Robert Bragg 7365c3aa77 Separate out CoglPath api into sub-library
This splits out the cogl_path_ api into a separate cogl-path sub-library
like cogl-pango and cogl-gst. This enables developers to build Cogl with
this sub-library disabled if they don't need it which can be useful when
its important to keep the size of an application and its dependencies
down to a minimum. The functions cogl_framebuffer_{fill,stroke}_path
have been renamed to cogl_path_{fill,stroke}.

There were a few places in core cogl and cogl-gst that referenced the
CoglPath api and these have been decoupled by using the CoglPrimitive
api instead. In the case of cogl_framebuffer_push_path_clip() the core
clip stack no longer accepts path clips directly but it's now possible
to get a CoglPrimitive for the fill of a path and so the implementation
of cogl_framebuffer_push_path_clip() now lives in cogl-path and works as
a shim that first gets a CoglPrimitive and uses
cogl_framebuffer_push_primitive_clip instead.

We may want to consider renaming cogl_framebuffer_push_path_clip to
put it in the cogl_path_ namespace.

Reviewed-by: Neil Roberts <neil@linux.intel.com>

(cherry picked from commit 8aadfd829239534fb4ec8255cdea813d698c5a3f)

So as to avoid breaking the 1.x API or even the ABI since we are quite
late in the 1.16 development cycle the patch was modified to build
cogl-path as a noinst_LTLIBRARY before building cogl and link the code
directly into libcogl.so as it was previously. This way we can wait
until the start of the 1.18 cycle before splitting the code into a
separate libcogl-path.so.

This also adds shims for cogl_framebuffer_fill/stroke_path() to avoid
breaking the 1.x API/ABI.
2013-08-19 22:44:35 +01:00

