mutter/clutter/glx/clutter-stage-glx.c
Emmanuele Bassi 6a0857f17d glx: Remove unused variable
Make gcc not complain about it.
2011-04-12 17:04:06 +01:00

534 lines
18 KiB
C

/* Clutter.
* An OpenGL based 'interactive canvas' library.
* Authored By Matthew Allum <mallum@openedhand.com>
* Copyright (C) 2006-2007 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "clutter-backend-glx.h"
#include "clutter-stage-glx.h"
#include "clutter-glx.h"
#include "clutter-profile.h"
#include "clutter-actor-private.h"
#include "clutter-debug.h"
#include "clutter-device-manager.h"
#include "clutter-event.h"
#include "clutter-enum-types.h"
#include "clutter-feature.h"
#include "clutter-main.h"
#include "clutter-private.h"
#include "clutter-stage-private.h"
#include "cogl/cogl.h"
#include <GL/glx.h>
#include <GL/gl.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <fcntl.h>
#include <errno.h>
#ifdef HAVE_DRM
#include <drm.h>
#endif
static void clutter_stage_window_iface_init (ClutterStageWindowIface *iface);
static ClutterStageWindowIface *clutter_stage_window_parent_iface = NULL;
#define clutter_stage_glx_get_type _clutter_stage_glx_get_type
G_DEFINE_TYPE_WITH_CODE (ClutterStageGLX,
clutter_stage_glx,
CLUTTER_TYPE_STAGE_X11,
G_IMPLEMENT_INTERFACE (CLUTTER_TYPE_STAGE_WINDOW,
clutter_stage_window_iface_init));
static void
clutter_stage_glx_unrealize (ClutterStageWindow *stage_window)
{
ClutterStageGLX *stage_glx = CLUTTER_STAGE_GLX (stage_window);
/* Note unrealize should free up any backend stage related resources */
CLUTTER_NOTE (BACKEND, "Unrealizing GLX stage [%p]", stage_glx);
cogl_object_unref (stage_glx->onscreen);
stage_glx->onscreen = NULL;
}
static void
handle_swap_complete_cb (CoglFramebuffer *framebuffer,
void *user_data)
{
ClutterStageGLX *stage_glx = user_data;
/* Early versions of the swap_event implementation in Mesa
* deliver BufferSwapComplete event when not selected for,
* so if we get a swap event we aren't expecting, just ignore it.
*
* https://bugs.freedesktop.org/show_bug.cgi?id=27962
*
* FIXME: This issue can be hidden inside Cogl so we shouldn't
* need to care about this bug here.
*/
if (stage_glx->pending_swaps > 0)
stage_glx->pending_swaps--;
}
static gboolean
clutter_stage_glx_realize (ClutterStageWindow *stage_window)
{
ClutterStageX11 *stage_x11 = CLUTTER_STAGE_X11 (stage_window);
ClutterStageGLX *stage_glx = CLUTTER_STAGE_GLX (stage_window);
ClutterBackend *backend;
CoglFramebuffer *framebuffer;
GError *error = NULL;
gfloat width;
gfloat height;
const char *clutter_vblank;
CLUTTER_NOTE (ACTOR, "Realizing stage '%s' [%p]",
G_OBJECT_TYPE_NAME (stage_window),
stage_window);
backend = CLUTTER_BACKEND (stage_x11->backend);
clutter_actor_get_size (CLUTTER_ACTOR (stage_x11->wrapper), &width, &height);
stage_glx->onscreen = cogl_onscreen_new (backend->cogl_context,
width, height);
if (stage_x11->xwin != None)
cogl_onscreen_x11_set_foreign_window_xid (stage_glx->onscreen,
stage_x11->xwin);
clutter_vblank = _clutter_backend_glx_get_vblank ();
if (clutter_vblank && strcmp (clutter_vblank, "none") == 0)
cogl_onscreen_set_swap_throttled (stage_glx->onscreen, FALSE);
framebuffer = COGL_FRAMEBUFFER (stage_glx->onscreen);
if (!cogl_framebuffer_allocate (framebuffer, &error))
{
g_warning ("Failed to allocate stage: %s", error->message);
g_error_free (error);
cogl_object_unref (stage_glx->onscreen);
stage_glx->onscreen = NULL;
return FALSE;
}
if (stage_x11->xwin == None)
stage_x11->xwin = cogl_onscreen_x11_get_window_xid (stage_glx->onscreen);
if (cogl_clutter_winsys_has_feature (COGL_WINSYS_FEATURE_SWAP_BUFFERS_EVENT))
{
stage_glx->swap_callback_id =
cogl_framebuffer_add_swap_buffers_callback (framebuffer,
handle_swap_complete_cb,
stage_glx);
}
/* chain up to the StageX11 implementation */
return clutter_stage_window_parent_iface->realize (stage_window);
}
static int
clutter_stage_glx_get_pending_swaps (ClutterStageWindow *stage_window)
{
ClutterStageGLX *stage_glx = CLUTTER_STAGE_GLX (stage_window);
return stage_glx->pending_swaps;
}
static void
clutter_stage_glx_class_init (ClutterStageGLXClass *klass)
{
}
static void
clutter_stage_glx_init (ClutterStageGLX *stage)
{
}
static gboolean
clutter_stage_glx_has_redraw_clips (ClutterStageWindow *stage_window)
{
ClutterStageGLX *stage_glx = CLUTTER_STAGE_GLX (stage_window);
/* NB: at the start of each new frame there is an implied clip that
* clips everything (i.e. nothing would be drawn) so we need to make
* sure we return True in the un-initialized case here.
