mutter/clutter/clutter-stage.c
Emmanuele Bassi bdb309cbd6 annotations: Use caller-allocates for color getters
This should avoid a separate initialization of a ClutterColor in
language bindings.
2011-02-14 18:41:18 +00:00

3405 lines
96 KiB
C

/*
* Clutter.
*
* An OpenGL based 'interactive canvas' library.
*
* Authored By Matthew Allum <mallum@openedhand.com>
*
* Copyright (C) 2006 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*
*
*/
/**
* SECTION:clutter-stage
* @short_description: Top level visual element to which actors are placed.
*
* #ClutterStage is a top level 'window' on which child actors are placed
* and manipulated.
*
* Clutter creates a default stage upon initialization, which can be retrieved
* using clutter_stage_get_default(). Clutter always provides the default
* stage, unless the backend is unable to create one. The stage returned
* by clutter_stage_get_default() is guaranteed to always be the same.
*
* Backends might provide support for multiple stages. The support for this
* feature can be checked at run-time using the clutter_feature_available()
* function and the %CLUTTER_FEATURE_STAGE_MULTIPLE flag. If the backend used
* supports multiple stages, new #ClutterStage instances can be created
* using clutter_stage_new(). These stages must be managed by the developer
* using clutter_actor_destroy(), which will take care of destroying all the
* actors contained inside them.
*
* #ClutterStage is a proxy actor, wrapping the backend-specific
* implementation of the windowing system. It is possible to subclass
* #ClutterStage, as long as every overridden virtual function chains up to
* the parent class corresponding function.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "clutter-stage.h"
#include "clutter-actor-private.h"
#include "clutter-backend-private.h"
#include "clutter-color.h"
#include "clutter-container.h"
#include "clutter-debug.h"
#include "clutter-device-manager-private.h"
#include "clutter-enum-types.h"
#include "clutter-id-pool.h"
#include "clutter-main.h"
#include "clutter-marshal.h"
#include "clutter-master-clock.h"
#include "clutter-paint-volume-private.h"
#include "clutter-private.h"
#include "clutter-profile.h"
#include "clutter-stage-manager-private.h"
#include "clutter-stage-private.h"
#include "clutter-util.h"
#include "clutter-version.h" /* For flavour */
#include "cogl/cogl.h"
G_DEFINE_TYPE (ClutterStage, clutter_stage, CLUTTER_TYPE_GROUP);
#define CLUTTER_STAGE_GET_PRIVATE(obj) \
(G_TYPE_INSTANCE_GET_PRIVATE ((obj), CLUTTER_TYPE_STAGE, ClutterStagePrivate))
/* <private>
* ClutterStageHint:
* @CLUTTER_STAGE_NONE: No hint set
* @CLUTTER_STAGE_NO_CLEAR_ON_PAINT: When this hint is set, the stage
* should not clear the viewport; this flag is useful when painting
* fully opaque actors covering the whole visible area of the stage,
* i.e. when no blending with the stage color happens over the whole
* stage viewport
*
* A series of hints that enable or disable behaviours on the stage
*/
typedef enum { /*< prefix=CLUTTER_STAGE >*/
CLUTTER_STAGE_HINT_NONE = 0,
CLUTTER_STAGE_NO_CLEAR_ON_PAINT = 1 << 0
} ClutterStageHint;
#define STAGE_NO_CLEAR_ON_PAINT(s) ((((ClutterStage *) (s))->priv->stage_hints & CLUTTER_STAGE_NO_CLEAR_ON_PAINT) != 0)
struct _ClutterStageQueueRedrawEntry
{
ClutterActor *actor;
gboolean has_clip;
ClutterPaintVolume clip;
};
struct _ClutterStagePrivate
{
/* the stage implementation */
ClutterStageWindow *impl;
