mirror of
https://github.com/brl/mutter.git
synced 2024-11-26 18:11:05 -05:00
ee940a3d0d
So we can get to the point where cogl.h is merely an aggregation of header includes for the 1.x api this moves all the function prototypes and type definitions into a cogl-context.h and a new cogl1-context.h. Ideally no code internally should ever need to include cogl.h as it just represents the public facing header for accessing the 1.x api which should only be used by Clutter. Reviewed-by: Neil Roberts <neil@linux.intel.com>
665 lines
17 KiB
C
665 lines
17 KiB
C
/*
|
|
* Cogl
|
|
*
|
|
* An object oriented GL/GLES Abstraction/Utility Layer
|
|
*
|
|
* Copyright (C) 2010 Intel Corporation.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*
|
|
* Authors:
|
|
* Robert Bragg <robert@linux.intel.com>
|
|
*
|
|
* Various references relating to quaternions:
|
|
*
|
|
* http://www.cs.caltech.edu/courses/cs171/quatut.pdf
|
|
* http://mathworld.wolfram.com/Quaternion.html
|
|
* http://www.gamedev.net/reference/articles/article1095.asp
|
|
* http://www.cprogramming.com/tutorial/3d/quaternions.html
|
|
* http://www.isner.com/tutorials/quatSpells/quaternion_spells_12.htm
|
|
* http://www.j3d.org/matrix_faq/matrfaq_latest.html#Q56
|
|
* 3D Maths Primer for Graphics and Game Development ISBN-10: 1556229119
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include <cogl.h>
|
|
#include <cogl-util.h>
|
|
#include <cogl-quaternion.h>
|
|
#include <cogl-quaternion-private.h>
|
|
#include <cogl-matrix.h>
|
|
#include <cogl-vector.h>
|
|
#include <cogl-euler.h>
|
|
|
|
#include <string.h>
|
|
#include <math.h>
|
|
|
|
#define FLOAT_EPSILON 1e-03
|
|
|
|
static CoglQuaternion zero_quaternion =
|
|
{
|
|
0.0, 0.0, 0.0, 0.0,
|
|
};
|
|
|
|
static CoglQuaternion identity_quaternion =
|
|
{
|
|
1.0, 0.0, 0.0, 0.0,
|
|
};
|
|
|
|
void
|
|
_cogl_quaternion_print (CoglQuaternion *quaternion)
|
|
{
|
|
g_print ("[ %6.4f (%6.4f, %6.4f, %6.4f)]\n",
|
|
quaternion->w,
|
|
quaternion->x,
|
|
quaternion->y,
|
|
quaternion->z);
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init (CoglQuaternion *quaternion,
|
|
float angle,
|
|
float x,
|
|
float y,
|
|
float z)
|
|
{
|
|
float axis[3] = { x, y, z};
|
|
cogl_quaternion_init_from_angle_vector (quaternion, angle, axis);
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_from_angle_vector (CoglQuaternion *quaternion,
|
|
float angle,
|
|
const float *axis3f_in)
|
|
{
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
float axis[3];
|
|
float half_angle;
|
|
float sin_half_angle;
|
|
|
|
/* XXX: Should we make cogl_vector3_normalize have separate in and
|
|
* out args? */
|
|
axis[0] = axis3f_in[0];
|
|
axis[1] = axis3f_in[1];
|
|
axis[2] = axis3f_in[2];
|
|
cogl_vector3_normalize (axis);
|
|
|
|
half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
sin_half_angle = sinf (half_angle);
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
quaternion->x = axis[0] * sin_half_angle;
|
|
quaternion->y = axis[1] * sin_half_angle;
|
|
quaternion->z = axis[2] * sin_half_angle;
|
|
|
|
cogl_quaternion_normalize (quaternion);
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_identity (CoglQuaternion *quaternion)
|
|
{
|
|
quaternion->w = 1.0;
|
|
|
|
quaternion->x = 0.0;
|
|
quaternion->y = 0.0;
|
|
