeline *pipeline,
unsigned long pipelines_difference);
void (*pipeline_pre_change_notify) (CoglPipeline *pipeline,
CoglPipelineState change,
const CoglColor *new_color);
void (*pipeline_set_parent_notify) (CoglPipeline *pipeline);
void (*layer_pre_change_notify) (CoglPipeline *owner,
CoglPipelineLayer *layer,
CoglPipelineLayerState change);
} CoglPipelineFragend;
typedef struct _CoglPipelineVertend
{
void (*start) (CoglPipeline *pipeline,
int n_layers,
unsigned long pipelines_difference);
CoglBool (*add_layer) (CoglPipeline *pipeline,
CoglPipelineLayer *layer,
unsigned long layers_difference,
CoglFramebuffer *framebuffer);
CoglBool (*end) (CoglPipeline *pipeline,
unsigned long pipelines_difference);
void (*pipeline_pre_change_notify) (CoglPipeline *pipeline,
CoglPipelineState change,
const CoglColor *new_color);
void (*layer_pre_change_notify) (CoglPipeline *owner,
CoglPipelineLayer *layer,
CoglPipelineLayerState change);
} CoglPipelineVertend;
typedef struct
{
int vertend;
int fragend;
CoglBool (*start) (CoglPipeline *pipeline);
void (*end) (CoglPipeline *pipeline,
unsigned long pipelines_difference);
void (*pipeline_pre_change_notify) (CoglPipeline *pipeline,
CoglPipelineState change,
const CoglColor *new_color);
void (*layer_pre_change_notify) (CoglPipeline *owner,
CoglPipelineLayer *layer,
CoglPipelineLayerState change);
/* This is called after all of the other functions whenever the
pipeline is flushed, even if the pipeline hasn't changed since
the last flush */
void (* pre_paint) (CoglPipeline *pipeline, CoglFramebuffer *framebuffer);
} CoglPipelineProgend;
typedef enum
{
COGL_PIPELINE_PROGRAM_TYPE_GLSL = 1,
COGL_PIPELINE_PROGRAM_TYPE_ARBFP,
COGL_PIPELINE_PROGRAM_TYPE_FIXED
} CoglPipelineProgramType;
extern const CoglPipelineFragend *
_cogl_pipeline_fragends[COGL_PIPELINE_N_FRAGENDS];
extern const CoglPipelineVertend *
_cogl_pipeline_vertends[COGL_PIPELINE_N_VERTENDS];
extern const CoglPipelineProgend *
_cogl_pipeline_progends[];
void
_cogl_pipeline_init_default_pipeline (void);
static inline CoglPipeline *
_cogl_pipeline_get_parent (CoglPipeline *pipeline)
{
CoglNode *parent_node = COGL_NODE (pipeline)->parent;
return COGL_PIPELINE (parent_node);
}
static inline CoglPipeline *
_cogl_pipeline_get_authority (CoglPipeline *pipeline,
unsigned long difference)
{
CoglPipeline *authority = pipeline;
while (!(authority->differences & difference))
authority = _cogl_pipeline_get_parent (authority);
return authority;
}
typedef CoglBool (*CoglPipelineStateComparitor) (CoglPipeline *authority0,
CoglPipeline *authority1);
void
_cogl_pipeline_update_authority (CoglPipeline *pipeline,
CoglPipeline *authority,
CoglPipelineState state,
CoglPipelineStateComparitor comparitor);
void
_cogl_pipeline_pre_change_notify (CoglPipeline *pipeline,
CoglPipelineState change,
const CoglColor *new_color,
CoglBool from_layer_change);
void
_cogl_pipeline_prune_redundant_ancestry (CoglPipeline *pipeline);
void
_cogl_pipeline_update_real_blend_enable (CoglPipeline *pipeline,
CoglBool unknown_color_alpha);
typedef enum
{
COGL_PIPELINE_GET_LAYER_NO_CREATE = 1<<0
} CoglPipelineGetLayerFlags;
CoglPipelineLayer *
_cogl_pipeline_get_layer_with_flags (CoglPipeline *pipeline,
int layer_index,
CoglPipelineGetLayerFlags flags);
#define _cogl_pipeline_get_layer(p, l) \
_cogl_pipeline_get_layer_with_flags (p, l, 0)
CoglBool
_cogl_is_pipeline_layer (void *object);
void
_cogl_pipeline_prune_empty_layer_difference (CoglPipeline *layers_authority,
CoglPipelineLayer *layer);
/*
* SECTION:cogl-pipeline-internals
* @short_description: Functions for creating custom primitives that make use
* of Cogl pipelines for filling.