ClutterColor color;
ClutterPerspective perspective;
CoglMatrix projection;
int viewport[4];
ClutterFog fog;
gchar *title;
ClutterActor *key_focused_actor;
GQueue *event_queue;
ClutterStageHint stage_hints;
gint picks_per_frame;
GArray *paint_volume_stack;
const ClutterGeometry *current_paint_clip;
GList *pending_queue_redraws;
ClutterPickMode pick_buffer_mode;
GHashTable *devices;
guint relayout_pending : 1;
guint redraw_pending : 1;
guint is_fullscreen : 1;
guint is_cursor_visible : 1;
guint is_user_resizable : 1;
guint use_fog : 1;
guint throttle_motion_events : 1;
guint use_alpha : 1;
guint min_size_changed : 1;
guint dirty_viewport : 1;
guint dirty_projection : 1;
guint have_valid_pick_buffer : 1;
guint accept_focus : 1;
};
enum
{
PROP_0,
PROP_COLOR,
PROP_FULLSCREEN_SET,
PROP_OFFSCREEN,
PROP_CURSOR_VISIBLE,
PROP_PERSPECTIVE,
PROP_TITLE,
PROP_USER_RESIZABLE,
PROP_USE_FOG,
PROP_FOG,
PROP_USE_ALPHA,
PROP_KEY_FOCUS,
PROP_NO_CLEAR_HINT,
PROP_ACCEPT_FOCUS
};
enum
{
FULLSCREEN,
UNFULLSCREEN,
ACTIVATE,
DEACTIVATE,
DELETE_EVENT,
LAST_SIGNAL
};
static guint stage_signals[LAST_SIGNAL] = { 0, };
static const ClutterColor default_stage_color = { 255, 255, 255, 255 };
static void _clutter_stage_maybe_finish_queue_redraws (ClutterStage *stage);
static void
_clutter_stage_maybe_finish_queue_redraws (ClutterStage *stage);
static void
clutter_stage_get_preferred_width (ClutterActor *self,
gfloat for_height,
gfloat *min_width_p,
gfloat *natural_width_p)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
ClutterGeometry geom = { 0, };
if (priv->impl == NULL)
return;
_clutter_stage_window_get_geometry (priv->impl, &geom);
if (min_width_p)
*min_width_p = geom.width;
if (natural_width_p)
*natural_width_p = geom.width;
}
static void
clutter_stage_get_preferred_height (ClutterActor *self,
gfloat for_width,
gfloat *min_height_p,
gfloat *natural_height_p)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
ClutterGeometry geom = { 0, };
if (priv->impl == NULL)
return;
_clutter_stage_window_get_geometry (priv->impl, &geom);
if (min_height_p)
*min_height_p = geom.height;
if (natural_height_p)
*natural_height_p = geom.height;
}
static inline void
queue_full_redraw (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return;
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
/* Just calling clutter_actor_queue_redraw will typically only
* redraw the bounding box of the children parented on the stage but
* in this case we really need to ensure that the full stage is
* redrawn so we add a NULL redraw clip to the stage window. */
stage_window = _clutter_stage_get_window (stage);
if (stage_window == NULL)
return;
_clutter_stage_window_add_redraw_clip (stage_window, NULL);
}
static void
clutter_stage_allocate (ClutterActor *self,
const ClutterActorBox *box,
ClutterAllocationFlags flags)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
ClutterGeometry prev_geom;
ClutterGeometry geom = { 0, };
gboolean origin_changed;
gint width, height;
origin_changed = (flags & CLUTTER_ABSOLUTE_ORIGIN_CHANGED) ? TRUE : FALSE;
if (priv->impl == NULL)
return;
clutter_actor_get_allocation_geometry (self, &prev_geom);
width = clutter_actor_box_get_width (box);
height = clutter_actor_box_get_height (box);
_clutter_stage_window_get_geometry (priv->impl, &geom);
/* if the stage is fixed size (for instance, it's using a frame-buffer)
* then we simply ignore any allocation request and override the
* allocation chain.