quaternion->z = 0.0;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_from_array (CoglQuaternion *quaternion,
|
|
const float *array)
|
|
{
|
|
quaternion->w = array[0];
|
|
quaternion->x = array[1];
|
|
quaternion->y = array[2];
|
|
quaternion->z = array[3];
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_from_x_rotation (CoglQuaternion *quaternion,
|
|
float angle)
|
|
{
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
quaternion->x = sinf (half_angle);
|
|
quaternion->y = 0.0f;
|
|
quaternion->z = 0.0f;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_from_y_rotation (CoglQuaternion *quaternion,
|
|
float angle)
|
|
{
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
quaternion->x = 0.0f;
|
|
quaternion->y = sinf (half_angle);
|
|
quaternion->z = 0.0f;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_from_z_rotation (CoglQuaternion *quaternion,
|
|
float angle)
|
|
{
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
float half_angle = angle * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f;
|
|
|
|
quaternion->w = cosf (half_angle);
|
|
|
|
quaternion->x = 0.0f;
|
|
quaternion->y = 0.0f;
|
|
quaternion->z = sinf (half_angle);
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_from_euler (CoglQuaternion *quaternion,
|
|
const CoglEuler *euler)
|
|
{
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
float sin_heading =
|
|
sinf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
float sin_pitch =
|
|
sinf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
float sin_roll =
|
|
sinf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
float cos_heading =
|
|
cosf (euler->heading * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
float cos_pitch =
|
|
cosf (euler->pitch * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
float cos_roll =
|
|
cosf (euler->roll * _COGL_QUATERNION_DEGREES_TO_RADIANS * 0.5f);
|
|
|
|
quaternion->w =
|
|
cos_heading * cos_pitch * cos_roll +
|
|
sin_heading * sin_pitch * sin_roll;
|
|
|
|
quaternion->x =
|
|
cos_heading * sin_pitch * cos_roll +
|
|
sin_heading * cos_pitch * sin_roll;
|
|
quaternion->y =
|
|
sin_heading * cos_pitch * cos_roll -
|
|
cos_heading * sin_pitch * sin_roll;
|
|
quaternion->z =
|
|
cos_heading * cos_pitch * sin_roll -
|
|
sin_heading * sin_pitch * cos_roll;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_init_from_quaternion (CoglQuaternion *quaternion,
|
|
CoglQuaternion *src)
|
|
{
|
|
memcpy (quaternion, src, sizeof (float) * 4);
|
|
}
|
|
|
|
/* XXX: it could be nice to make something like this public... */
|
|
/*
|
|
* COGL_MATRIX_READ:
|
|
* @MATRIX: A 4x4 transformation matrix
|
|
* @ROW: The row of the value you want to read
|
|
* @COLUMN: The column of the value you want to read
|
|
*
|
|
* Reads a value from the given matrix using integers to index
|
|
* into the matrix.
|
|
*/
|
|
#define COGL_MATRIX_READ(MATRIX, ROW, COLUMN) \
|
|
(((const float *)matrix)[COLUMN * 4 + ROW])
|
|
|
|
/**
|
|
* cogl_quaternion_init_from_matrix:
|
|
* @quaternion: A Cogl Quaternion
|
|
* @matrix: A rotation matrix with which to initialize the quaternion
|
|
*
|
|
* Initializes a quaternion from a rotation matrix.
|
|
*
|
|
* Since: 1.4
|
|
*/
|
|
void
|
|
cogl_quaternion_init_from_matrix (CoglQuaternion *quaternion,
|
|
const CoglMatrix *matrix)