*
* Normally you shouldn't need to use this API directly, but if you need to
* developing a custom/specialised primitive - probably using raw OpenGL - then
* this API aims to expose enough of the pipeline internals to support being
* able to fill your geometry according to a given Cogl pipeline.
*/
CoglBool
_cogl_pipeline_get_real_blend_enabled (CoglPipeline *pipeline);
/*
* Calls the pre_paint method on the layer texture if there is
* one. This will determine whether mipmaps are needed based on the
* filter settings.
*/
void
_cogl_pipeline_pre_paint_for_layer (CoglPipeline *pipeline,
int layer_id);
/*
* CoglPipelineFlushFlag:
* @COGL_PIPELINE_FLUSH_FALLBACK_MASK: The fallback_layers member is set to
* a uint32_t mask of the layers that can't be supported with the user
* supplied texture and need to be replaced with fallback textures. (1 =
* fallback, and the least significant bit = layer 0)
* @COGL_PIPELINE_FLUSH_DISABLE_MASK: The disable_layers member is set to
* a uint32_t mask of the layers that you want to completly disable
* texturing for (1 = fallback, and the least significant bit = layer 0)
* @COGL_PIPELINE_FLUSH_LAYER0_OVERRIDE: The layer0_override_texture member is
* set to a GLuint OpenGL texture name to override the texture used for
* layer 0 of the pipeline. This is intended for dealing with sliced
* textures where you will need to point to each of the texture slices in
* turn when drawing your geometry. Passing a value of 0 is the same as
* not passing the option at all.
* @COGL_PIPELINE_FLUSH_SKIP_GL_COLOR: When flushing the GL state for the
* pipeline don't call glColor.
*/
typedef enum _CoglPipelineFlushFlag
{
COGL_PIPELINE_FLUSH_FALLBACK_MASK = 1L<<0,
COGL_PIPELINE_FLUSH_DISABLE_MASK = 1L<<1,
COGL_PIPELINE_FLUSH_LAYER0_OVERRIDE = 1L<<2,
COGL_PIPELINE_FLUSH_SKIP_GL_COLOR = 1L<<3
} CoglPipelineFlushFlag;
/*
* CoglPipelineFlushOptions:
*
*/
typedef struct _CoglPipelineFlushOptions
{
CoglPipelineFlushFlag flags;
uint32_t fallback_layers;
uint32_t disable_layers;
CoglTexture *layer0_override_texture;
} CoglPipelineFlushOptions;
void
_cogl_use_fragment_program (GLuint gl_program, CoglPipelineProgramType type);
void
_cogl_use_vertex_program (GLuint gl_program, CoglPipelineProgramType type);
unsigned int
_cogl_get_n_args_for_combine_func (CoglPipelineCombineFunc func);
/*
* _cogl_pipeline_weak_copy:
* @pipeline: A #CoglPipeline object
* @callback: A callback to notify when your weak pipeline is destroyed
* @user_data: Private data to pass to your given callback.
*
* Returns a weak copy of the given source @pipeline. Unlike a normal
* copy no internal reference is taken on the source @pipeline and you
* can expect that later modifications of the source pipeline (or in
* fact any other pipeline) can result in the weak pipeline being
* destroyed.
*
* To understand this better its good to know a bit about the internal
* design of #CoglPipeline...
*
* Internally #CoglPipeline<!-- -->s are represented as a graph of
* property diff's, where each node is a diff of properties that gets
* applied on top of its parent. Copying a pipeline creates an empty
* diff and a child->parent relationship between the empty diff and
* the source @pipeline, parent.