*/
if ((!clutter_feature_available (CLUTTER_FEATURE_STAGE_STATIC)))
{
ClutterActorClass *klass;
CLUTTER_NOTE (LAYOUT,
"Following allocation to %dx%d (origin %s)",
width, height,
origin_changed ? "changed" : "not changed");
klass = CLUTTER_ACTOR_CLASS (clutter_stage_parent_class);
klass->allocate (self, box, flags);
/* Ensure the window is sized correctly */
if (!priv->is_fullscreen)
{
if (priv->min_size_changed)
{
gfloat min_width, min_height;
gboolean min_width_set, min_height_set;
g_object_get (G_OBJECT (self),
"min-width", &min_width,
"min-width-set", &min_width_set,
"min-height", &min_height,
"min-height-set", &min_height_set,
NULL);
if (!min_width_set)
min_width = 1;
if (!min_height_set)
min_height = 1;
if (width < min_width)
width = min_width;
if (height < min_height)
height = min_height;
priv->min_size_changed = FALSE;
}
if ((geom.width != width) || (geom.height != height))
_clutter_stage_window_resize (priv->impl, width, height);
}
}
else
{
ClutterActorBox override = { 0, };
ClutterActorClass *klass;
override.x1 = 0;
override.y1 = 0;
override.x2 = geom.width;
override.y2 = geom.height;
CLUTTER_NOTE (LAYOUT,
"Overrigin original allocation of %dx%d "
"with %dx%d (origin %s)",
width, height,
(int) (override.x2),
(int) (override.y2),
origin_changed ? "changed" : "not changed");
/* and store the overridden allocation */
klass = CLUTTER_ACTOR_CLASS (clutter_stage_parent_class);
klass->allocate (self, &override, flags);
}
/* XXX: Until Cogl becomes fully responsible for backend windows
* Clutter need to manually keep it informed of the current window
* size. We do this after the allocation above so that the stage
* window has a chance to update the window size based on the
* allocation. */
_clutter_stage_window_get_geometry (priv->impl, &geom);
_cogl_onscreen_clutter_backend_set_size (geom.width, geom.height);
clutter_actor_get_allocation_geometry (self, &geom);
if (geom.width != prev_geom.width || geom.height != prev_geom.height)
{
_clutter_stage_set_viewport (CLUTTER_STAGE (self),
0, 0, geom.width, geom.height);
/* Note: we don't assume that set_viewport will queue a full redraw
* since it may bail-out early if something preemptively set the
* viewport before the stage was really allocated its new size. */
queue_full_redraw (CLUTTER_STAGE (self));
}
}
/* This provides a common point of entry for painting the scenegraph
* for picking or painting...
*
* XXX: Instead of having a toplevel 2D clip region, it might be
* better to have a clip volume within the view frustum. This could
* allow us to avoid projecting actors into window coordinates to
* be able to cull them.
*/
void
_clutter_stage_do_paint (ClutterStage *stage, const ClutterGeometry *clip)
{
ClutterStagePrivate *priv = stage->priv;
priv->current_paint_clip = clip;
_clutter_stage_paint_volume_stack_free_all (stage);
clutter_actor_paint (CLUTTER_ACTOR (stage));
priv->current_paint_clip = NULL;
}
static void
clutter_stage_paint (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
CoglBufferBit clear_flags;
CoglColor stage_color;
guint8 real_alpha;
CLUTTER_STATIC_TIMER (stage_clear_timer,
"Painting actors", /* parent */
"Stage clear",
"The time spent clearing the stage",
0 /* no application private data */);
CLUTTER_NOTE (PAINT, "Initializing stage paint");
/* composite the opacity to the stage color */
real_alpha = clutter_actor_get_opacity (self)
* priv->color.alpha
/ 255;
/* we use the real alpha to clear the stage if :use-alpha is
* set; the effect depends entirely on how the Clutter backend
*/
cogl_color_init_from_4ub (&stage_color,
priv->color.red,
priv->color.green,
priv->color.blue,
priv->use_alpha ? real_alpha
: 255);
cogl_color_premultiply (&stage_color);
clear_flags = COGL_BUFFER_BIT_DEPTH;
if (!STAGE_NO_CLEAR_ON_PAINT (self))
clear_flags |= COGL_BUFFER_BIT_COLOR;
CLUTTER_TIMER_START (_clutter_uprof_context, stage_clear_timer);
cogl_clear (&stage_color, clear_flags);
CLUTTER_TIMER_STOP (_clutter_uprof_context, stage_clear_timer);
if (priv->use_fog)
{
/* we only expose the linear progression of the fog in
* the ClutterStage API, and that ignores the fog density.