|
|
{
|
|
/* Algorithm devised by Ken Shoemake, Ref:
|
|
* http://campar.in.tum.de/twiki/pub/Chair/DwarfTutorial/quatut.pdf
|
|
*/
|
|
|
|
/* 3D maths literature refers to the diagonal of a matrix as the
|
|
* "trace" of a matrix... */
|
|
float trace = matrix->xx + matrix->yy + matrix->zz;
|
|
float root;
|
|
|
|
if (trace > 0.0f)
|
|
{
|
|
root = sqrtf (trace + 1);
|
|
quaternion->w = root * 0.5f;
|
|
root = 0.5f / root;
|
|
quaternion->x = (matrix->zy - matrix->yz) * root;
|
|
quaternion->y = (matrix->xz - matrix->zx) * root;
|
|
quaternion->z = (matrix->yx - matrix->xy) * root;
|
|
}
|
|
else
|
|
{
|
|
#define X 0
|
|
#define Y 1
|
|
#define Z 2
|
|
#define W 3
|
|
int h = X;
|
|
if (matrix->yy > matrix->xx)
|
|
h = Y;
|
|
if (matrix->zz > COGL_MATRIX_READ (matrix, h, h))
|
|
h = Z;
|
|
switch (h)
|
|
{
|
|
#define CASE_MACRO(i, j, k, I, J, K) \
|
|
case I: \
|
|
root = sqrtf ((COGL_MATRIX_READ (matrix, I, I) - \
|
|
(COGL_MATRIX_READ (matrix, J, J) + \
|
|
COGL_MATRIX_READ (matrix, K, K))) + \
|
|
COGL_MATRIX_READ (matrix, W, W)); \
|
|
quaternion->i = root * 0.5f;\
|
|
root = 0.5f / root;\
|
|
quaternion->j = (COGL_MATRIX_READ (matrix, I, J) + \
|
|
COGL_MATRIX_READ (matrix, J, I)) * root; \
|
|
quaternion->k = (COGL_MATRIX_READ (matrix, K, I) + \
|
|
COGL_MATRIX_READ (matrix, I, K)) * root; \
|
|
quaternion->w = (COGL_MATRIX_READ (matrix, K, J) - \
|
|
COGL_MATRIX_READ (matrix, J, K)) * root;\
|
|
break
|
|
CASE_MACRO (x, y, z, X, Y, Z);
|
|
CASE_MACRO (y, z, x, Y, Z, X);
|
|
CASE_MACRO (z, x, y, Z, X, Y);
|
|
#undef CASE_MACRO
|
|
#undef X
|
|
#undef Y
|
|
#undef Z
|
|
}
|
|
}
|
|
|
|
if (matrix->ww != 1.0f)
|
|
{
|
|
float s = 1.0 / sqrtf (matrix->ww);
|
|
quaternion->w *= s;
|
|
quaternion->x *= s;
|
|
quaternion->y *= s;
|
|
quaternion->z *= s;
|
|
}
|
|
}
|
|
|
|
gboolean
|
|
cogl_quaternion_equal (gconstpointer v1, gconstpointer v2)
|
|
{
|
|
const CoglQuaternion *a = v1;
|
|
const CoglQuaternion *b = v2;
|
|
|
|
_COGL_RETURN_VAL_IF_FAIL (v1 != NULL, FALSE);
|
|
_COGL_RETURN_VAL_IF_FAIL (v2 != NULL, FALSE);
|
|
|
|
if (v1 == v2)
|
|
return TRUE;
|
|
|
|
return (a->w == b->w &&
|
|
a->x == b->x &&
|
|
a->y == b->y &&
|
|
a->z == b->z);
|
|
}
|
|
|
|
CoglQuaternion *
|
|
cogl_quaternion_copy (const CoglQuaternion *src)
|
|
{
|
|
if (G_LIKELY (src))
|
|
{
|
|
CoglQuaternion *new = g_slice_new (CoglQuaternion);
|
|
memcpy (new, src, sizeof (float) * 4);
|
|
return new;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_free (CoglQuaternion *quaternion)
|
|
{
|
|
g_slice_free (CoglQuaternion, quaternion);
|
|
}
|
|
|
|
float
|
|
cogl_quaternion_get_rotation_angle (const CoglQuaternion *quaternion)
|
|
{
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
|
|
/* FIXME: clamp [-1, 1] */
|
|
return 2.0f * acosf (quaternion->w) * _COGL_QUATERNION_RADIANS_TO_DEGREES;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_get_rotation_axis (const CoglQuaternion *quaternion,
|
|
float *vector3)
|
|
{
|
|
float sin_half_angle_sqr;
|
|
float one_over_sin_angle_over_2;
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
|
|
/* NB: sin²(𝜃) + cos²(𝜃) = 1 */
|
|
|
|
sin_half_angle_sqr = 1.0f - quaternion->w * quaternion->w;
|
|
|
|
if (sin_half_angle_sqr <= 0.0f)
|
|
{
|
|
/* Either an identity quaternion or numerical imprecision.