*
* Because of this internal graph design a single #CoglPipeline may
* indirectly depend on a chain of ancestors to fully define all of
* its properties. Because a node depends on its ancestors it normally
* owns a reference to its parent to stop it from being freed. Also if
* you try to modify a pipeline with children we internally use a
* copy-on-write mechanism to ensure that you don't indirectly change
* the properties those children.
*
* Weak pipelines avoid the use of copy-on-write to preserve the
* integrity of weak dependants and instead weak dependants are
* simply destroyed allowing the parent to be modified directly. Also
* because weak pipelines don't own a reference to their parent they
* won't stop the source @pipeline from being freed when the user
* releases their reference on it.
*
* Because weak pipelines don't own a reference on their parent they
* are the recommended mechanism for creating derived pipelines that you
* want to cache as a private property of the original pipeline
* because they won't result in a circular dependency.
*
* An example use case:
*
* Consider for example you are implementing a custom primitive that is
* not compatible with certain source pipelines. To handle this you
* implement a validation stage that given an arbitrary pipeline as
* input will create a derived pipeline that is suitable for drawing
* your primitive.
*
* Because you don't want to have to repeat this validation every time
* the same incompatible pipeline is given as input you want to cache
* the result as a private property of the original pipeline. If the
* derived pipeline were created using cogl_pipeline_copy that would
* create a circular dependency so the original pipeline can never be
* freed.
*
* If you instead create a weak copy you won't stop the original pipeline
* from being freed if it's no longer needed, and you will instead simply
* be notified that your weak pipeline has been destroyed.
*
* This is the recommended coding pattern for validating an input
* pipeline and caching a derived result:
* |[
* static CoglUserDataKey _cogl_my_cache_key;
*
* typedef struct {
* CoglPipeline *validated_source;
* } MyValidatedMaterialCache;
*
* static void
* destroy_cache_cb (CoglObject *object, void *user_data)
* {
* g_slice_free (MyValidatedMaterialCache, user_data);
* }
*
* static void
* invalidate_cache_cb (CoglPipeline *destroyed, void *user_data)
* {
* MyValidatedMaterialCache *cache = user_data;
* cogl_object_unref (cache->validated_source);
* cache->validated_source = NULL;
* }
*
* static CoglPipeline *
* get_validated_pipeline (CoglPipeline *source)
* {
* MyValidatedMaterialCache *cache =
* cogl_object_get_user_data (COGL_OBJECT (source),
* &_cogl_my_cache_key);
* if (G_UNLIKELY (cache == NULL))
* {
* cache = g_slice_new (MyValidatedMaterialCache);
* cogl_object_set_user_data (COGL_OBJECT (source),
* &_cogl_my_cache_key,
* cache, destroy_cache_cb);
* cache->validated_source = source;
* }
*
* if (G_UNLIKELY (cache->validated_source == NULL))
* {
* cache->validated_source = source;
*
* /&nbsp;* Start validating source... *&nbsp;/
*
* /&nbsp;* If you find you need to change something... *&nbsp;/
* if (cache->validated_source == source)
* cache->validated_source =
* cogl_pipeline_weak_copy (source,
* invalidate_cache_cb,
* cache);
*
* /&nbsp;* Modify cache->validated_source *&nbsp;/
* }
*
* return cache->validated_source;
* }
* ]|
*/
CoglPipeline *
_cogl_pipeline_weak_copy (CoglPipeline *pipeline,
CoglPipelineDestroyCallback callback,
void *user_data);
void
_cogl_pipeline_set_progend (CoglPipeline *pipeline, int progend);
CoglPipeline *
_cogl_pipeline_get_parent (CoglPipeline *pipeline);
void