* thus, we pass 1.0 as the density parameter
*/
cogl_set_fog (&stage_color,
COGL_FOG_MODE_LINEAR,
1.0,
priv->fog.z_near,
priv->fog.z_far);
}
else
cogl_disable_fog ();
/* this will take care of painting every child */
CLUTTER_ACTOR_CLASS (clutter_stage_parent_class)->paint (self);
}
static void
clutter_stage_pick (ClutterActor *self,
const ClutterColor *color)
{
/* Note: we don't chain up to our parent as we don't want any geometry
* emitted for the stage itself. The stage's pick id is effectively handled
* by the call to cogl_clear done in clutter-main.c:_clutter_do_pick_async()
*/
clutter_container_foreach (CLUTTER_CONTAINER (self),
CLUTTER_CALLBACK (clutter_actor_paint),
NULL);
}
static gboolean
clutter_stage_get_paint_volume (ClutterActor *self,
ClutterPaintVolume *volume)
{
/* Returning False effectively means Clutter has to assume it covers
* everything... */
return FALSE;
}
static void
clutter_stage_realize (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
gboolean is_realized;
/* Make sure the viewport and projection matrix are valid for the
* first paint (which will likely occur before the ConfigureNotify
* is received)
*/
priv->dirty_viewport = TRUE;
priv->dirty_projection = TRUE;
g_assert (priv->impl != NULL);
is_realized = _clutter_stage_window_realize (priv->impl);
/* ensure that the stage is using the context if the
* realization sequence was successful
*/
if (is_realized)
{
ClutterBackend *backend = clutter_get_default_backend ();
GError *error = NULL;
/* We want to select the context without calling
clutter_backend_ensure_context so that it doesn't call any
Cogl functions. Otherwise it would create the Cogl context
before we get a chance to check whether the GL version is
valid */
_clutter_backend_ensure_context_internal (backend, CLUTTER_STAGE (self));
/* Make sure Cogl can support the driver */
if (!_cogl_check_driver_valid (&error))
{
g_critical ("The GL driver is not supported: %s",
error->message);
g_clear_error (&error);
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
}
else
CLUTTER_ACTOR_SET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
}
else
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
}
static void
clutter_stage_unrealize (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
/* and then unrealize the implementation */
g_assert (priv->impl != NULL);
_clutter_stage_window_unrealize (priv->impl);
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
clutter_stage_ensure_current (CLUTTER_STAGE (self));
}
static void
clutter_stage_show (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
CLUTTER_ACTOR_CLASS (clutter_stage_parent_class)->show (self);
/* Possibly do an allocation run so that the stage will have the
right size before we map it */
_clutter_stage_maybe_relayout (self);
g_assert (priv->impl != NULL);
_clutter_stage_window_show (priv->impl, TRUE);
}
static void
clutter_stage_hide (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
g_assert (priv->impl != NULL);
_clutter_stage_window_hide (priv->impl);
CLUTTER_ACTOR_CLASS (clutter_stage_parent_class)->hide (self);
}
static void
clutter_stage_emit_key_focus_event (ClutterStage *stage,
gboolean focus_in)
{
ClutterStagePrivate *priv = stage->priv;
if (priv->key_focused_actor == NULL)
return;
if (focus_in)
g_signal_emit_by_name (priv->key_focused_actor, "key-focus-in");
else
g_signal_emit_by_name (priv->key_focused_actor, "key-focus-out");
}
static void
clutter_stage_real_activate (ClutterStage *stage)
{
clutter_stage_emit_key_focus_event (stage, TRUE);
}
static void
clutter_stage_real_deactivate (ClutterStage *stage)
{
clutter_stage_emit_key_focus_event (stage, FALSE);
}
static void
clutter_stage_real_fullscreen (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
ClutterGeometry geom;
ClutterActorBox box;
/* we need to force an allocation here because the size
* of the stage might have been changed by the backend
*
* this is a really bad solution to the issues caused by
* the fact that fullscreening the stage on the X11 backends
* is really an asynchronous operation
*/
_clutter_stage_window_get_geometry (priv->impl, &geom);
box.x1 = 0;
box.y1 = 0;
box.x2 = geom.width;
box.y2 = geom.height;
clutter_actor_allocate (CLUTTER_ACTOR (stage),
&box,
CLUTTER_ALLOCATION_NONE);
}
void
_clutter_stage_queue_event (ClutterStage *stage,
ClutterEvent *event)
{
ClutterStagePrivate *priv;
gboolean first_event;
ClutterInputDevice *device;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
first_event = priv->event_queue->length == 0;
g_queue_push_tail (priv->event_queue, clutter_event_copy (event));
if (first_event)
{
ClutterMasterClock *master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_start_running (master_clock);
}
/* if needed, update the state of the input device of the event.