|
|
* Either way we return an arbitrary vector. */
|
|
vector3[0] = 1;
|
|
vector3[1] = 0;
|
|
vector3[2] = 0;
|
|
return;
|
|
}
|
|
|
|
/* Calculate 1 / sin(𝜃/2) */
|
|
one_over_sin_angle_over_2 = 1.0f / sqrtf (sin_half_angle_sqr);
|
|
|
|
vector3[0] = quaternion->x * one_over_sin_angle_over_2;
|
|
vector3[1] = quaternion->y * one_over_sin_angle_over_2;
|
|
vector3[2] = quaternion->z * one_over_sin_angle_over_2;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_normalize (CoglQuaternion *quaternion)
|
|
{
|
|
float slen = _COGL_QUATERNION_NORM (quaternion);
|
|
float factor = 1.0f / sqrtf (slen);
|
|
|
|
quaternion->x *= factor;
|
|
quaternion->y *= factor;
|
|
quaternion->z *= factor;
|
|
|
|
quaternion->w *= factor;
|
|
|
|
return;
|
|
}
|
|
|
|
float
|
|
cogl_quaternion_dot_product (const CoglQuaternion *a,
|
|
const CoglQuaternion *b)
|
|
{
|
|
return a->w * b->w + a->x * b->x + a->y * b->y + a->z * b->z;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_invert (CoglQuaternion *quaternion)
|
|
{
|
|
quaternion->x = -quaternion->x;
|
|
quaternion->y = -quaternion->y;
|
|
quaternion->z = -quaternion->z;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_multiply (CoglQuaternion *result,
|
|
const CoglQuaternion *a,
|
|
const CoglQuaternion *b)
|
|
{
|
|
result->w = a->w * b->w - a->x * b->x - a->y * b->y - a->z * b->z;
|
|
|
|
result->x = a->w * b->x + a->x * b->w + a->y * b->z - a->z * b->y;
|
|
result->y = a->w * b->y + a->y * b->w + a->z * b->x - a->x * b->z;
|
|
result->z = a->w * b->z + a->z * b->w + a->x * b->y - a->y * b->x;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_pow (CoglQuaternion *quaternion, float exponent)
|
|
{
|
|
float half_angle;
|
|
float new_half_angle;
|
|
float factor;
|
|
|
|
/* Try and identify and nop identity quaternions to avoid
|
|
* dividing by zero */
|
|
if (fabs (quaternion->w) > 0.9999f)
|
|
return;
|
|
|
|
/* NB: We are using quaternions to represent an axis (a), angle (𝜃) pair
|
|
* in this form:
|
|
* [w=cos(𝜃/2) ( x=sin(𝜃/2)*a.x, y=sin(𝜃/2)*a.y, z=sin(𝜃/2)*a.x )]
|
|
*/
|
|
|
|
/* FIXME: clamp [-1, 1] */
|
|
/* Extract 𝜃/2 from w */
|
|
half_angle = acosf (quaternion->w);
|
|
|
|
/* Compute the new 𝜃/2 */
|
|
new_half_angle = half_angle * exponent;
|
|
|
|
/* Compute the new w value */
|
|
quaternion->w = cosf (new_half_angle);
|
|
|
|
/* And new xyz values */
|
|
factor = sinf (new_half_angle) / sinf (half_angle);
|
|
quaternion->x *= factor;
|
|
quaternion->y *= factor;
|
|
quaternion->z *= factor;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_slerp (CoglQuaternion *result,
|
|
const CoglQuaternion *a,
|
|
const CoglQuaternion *b,
|
|
float t)
|
|
{
|
|
float cos_difference;
|
|
float qb_w;
|
|
float qb_x;
|
|
float qb_y;
|
|
float qb_z;
|
|
float fa;
|
|
float fb;
|
|
|
|
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
|
|
|
|
if (t == 0)
|
|
{
|
|
*result = *a;
|
|
return;
|
|
}
|
|
else if (t == 1)
|
|
{
|
|
*result = *b;
|
|
return;
|
|
}
|
|
|
|
/* compute the cosine of the angle between the two given quaternions */
|
|
cos_difference = cogl_quaternion_dot_product (a, b);
|
|
|
|
/* If negative, use -b. Two quaternions q and -q represent the same angle but
|
|
* may produce a different slerp. We choose b or -b to rotate using the acute
|
|
* angle.
|
|
*/
|
|
if (cos_difference < 0.0f)
|
|
{
|
|
qb_w = -b->w;
|
|
qb_x = -b->x;
|
|
qb_y = -b->y;
|
|
qb_z = -b->z;
|
|
cos_difference = -cos_difference;
|
|
}
|
|
else
|
|
{
|
|
qb_w = b->w;
|
|
qb_x = b->x;
|
|
qb_y = b->y;
|
|
qb_z = b->z;
|
|
}
|
|
|
|
/* If we have two unit quaternions the dot should be <= 1.0 */
|
|
g_assert (cos_difference < 1.1f);
|
|
|
|
|
|
/* Determine the interpolation factors for each quaternion, simply using
|
|
* linear interpolation for quaternions that are nearly exactly the same.