_cogl_pipeline_get_colorubv (CoglPipeline *pipeline,
uint8_t *color);
/* XXX: At some point it could be good for this to accept a mask of
* the state groups we are interested in comparing since we can
* probably use that information in a number situations to reduce
* the work we do. */
unsigned long
_cogl_pipeline_compare_differences (CoglPipeline *pipeline0,
CoglPipeline *pipeline1);
CoglBool
_cogl_pipeline_equal (CoglPipeline *pipeline0,
CoglPipeline *pipeline1,
unsigned int differences,
unsigned long layer_differences,
CoglPipelineEvalFlags flags);
unsigned int
_cogl_pipeline_hash (CoglPipeline *pipeline,
unsigned int differences,
unsigned long layer_differences,
CoglPipelineEvalFlags flags);
/* Makes a copy of the given pipeline that is a child of the root
* pipeline rather than a child of the source pipeline. That way the
* new pipeline won't hold a reference to the source pipeline. The
* differences specified in @differences and @layer_differences are
* copied across and all other state is left with the default
* values. */
CoglPipeline *
_cogl_pipeline_deep_copy (CoglPipeline *pipeline,
unsigned long differences,
unsigned long layer_differences);
CoglPipeline *
_cogl_pipeline_journal_ref (CoglPipeline *pipeline);
void
_cogl_pipeline_journal_unref (CoglPipeline *pipeline);
const CoglMatrix *
_cogl_pipeline_get_layer_matrix (CoglPipeline *pipeline,
int layer_index);
void
_cogl_pipeline_texture_storage_change_notify (CoglTexture *texture);
void
_cogl_pipeline_apply_legacy_state (CoglPipeline *pipeline);
void
_cogl_pipeline_apply_overrides (CoglPipeline *pipeline,
CoglPipelineFlushOptions *options);
CoglPipelineBlendEnable
_cogl_pipeline_get_blend_enabled (CoglPipeline *pipeline);
void
_cogl_pipeline_set_blend_enabled (CoglPipeline *pipeline,
CoglPipelineBlendEnable enable);
CoglBool
_cogl_pipeline_get_fog_enabled (CoglPipeline *pipeline);
#ifdef COGL_DEBUG_ENABLED
void
_cogl_pipeline_set_static_breadcrumb (CoglPipeline *pipeline,
const char *breadcrumb);
#endif
unsigned long
_cogl_pipeline_get_age (CoglPipeline *pipeline);
CoglPipeline *
_cogl_pipeline_get_authority (CoglPipeline *pipeline,
unsigned long difference);
void
_cogl_pipeline_add_layer_difference (CoglPipeline *pipeline,
CoglPipelineLayer *layer,
CoglBool inc_n_layers);
void
_cogl_pipeline_remove_layer_difference (CoglPipeline *pipeline,
CoglPipelineLayer *layer,
CoglBool dec_n_layers);
CoglPipeline *
_cogl_pipeline_find_equivalent_parent (CoglPipeline *pipeline,
CoglPipelineState pipeline_state,
CoglPipelineLayerState layer_state);
void
_cogl_pipeline_get_layer_combine_constant (CoglPipeline *pipeline,
int layer_index,
float *constant);
void
_cogl_pipeline_prune_to_n_layers (CoglPipeline *pipeline, int n);
/*
* API to support the deprecate cogl_pipeline_layer_xyz functions...
*/
const GList *
_cogl_pipeline_get_layers (CoglPipeline *pipeline);
typedef CoglBool (*CoglPipelineInternalLayerCallback) (CoglPipelineLayer *layer,
void *user_data);
void
_cogl_pipeline_foreach_layer_internal (CoglPipeline *pipeline,
CoglPipelineInternalLayerCallback callback,
void *user_data);
CoglBool
_cogl_pipeline_layer_numbers_equal (CoglPipeline *pipeline0,
CoglPipeline *pipeline1);
CoglBool
_cogl_pipeline_layer_and_unit_numbers_equal (CoglPipeline *pipeline0,
CoglPipeline *pipeline1);
CoglBool
_cogl_pipeline_need_texture_combine_separate
(CoglPipelineLayer *combine_authority);
void
_cogl_pipeline_init_state_hash_functions (void);
void
_cogl_pipeline_init_layer_state_hash_functions (void);
CoglPipelineLayerState
_cogl_pipeline_get_layer_state_for_fragment_codegen (CoglContext *context);
CoglPipelineState
_cogl_pipeline_get_state_for_fragment_codegen (CoglContext *context);
#endif /* __COGL_PIPELINE_PRIVATE_H */