* we do it here to avoid calling the same code from every backend
* event processing function
*/
device = clutter_event_get_device (event);
if (device != NULL)
{
ClutterModifierType event_state = clutter_event_get_state (event);
guint32 event_time = clutter_event_get_time (event);
gfloat event_x, event_y;
clutter_event_get_coords (event, &event_x, &event_y);
_clutter_input_device_set_coords (device, event_x, event_y);
_clutter_input_device_set_state (device, event_state);
_clutter_input_device_set_time (device, event_time);
}
}
gboolean
_clutter_stage_has_queued_events (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
priv = stage->priv;
return priv->event_queue->length > 0;
}
void
_clutter_stage_process_queued_events (ClutterStage *stage)
{
ClutterStagePrivate *priv;
GList *events, *l;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->event_queue->length == 0)
return;
/* In case the stage gets destroyed during event processing */
g_object_ref (stage);
/* Steal events before starting processing to avoid reentrancy
* issues */
events = priv->event_queue->head;
priv->event_queue->head = NULL;
priv->event_queue->tail = NULL;
priv->event_queue->length = 0;
for (l = events; l != NULL; l = l->next)
{
ClutterEvent *event;
ClutterEvent *next_event;
ClutterInputDevice *device;
ClutterInputDevice *next_device;
gboolean check_device = FALSE;
event = l->data;
next_event = l->next ? l->next->data : NULL;
device = clutter_event_get_device (event);
if (next_event != NULL)
next_device = clutter_event_get_device (next_event);
else
next_device = NULL;
if (device != NULL && next_device != NULL)
check_device = TRUE;
/* Skip consecutive motion events coming from the same device */
if (priv->throttle_motion_events &&
next_event != NULL &&
event->type == CLUTTER_MOTION &&
(next_event->type == CLUTTER_MOTION ||
next_event->type == CLUTTER_LEAVE) &&
(!check_device || (device == next_device)))
{
CLUTTER_NOTE (EVENT,
"Omitting motion event at %d, %d",
(int) event->motion.x,
(int) event->motion.y);
goto next_event;
}
_clutter_process_event (event);
next_event:
clutter_event_free (event);
}
g_list_free (events);
g_object_unref (stage);
}
/**
* _clutter_stage_needs_update:
* @stage: A #ClutterStage
*
* Determines if _clutter_stage_do_update() needs to be called.
*
* Return value: %TRUE if the stage need layout or painting
*/
gboolean
_clutter_stage_needs_update (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
priv = stage->priv;
return priv->relayout_pending || priv->redraw_pending;
}
void
_clutter_stage_maybe_relayout (ClutterActor *actor)
{
ClutterStage *stage = CLUTTER_STAGE (actor);
ClutterStagePrivate *priv = stage->priv;
gfloat natural_width, natural_height;
ClutterActorBox box = { 0, };
CLUTTER_STATIC_TIMER (relayout_timer,
"Mainloop", /* no parent */
"Layouting",
"The time spent reallocating the stage",
0 /* no application private data */);
if (!priv->relayout_pending)
return;
/* avoid reentrancy */
if (!CLUTTER_ACTOR_IN_RELAYOUT (stage))
{
priv->relayout_pending = FALSE;
CLUTTER_TIMER_START (_clutter_uprof_context, relayout_timer);
CLUTTER_NOTE (ACTOR, "Recomputing layout");
CLUTTER_SET_PRIVATE_FLAGS (stage, CLUTTER_IN_RELAYOUT);
natural_width = natural_height = 0;
clutter_actor_get_preferred_size (CLUTTER_ACTOR (stage),
NULL, NULL,
&natural_width, &natural_height);
box.x1 = 0;
box.y1 = 0;
box.x2 = natural_width;
box.y2 = natural_height;
CLUTTER_NOTE (ACTOR, "Allocating (0, 0 - %d, %d) for the stage",
(int) natural_width,
(int) natural_height);
clutter_actor_allocate (CLUTTER_ACTOR (stage),
&box, CLUTTER_ALLOCATION_NONE);
CLUTTER_UNSET_PRIVATE_FLAGS (stage, CLUTTER_IN_RELAYOUT);
CLUTTER_TIMER_STOP (_clutter_uprof_context, relayout_timer);
}
}
/**
* _clutter_stage_do_update:
* @stage: A #ClutterStage
*
* Handles per-frame layout and repaint for the stage.
*
* Return value: %TRUE if the stage was updated
*/
gboolean
_clutter_stage_do_update (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
priv = stage->priv;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return FALSE;
/* NB: We need to ensure we have an up to date layout *before* we
* check or clear the pending redraws flag since a relayout may
* queue a redraw.