|
|
* (this will avoid divisions by zero)
|
|
*/
|
|
|
|
if (cos_difference > 0.9999f)
|
|
{
|
|
fa = 1.0f - t;
|
|
fb = t;
|
|
|
|
/* XXX: should we also normalize() at the end in this case? */
|
|
}
|
|
else
|
|
{
|
|
/* Calculate the sin of the angle between the two quaternions using the
|
|
* trig identity: sin²(𝜃) + cos²(𝜃) = 1
|
|
*/
|
|
float sin_difference = sqrtf (1.0f - cos_difference * cos_difference);
|
|
|
|
float difference = atan2f (sin_difference, cos_difference);
|
|
float one_over_sin_difference = 1.0f / sin_difference;
|
|
fa = sinf ((1.0f - t) * difference) * one_over_sin_difference;
|
|
fb = sinf (t * difference) * one_over_sin_difference;
|
|
}
|
|
|
|
/* Finally interpolate the two quaternions */
|
|
|
|
result->x = fa * a->x + fb * qb_x;
|
|
result->y = fa * a->y + fb * qb_y;
|
|
result->z = fa * a->z + fb * qb_z;
|
|
result->w = fa * a->w + fb * qb_w;
|
|
}
|
|
|
|
void
|
|
cogl_quaternion_nlerp (CoglQuaternion *result,
|
|
const CoglQuaternion *a,
|
|
const CoglQuaternion *b,
|
|
float t)
|
|
{
|
|
float cos_difference;
|
|
float qb_w;
|
|
float qb_x;
|
|
float qb_y;
|
|
float qb_z;
|
|
float fa;
|
|
float fb;
|
|
|
|
_COGL_RETURN_IF_FAIL (t >=0 && t <= 1.0f);
|
|
|
|
if (t == 0)
|
|
{
|
|
*result = *a;
|
|
return;
|
|
}
|
|
else if (t == 1)
|
|
{
|
|
*result = *b;
|
|
return;
|
|
}
|
|
|
|
/* compute the cosine of the angle between the two given quaternions */
|
|
cos_difference = cogl_quaternion_dot_product (a, b);
|
|
|
|
/* If negative, use -b. Two quaternions q and -q represent the same angle but
|
|
* may produce a different slerp. We choose b or -b to rotate using the acute
|
|
* angle.
|
|
*/
|
|
if (cos_difference < 0.0f)
|
|
{
|
|
qb_w = -b->w;
|
|
qb_x = -b->x;
|
|
qb_y = -b->y;
|
|
qb_z = -b->z;
|
|
cos_difference = -cos_difference;
|
|
}
|
|
else
|
|
{
|
|
qb_w = b->w;
|
|
qb_x = b->x;
|
|
qb_y = b->y;
|
|
qb_z = b->z;
|
|
}
|
|
|
|
/* If we have two unit quaternions the dot should be <= 1.0 */
|
|
g_assert (cos_difference < 1.1f);
|
|
|
|
fa = 1.0f - t;
|
|
fb = t;
|
|
|
|
result->x = fa * a->x + fb * qb_x;
|
|
result->y = fa * a->y + fb * qb_y;
|
|
result->z = fa * a->z + fb * qb_z;
|
|
result->w = fa * a->w + fb * qb_w;
|
|
|
|
cogl_quaternion_normalize (result);
|
|
}
|
|
|
|
/**
|
|
* cogl_quaternion_squad:
|
|
*
|
|
*/
|
|
void
|
|
cogl_quaternion_squad (CoglQuaternion *result,
|
|
const CoglQuaternion *prev,
|
|
const CoglQuaternion *a,
|
|
const CoglQuaternion *b,
|
|
const CoglQuaternion *next,
|
|
float t)
|
|
{
|
|
CoglQuaternion slerp0;
|
|
CoglQuaternion slerp1;
|
|
|
|
cogl_quaternion_slerp (&slerp0, a, b, t);
|
|
cogl_quaternion_slerp (&slerp1, prev, next, t);
|
|
cogl_quaternion_slerp (result, &slerp0, &slerp1, 2.0f * t * (1.0f - t));
|
|
}
|
|
|
|
const CoglQuaternion *
|
|
cogl_get_static_identity_quaternion (void)
|
|
{
|
|
return &identity_quaternion;
|
|
}
|
|
|
|
const CoglQuaternion *
|
|
cogl_get_static_zero_quaternion (void)
|
|
{
|
|
return &zero_quaternion;
|
|
}
|
|
|