*
* NB: a clip width of 0 means a full stage redraw has been queued
* so we effectively don't have any redraw clips in that case.
*/
if (!stage_glx->initialized_redraw_clip ||
(stage_glx->initialized_redraw_clip &&
stage_glx->bounding_redraw_clip.width != 0))
return TRUE;
else
return FALSE;
}
static gboolean
clutter_stage_glx_ignoring_redraw_clips (ClutterStageWindow *stage_window)
{
ClutterStageGLX *stage_glx = CLUTTER_STAGE_GLX (stage_window);
/* NB: a clip width of 0 means a full stage redraw is required */
if (stage_glx->initialized_redraw_clip &&
stage_glx->bounding_redraw_clip.width == 0)
return TRUE;
else
return FALSE;
}
/* A redraw clip represents (in stage coordinates) the bounding box of
* something that needs to be redraw. Typically they are added to the
* StageWindow as a result of clutter_actor_queue_clipped_redraw() by
* actors such as ClutterGLXTexturePixmap. All redraw clips are
* discarded after the next paint.
*
* A NULL stage_clip means the whole stage needs to be redrawn.
*
* What we do with this information:
* - we keep track of the bounding box for all redraw clips
* - when we come to redraw; if the bounding box is smaller than the
* stage we scissor the redraw to that box and use
* GLX_MESA_copy_sub_buffer to present the redraw to the front
* buffer.
*
* XXX - In theory, we should have some sort of heuristics to promote
* a clipped redraw to a full screen redraw; in reality, it turns out
* that promotion is fairly expensive. See the Clutter bug described
* at: http://bugzilla.clutter-project.org/show_bug.cgi?id=2136 .
*
* TODO - we should use different heuristics depending on whether the
* framebuffer is on screen and not redirected by a compositor VS
* offscreen (either due to compositor redirection or because we are
* rendering to a CoglOffscreen framebuffer)
*
* When not redirected glXCopySubBuffer (on intel hardware at least)
* will block the GPU until the vertical trace is at the optimal point
* so the copy can be done without tearing. In this case we don't want
* to copy tall regions because they increase the average time spent
* blocking the GPU.
*
* When rendering offscreen (CoglOffscreen or redirected by
* compositor) then no extra synchronization is needed before the copy
* can start.
*
* In all cases we need to consider that glXCopySubBuffer implies a
* blit which may be avoided by promoting to a full stage redraw if:
* - the framebuffer is redirected offscreen or a CoglOffscreen.
* - the framebuffer is onscreen and fullscreen.
* By promoting to a full stage redraw we trade off the cost involved
* in rasterizing the extra pixels vs avoiding to use a blit to
* present the back buffer.
*/
static void
clutter_stage_glx_add_redraw_clip (ClutterStageWindow *stage_window,
ClutterGeometry *stage_clip)
{
ClutterStageGLX *stage_glx = CLUTTER_STAGE_GLX (stage_window);
/* If we are already forced to do a full stage redraw then bail early */
if (clutter_stage_glx_ignoring_redraw_clips (stage_window))
return;
/* A NULL stage clip means a full stage redraw has been queued and
* we keep track of this by setting a zero width
* stage_glx->bounding_redraw_clip */
if (stage_clip == NULL)
{
stage_glx->bounding_redraw_clip.width = 0;
stage_glx->initialized_redraw_clip = TRUE;
return;
}
/* Ignore requests to add degenerate/empty clip rectangles */
if (stage_clip->width == 0 || stage_clip->height == 0)
return;
if (!stage_glx->initialized_redraw_clip)
{
stage_glx->bounding_redraw_clip.x = stage_clip->x;
stage_glx->bounding_redraw_clip.y = stage_clip->y;
stage_glx->bounding_redraw_clip.width = stage_clip->width;
stage_glx->bounding_redraw_clip.height = stage_clip->height;
}
else if (stage_glx->bounding_redraw_clip.width > 0)
{
clutter_geometry_union (&stage_glx->bounding_redraw_clip,
stage_clip,
&stage_glx->bounding_redraw_clip);
}
#if 0
redraw_area = (stage_glx->bounding_redraw_clip.width *
stage_glx->bounding_redraw_clip.height);
stage_area = stage_x11->xwin_width * stage_x11->xwin_height;
/* Redrawing and blitting >70% of the stage is assumed to be more
* expensive than redrawing the additional 30% to avoid the blit.