*/
_clutter_stage_maybe_relayout (CLUTTER_ACTOR (stage));
if (!priv->redraw_pending)
return FALSE;
_clutter_stage_maybe_finish_queue_redraws (stage);
CLUTTER_NOTE (PAINT, "redrawing via idle for stage[%p]", stage);
_clutter_do_redraw (stage);
/* reset the guard, so that new redraws are possible */
priv->redraw_pending = FALSE;
if (CLUTTER_CONTEXT ()->redraw_count > 0)
{
CLUTTER_NOTE (SCHEDULER, "Queued %lu redraws during the last cycle",
CLUTTER_CONTEXT ()->redraw_count);
CLUTTER_CONTEXT ()->redraw_count = 0;
}
return TRUE;
}
static void
clutter_stage_real_queue_relayout (ClutterActor *self)
{
ClutterStage *stage = CLUTTER_STAGE (self);
ClutterStagePrivate *priv = stage->priv;
ClutterActorClass *parent_class;
priv->relayout_pending = TRUE;
/* chain up */
parent_class = CLUTTER_ACTOR_CLASS (clutter_stage_parent_class);
parent_class->queue_relayout (self);
}
static void
clutter_stage_real_queue_redraw (ClutterActor *actor,
ClutterActor *leaf)
{
ClutterStage *stage = CLUTTER_STAGE (actor);
ClutterStagePrivate *priv = stage->priv;
ClutterStageWindow *stage_window;
ClutterGeometry stage_clip;
const ClutterPaintVolume *redraw_clip;
ClutterPaintVolume projected_clip;
CoglMatrix modelview;
ClutterActorBox bounding_box;
if (CLUTTER_ACTOR_IN_DESTRUCTION (actor))
return;
/* If the backend can't do anything with redraw clips (e.g. it already knows
* it needs to redraw everything anyway) then don't spend time transforming
* any clip volume into stage coordinates... */
stage_window = _clutter_stage_get_window (stage);
if (stage_window == NULL)
return;
if (_clutter_stage_window_ignoring_redraw_clips (stage_window))
{
_clutter_stage_window_add_redraw_clip (stage_window, NULL);
return;
}
/* Convert the clip volume (which is in leaf actor coordinates) into stage
* coordinates and then into an axis aligned stage coordinates bounding
* box...
*/
if (!_clutter_actor_get_queue_redraw_clip (leaf))
{
_clutter_stage_window_add_redraw_clip (stage_window, NULL);
return;
}
redraw_clip = _clutter_actor_get_queue_redraw_clip (leaf);
_clutter_paint_volume_copy_static (redraw_clip, &projected_clip);
/* NB: _clutter_actor_apply_modelview_transform_recursive will never
* include the transformation between stage coordinates and OpenGL
* window coordinates, we have to explicitly use the
* stage->apply_transform to get that... */
cogl_matrix_init_identity (&modelview);
_clutter_actor_apply_modelview_transform (CLUTTER_ACTOR (stage), &modelview);
_clutter_actor_apply_modelview_transform_recursive (leaf, NULL, &modelview);
_clutter_paint_volume_project (&projected_clip,
&modelview,
&priv->projection,
priv->viewport);
_clutter_paint_volume_get_bounding_box (&projected_clip, &bounding_box);
clutter_paint_volume_free (&projected_clip);
clutter_actor_box_clamp_to_pixel (&bounding_box);
/* when converting to integer coordinates make sure we round the edges of the
* clip rectangle outwards... */
stage_clip.x = bounding_box.x1;
stage_clip.y = bounding_box.y1;
stage_clip.width = bounding_box.x2 - stage_clip.x;
stage_clip.height = bounding_box.y2 - stage_clip.y;
_clutter_stage_window_add_redraw_clip (stage_window, &stage_clip);
}
gboolean
_clutter_stage_has_full_redraw_queued (ClutterStage *stage)
{
ClutterStageWindow *stage_window = _clutter_stage_get_window (stage);
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage) || stage_window == NULL)
return FALSE;
if (stage->priv->redraw_pending &&
!_clutter_stage_window_has_redraw_clips (stage_window))
return TRUE;
else
return FALSE;
}
static gboolean
clutter_stage_real_delete_event (ClutterStage *stage,
ClutterEvent *event)
{
if (clutter_stage_is_default (stage))
clutter_main_quit ();
else
clutter_actor_destroy (CLUTTER_ACTOR (stage));
return TRUE;
}
static void
clutter_stage_real_apply_transform (ClutterActor *stage,
CoglMatrix *matrix)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (stage)->priv;
CoglMatrix perspective;
gfloat z_camera;
gfloat width, height;
/*
* In theory, we can compute the camera distance from screen as:
*
* 0.5 * tan (FOV)
*
* However, it's better to compute the z_camera from our projection
* matrix so that we get a 1:1 mapping at the screen distance. Consider
* the upper-left corner of the screen. It has object coordinates
* (0,0,0), so by the transform below, ends up with eye coordinate
*
* x_eye = x_object / width - 0.5 = - 0.5
* y_eye = (height - y_object) / width - 0.5 = 0.5
* z_eye = z_object / width - z_camera = - z_camera
*
* From cogl_perspective(), we know that the projection matrix has
* the form:
*
* (x, 0, 0, 0)
* (0, y, 0, 0)
* (0, 0, c, d)
* (0, 0, -1, 0)
*
* Applied to the above, we get clip coordinates of
*
* x_clip = x * (- 0.5)
* y_clip = y * 0.5
* w_clip = - 1 * (- z_camera) = z_camera
*
* Dividing through by w to get normalized device coordinates, we
* have, x_nd = x * 0.5 / z_camera, y_nd = - y * 0.5 / z_camera.