258 lines
7.6 KiB
C

/*
* SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
* Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice including the dates of first publication and
* either this permission notice or a reference to
* http://oss.sgi.com/projects/FreeB/
* shall be included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
* Except as contained in this notice, the name of Silicon Graphics, Inc.
* shall not be used in advertising or otherwise to promote the sale, use or
* other dealings in this Software without prior written authorization from
* Silicon Graphics, Inc.
*/
/*
** Author: Eric Veach, July 1994.
**
*/
#include "gluos.h"
#include "mesh.h"
#include "tess.h"
#include "normal.h"
#include <math.h>
#include <assert.h>
#ifndef TRUE
#define TRUE 1
#endif
#ifndef FALSE
#define FALSE 0
#endif
#define Dot(u,v) (u[0]*v[0] + u[1]*v[1] + u[2]*v[2])
#if 0
static void Normalize( GLdouble v[3] )
{
GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
assert( len > 0 );
len = sqrt( len );
v[0] /= len;
v[1] /= len;
v[2] /= len;
}
#endif
#undef ABS
#define ABS(x) ((x) < 0 ? -(x) : (x))
static int LongAxis( GLdouble v[3] )
{
int i = 0;
if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }
if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }
return i;
}
static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] )
{
GLUvertex *v, *v1, *v2;
GLdouble c, tLen2, maxLen2;
GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];
GLUvertex *maxVert[3], *minVert[3];
GLUvertex *vHead = &tess->mesh->vHead;
int i;
maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;
minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;
for( v = vHead->next; v != vHead; v = v->next ) {
for( i = 0; i < 3; ++i ) {
c = v->coords[i];
if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }
if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }
}
}
/* Find two vertices separated by at least 1/sqrt(3) of the maximum
* distance between any two vertices
*/
i = 0;
if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }
if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }
if( minVal[i] >= maxVal[i] ) {
/* All vertices are the same -- normal doesn't matter */
norm[0] = 0; norm[1] = 0; norm[2] = 1;
return;
}
/* Look for a third vertex which forms the triangle with maximum area
* (Length of normal == twice the triangle area)
*/
maxLen2 = 0;
v1 = minVert[i];
v2 = maxVert[i];
d1[0] = v1->coords[0] - v2->coords[0];
d1[1] = v1->coords[1] - v2->coords[1];
d1[2] = v1->coords[2] - v2->coords[2];
for( v = vHead->next; v != vHead; v = v->next ) {
d2[0] = v->coords[0] - v2->coords[0];
d2[1] = v->coords[1] - v2->coords[1];
d2[2] = v->coords[2] - v2->coords[2];
tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];
tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];
tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];
tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];
if( tLen2 > maxLen2 ) {
maxLen2 = tLen2;
norm[0] = tNorm[0];
norm[1] = tNorm[1];
norm[2] = tNorm[2];
}
}
if( maxLen2 <= 0 ) {
/* All points lie on a single line -- any decent normal will do */
norm[0] = norm[1] = norm[2] = 0;
norm[LongAxis(d1)] = 1;
}
}
static void CheckOrientation( GLUtesselator *tess )
{
GLdouble area;
GLUface *f, *fHead = &tess->mesh->fHead;
GLUvertex *v, *vHead = &tess->mesh->vHead;
GLUhalfEdge *e;
/* When we compute the normal automatically, we choose the orientation
* so that the sum of the signed areas of all contours is non-negative.
*/
area = 0;
for( f = fHead->next; f != fHead; f = f->next ) {
e = f->anEdge;
if( e->winding <= 0 ) continue;
do {
area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);
e = e->Lnext;
} while( e != f->anEdge );
}
if( area < 0 ) {
/* Reverse the orientation by flipping all the t-coordinates */
for( v = vHead->next; v != vHead; v = v->next ) {
v->t = - v->t;
}
tess->tUnit[0] = - tess->tUnit[0];
tess->tUnit[1] = - tess->tUnit[1];
tess->tUnit[2] = - tess->tUnit[2];
}
}
#ifdef FOR_TRITE_TEST_PROGRAM
#include <stdlib.h>
extern int RandomSweep;
#define S_UNIT_X (RandomSweep ? (2*drand48()-1) : 1.0)
#define S_UNIT_Y (RandomSweep ? (2*drand48()-1) : 0.0)
#else
#if defined(SLANTED_SWEEP)
/* The "feature merging" is not intended to be complete. There are
* special cases where edges are nearly parallel to the sweep line
* which are not implemented. The algorithm should still behave
* robustly (ie. produce a reasonable tesselation) in the presence
* of such edges, however it may miss features which could have been
* merged. We could minimize this effect by choosing the sweep line
* direction to be something unusual (ie. not parallel to one of the
* coordinate axes).
*/
#define S_UNIT_X 0.50941539564955385 /* Pre-normalized */
#define S_UNIT_Y 0.86052074622010633
#else
#define S_UNIT_X 1.0
#define S_UNIT_Y 0.0
#endif
#endif
/* Determine the polygon normal and project vertices onto the plane
* of the polygon.
*/
void __gl_projectPolygon( GLUtesselator *tess )
{
GLUvertex *v, *vHead = &tess->mesh->vHead;
GLdouble norm[3];
GLdouble *sUnit, *tUnit;
int i, computedNormal = FALSE;
norm[0] = tess->normal[0];
norm[1] = tess->normal[1];
norm[2] = tess->normal[2];
if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {
ComputeNormal( tess, norm );
computedNormal = TRUE;
}
sUnit = tess->sUnit;
tUnit = tess->tUnit;
i = LongAxis( norm );
#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)
/* Choose the initial sUnit vector to be approximately perpendicular
* to the normal.
*/
Normalize( norm );
sUnit[i] = 0;
sUnit[(i+1)%3] = S_UNIT_X;
sUnit[(i+2)%3] = S_UNIT_Y;
/* Now make it exactly perpendicular */
w = Dot( sUnit, norm );
sUnit[0] -= w * norm[0];
sUnit[1] -= w * norm[1];
sUnit[2] -= w * norm[2];
Normalize( sUnit );
/* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */
tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];
tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];
tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];
Normalize( tUnit );
#else
/* Project perpendicular to a coordinate axis -- better numerically */
sUnit[i] = 0;
sUnit[(i+1)%3] = S_UNIT_X;
sUnit[(i+2)%3] = S_UNIT_Y;
tUnit[i] = 0;
tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;
tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;
#endif
/* Project the vertices onto the sweep plane */
for( v = vHead->next; v != vHead; v = v->next ) {
v->s = Dot( v->coords, sUnit );
v->t = Dot( v->coords, tUnit );
}
if( computedNormal ) {
CheckOrientation( tess );
}
}