*
* FIXME: This threshold was plucked out of thin air!
*
* The threshold has been disabled after verifying that it indeed
* made redraws more expensive than intended; see bug reference:
*
* http://bugzilla.clutter-project.org/show_bug.cgi?id=2136
*/
if (redraw_area > (stage_area * 0.7f))
{
g_print ("DEBUG: clipped redraw too big, forcing full redraw\n");
/* Set a zero width clip to force a full redraw */
stage_glx->bounding_redraw_clip.width = 0;
}
#endif
stage_glx->initialized_redraw_clip = TRUE;
}
static void
clutter_stage_glx_redraw (ClutterStageWindow *stage_window)
{
ClutterBackendGLX *backend_glx;
ClutterStageX11 *stage_x11;
ClutterStageGLX *stage_glx;
gboolean may_use_clipped_redraw;
gboolean use_clipped_redraw;
CLUTTER_STATIC_TIMER (painting_timer,
"Redrawing", /* parent */
"Painting actors",
"The time spent painting actors",
0 /* no application private data */);
CLUTTER_STATIC_TIMER (swapbuffers_timer,
"Redrawing", /* parent */
"glXSwapBuffers",
"The time spent blocked by glXSwapBuffers",
0 /* no application private data */);
CLUTTER_STATIC_TIMER (blit_sub_buffer_timer,
"Redrawing", /* parent */
"glx_blit_sub_buffer",
"The time spent in _glx_blit_sub_buffer",
0 /* no application private data */);
stage_x11 = CLUTTER_STAGE_X11 (stage_window);
if (stage_x11->xwin == None)
return;
stage_glx = CLUTTER_STAGE_GLX (stage_window);
backend_glx = CLUTTER_BACKEND_GLX (stage_x11->backend);
CLUTTER_TIMER_START (_clutter_uprof_context, painting_timer);
if (G_LIKELY (backend_glx->can_blit_sub_buffer) &&
/* NB: a zero width redraw clip == full stage redraw */
stage_glx->bounding_redraw_clip.width != 0 &&
/* some drivers struggle to get going and produce some junk
* frames when starting up... */
G_LIKELY (stage_glx->frame_count > 3) &&
/* While resizing a window clipped redraws are disabled to avoid
* artefacts. See clutter-event-x11.c:event_translate for a
* detailed explanation */
G_LIKELY (stage_x11->clipped_redraws_cool_off == 0))
{
may_use_clipped_redraw = TRUE;
}
else
may_use_clipped_redraw = FALSE;
if (may_use_clipped_redraw &&
G_LIKELY (!(clutter_paint_debug_flags &
CLUTTER_DEBUG_DISABLE_CLIPPED_REDRAWS)))
use_clipped_redraw = TRUE;
else
use_clipped_redraw = FALSE;
if (use_clipped_redraw)
{
CLUTTER_NOTE (CLIPPING,
"Stage clip pushed: x=%d, y=%d, width=%d, height=%d\n",
stage_glx->bounding_redraw_clip.x,
stage_glx->bounding_redraw_clip.y,
stage_glx->bounding_redraw_clip.width,
stage_glx->bounding_redraw_clip.height);
cogl_clip_push_window_rectangle (stage_glx->bounding_redraw_clip.x,
stage_glx->bounding_redraw_clip.y,
stage_glx->bounding_redraw_clip.width,
stage_glx->bounding_redraw_clip.height);
_clutter_stage_do_paint (stage_x11->wrapper,
&stage_glx->bounding_redraw_clip);
cogl_clip_pop ();
}
else
{
CLUTTER_NOTE (CLIPPING, "Unclipped stage paint\n");
/* If we are trying to debug redraw issues then we want to pass
* the bounding_redraw_clip so it can be visualized */
if (G_UNLIKELY (clutter_paint_debug_flags &
CLUTTER_DEBUG_DISABLE_CLIPPED_REDRAWS) &&
may_use_clipped_redraw)
{
_clutter_stage_do_paint (stage_x11->wrapper,
&stage_glx->bounding_redraw_clip);
}
else
_clutter_stage_do_paint (stage_x11->wrapper, NULL);
}
if (may_use_clipped_redraw &&
G_UNLIKELY ((clutter_paint_debug_flags & CLUTTER_DEBUG_REDRAWS)))
{
static CoglMaterial *outline = NULL;
ClutterGeometry *clip = &stage_glx->bounding_redraw_clip;
ClutterActor *actor = CLUTTER_ACTOR (stage_x11->wrapper);
CoglHandle vbo;
float x_1 = clip->x;
float x_2 = clip->x + clip->width;
float y_1 = clip->y;