* The upper left corner of the screen has normalized device coordinates,
* (-1, 1), so to have the correct 1:1 mapping, we have to have:
*
* z_camera = 0.5 * x = 0.5 * y
*
* If x != y, then we have a non-uniform aspect ration, and a 1:1 mapping
* doesn't make sense.
*/
cogl_matrix_init_identity (&perspective);
cogl_matrix_perspective (&perspective,
priv->perspective.fovy,
priv->perspective.aspect,
priv->perspective.z_near,
priv->perspective.z_far);
z_camera = 0.5f * perspective.xx;
clutter_actor_get_size (stage, &width, &height);
cogl_matrix_init_identity (matrix);
cogl_matrix_translate (matrix, -0.5f, -0.5f, -z_camera);
cogl_matrix_scale (matrix,
1.0f / width, -1.0f / height, 1.0f / width);
cogl_matrix_translate (matrix, 0.0f, -1.0f * height, 0.0f);
}
static void
clutter_stage_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
ClutterStage *stage = CLUTTER_STAGE (object);
switch (prop_id)
{
case PROP_COLOR:
clutter_stage_set_color (stage, clutter_value_get_color (value));
break;
case PROP_OFFSCREEN:
if (g_value_get_boolean (value))
g_warning ("Offscreen stages are currently not supported\n");
break;
case PROP_CURSOR_VISIBLE:
if (g_value_get_boolean (value))
clutter_stage_show_cursor (stage);
else
clutter_stage_hide_cursor (stage);
break;
case PROP_PERSPECTIVE:
clutter_stage_set_perspective (stage, g_value_get_boxed (value));
break;
case PROP_TITLE:
clutter_stage_set_title (stage, g_value_get_string (value));
break;
case PROP_USER_RESIZABLE:
clutter_stage_set_user_resizable (stage, g_value_get_boolean (value));
break;
case PROP_USE_FOG:
clutter_stage_set_use_fog (stage, g_value_get_boolean (value));
break;
case PROP_FOG:
clutter_stage_set_fog (stage, g_value_get_boxed (value));
break;
case PROP_USE_ALPHA:
clutter_stage_set_use_alpha (stage, g_value_get_boolean (value));
break;
case PROP_KEY_FOCUS:
clutter_stage_set_key_focus (stage, g_value_get_object (value));
break;
case PROP_NO_CLEAR_HINT:
clutter_stage_set_no_clear_hint (stage, g_value_get_boolean (value));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
clutter_stage_get_property (GObject *gobject,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (gobject)->priv;
switch (prop_id)
{
case PROP_COLOR:
clutter_value_set_color (value, &priv->color);
break;
case PROP_OFFSCREEN:
g_value_set_boolean (value, FALSE);
break;
case PROP_FULLSCREEN_SET:
g_value_set_boolean (value, priv->is_fullscreen);
break;
case PROP_CURSOR_VISIBLE:
g_value_set_boolean (value, priv->is_cursor_visible);
break;
case PROP_PERSPECTIVE:
g_value_set_boxed (value, &priv->perspective);
break;
case PROP_TITLE:
g_value_set_string (value, priv->title);
break;
case PROP_USER_RESIZABLE:
g_value_set_boolean (value, priv->is_user_resizable);
break;
case PROP_USE_FOG:
g_value_set_boolean (value, priv->use_fog);
break;
case PROP_FOG:
g_value_set_boxed (value, &priv->fog);
break;
case PROP_USE_ALPHA:
g_value_set_boolean (value, priv->use_alpha);
break;
case PROP_KEY_FOCUS:
g_value_set_object (value, priv->key_focused_actor);
break;
case PROP_NO_CLEAR_HINT:
{
gboolean hint =
(priv->stage_hints & CLUTTER_STAGE_NO_CLEAR_ON_PAINT) != 0;
g_value_set_boolean (value, hint);
}
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (gobject, prop_id, pspec);
break;
}
}
static void
clutter_stage_dispose (GObject *object)
{
ClutterStage *stage = CLUTTER_STAGE (object);
ClutterStagePrivate *priv = stage->priv;
ClutterStageManager *stage_manager;
clutter_actor_hide (CLUTTER_ACTOR (object));
stage_manager = clutter_stage_manager_get_default ();
_clutter_stage_manager_remove_stage (stage_manager, stage);
_clutter_clear_events_queue_for_stage (stage);