float y_2 = clip->y + clip->height;
float quad[8] = {
x_1, y_1,
x_2, y_1,
x_2, y_2,
x_1, y_2
};
CoglMatrix modelview;
if (outline == NULL)
{
outline = cogl_material_new ();
cogl_material_set_color4ub (outline, 0xff, 0x00, 0x00, 0xff);
}
vbo = cogl_vertex_buffer_new (4);
cogl_vertex_buffer_add (vbo,
"gl_Vertex",
2, /* n_components */
COGL_ATTRIBUTE_TYPE_FLOAT,
FALSE, /* normalized */
0, /* stride */
quad);
cogl_vertex_buffer_submit (vbo);
cogl_push_matrix ();
cogl_matrix_init_identity (&modelview);
_clutter_actor_apply_modelview_transform (actor, &modelview);
cogl_set_modelview_matrix (&modelview);
cogl_set_source (outline);
cogl_vertex_buffer_draw (vbo, COGL_VERTICES_MODE_LINE_LOOP,
0 , 4);
cogl_pop_matrix ();
cogl_object_unref (vbo);
}
CLUTTER_TIMER_STOP (_clutter_uprof_context, painting_timer);
/* push on the screen */
if (use_clipped_redraw)
{
ClutterGeometry *clip = &stage_glx->bounding_redraw_clip;
int copy_area[4];
ClutterActor *actor;
/* XXX: It seems there will be a race here in that the stage
* window may be resized before the cogl_framebuffer_swap_region
* is handled and so we may copy the wrong region. I can't
* really see how we can handle this with the current state of X
* but at least in this case a full redraw should be queued by
* the resize anyway so it should only exhibit temporary
* artefacts.
*/
actor = CLUTTER_ACTOR (stage_x11->wrapper);
copy_area[0] = clip->x;
copy_area[1] = clutter_actor_get_height (actor) - clip->y - clip->height;
copy_area[2] = clip->width;
copy_area[3] = clip->height;
CLUTTER_NOTE (BACKEND,
"cogl_framebuffer_swap_region (onscreen: %p, "
"x: %d, y: %d, "
"width: %d, height: %d)",
stage_glx->onscreen,
copy_area[0], copy_area[1], copy_area[2], copy_area[3]);
CLUTTER_TIMER_START (_clutter_uprof_context, blit_sub_buffer_timer);
cogl_framebuffer_swap_region (COGL_FRAMEBUFFER (stage_glx->onscreen),
copy_area, 1);
CLUTTER_TIMER_STOP (_clutter_uprof_context, blit_sub_buffer_timer);
}
else
{
CLUTTER_NOTE (BACKEND, "cogl_framebuffer_swap_buffers (onscreen: %p)",
stage_glx->onscreen);
/* If we have swap buffer events then
* cogl_framebuffer_swap_buffers will return immediately and we
* need to track that there is a swap in progress... */
if (clutter_feature_available (CLUTTER_FEATURE_SWAP_EVENTS))
stage_glx->pending_swaps++;
CLUTTER_TIMER_START (_clutter_uprof_context, swapbuffers_timer);
cogl_framebuffer_swap_buffers (COGL_FRAMEBUFFER (stage_glx->onscreen));
CLUTTER_TIMER_STOP (_clutter_uprof_context, swapbuffers_timer);
}
/* reset the redraw clipping for the next paint... */
stage_glx->initialized_redraw_clip = FALSE;
stage_glx->frame_count++;
}
static CoglFramebuffer *
clutter_stage_glx_get_active_framebuffer (ClutterStageWindow *stage_window)
{
ClutterStageGLX *stage_glx = CLUTTER_STAGE_GLX (stage_window);
return COGL_FRAMEBUFFER (stage_glx->onscreen);
}
static void
clutter_stage_window_iface_init (ClutterStageWindowIface *iface)
{
clutter_stage_window_parent_iface = g_type_interface_peek_parent (iface);
iface->realize = clutter_stage_glx_realize;
iface->unrealize = clutter_stage_glx_unrealize;
iface->get_pending_swaps = clutter_stage_glx_get_pending_swaps;
iface->add_redraw_clip = clutter_stage_glx_add_redraw_clip;
iface->has_redraw_clips = clutter_stage_glx_has_redraw_clips;
iface->ignoring_redraw_clips = clutter_stage_glx_ignoring_redraw_clips;
iface->redraw = clutter_stage_glx_redraw;
iface->get_active_framebuffer = clutter_stage_glx_get_active_framebuffer;
/* the rest is inherited from ClutterStageX11 */
}