if (priv->impl != NULL)
{
CLUTTER_NOTE (BACKEND, "Disposing of the stage implementation");
_clutter_stage_window_unrealize (priv->impl);
g_object_unref (priv->impl);
priv->impl = NULL;
}
G_OBJECT_CLASS (clutter_stage_parent_class)->dispose (object);
}
static void
clutter_stage_finalize (GObject *object)
{
ClutterStage *stage = CLUTTER_STAGE (object);
ClutterStagePrivate *priv = stage->priv;
g_queue_foreach (priv->event_queue, (GFunc) clutter_event_free, NULL);
g_queue_free (priv->event_queue);
g_free (priv->title);
g_array_free (priv->paint_volume_stack, TRUE);
g_hash_table_destroy (priv->devices);
G_OBJECT_CLASS (clutter_stage_parent_class)->finalize (object);
}
static void
clutter_stage_class_init (ClutterStageClass *klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
ClutterActorClass *actor_class = CLUTTER_ACTOR_CLASS (klass);
GParamSpec *pspec;
gobject_class->set_property = clutter_stage_set_property;
gobject_class->get_property = clutter_stage_get_property;
gobject_class->dispose = clutter_stage_dispose;
gobject_class->finalize = clutter_stage_finalize;
actor_class->allocate = clutter_stage_allocate;
actor_class->get_preferred_width = clutter_stage_get_preferred_width;
actor_class->get_preferred_height = clutter_stage_get_preferred_height;
actor_class->paint = clutter_stage_paint;
actor_class->pick = clutter_stage_pick;
actor_class->get_paint_volume = clutter_stage_get_paint_volume;
actor_class->realize = clutter_stage_realize;
actor_class->unrealize = clutter_stage_unrealize;
actor_class->show = clutter_stage_show;
actor_class->hide = clutter_stage_hide;
actor_class->queue_relayout = clutter_stage_real_queue_relayout;
actor_class->queue_redraw = clutter_stage_real_queue_redraw;
actor_class->apply_transform = clutter_stage_real_apply_transform;
/**
* ClutterStage:fullscreen:
*
* Whether the stage should be fullscreen or not.
*
* This property is set by calling clutter_stage_set_fullscreen()
* but since the actual implementation is delegated to the backend
* you should connect to the notify::fullscreen-set signal in order
* to get notification if the fullscreen state has been successfully
* achieved.
*
* Since: 1.0
*/
pspec = g_param_spec_boolean ("fullscreen-set",
P_("Fullscreen Set"),
P_("Whether the main stage is fullscreen"),
FALSE,
CLUTTER_PARAM_READABLE);
g_object_class_install_property (gobject_class,
PROP_FULLSCREEN_SET,
pspec);
/**
* ClutterStage:offscreen:
*
* Whether the stage should be rendered in an offscreen buffer.
*
* <warning><para>Not every backend supports redirecting the
* stage to an offscreen buffer. This property might not work
* and it might be deprecated at any later date.</para></warning>
*/
pspec = g_param_spec_boolean ("offscreen",
P_("Offscreen"),
P_("Whether the main stage should be rendered offscreen"),
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_OFFSCREEN,
pspec);
/**
* ClutterStage:cursor-visible:
*
* Whether the mouse pointer should be visible
*/
pspec = g_param_spec_boolean ("cursor-visible",
P_("Cursor Visible"),
P_("Whether the mouse pointer is visible on the main stage"),
TRUE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_CURSOR_VISIBLE,
pspec);
/**
* ClutterStage:user-resizable:
*
* Whether the stage is resizable via user interaction.
*
* Since: 0.4
*/
pspec = g_param_spec_boolean ("user-resizable",
P_("User Resizable"),
P_("Whether the stage is able to be resized via user interaction"),
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_USER_RESIZABLE,
pspec);
/**
* ClutterStage:color:
*
* The color of the main stage.
*/
pspec = clutter_param_spec_color ("color",
P_("Color"),
P_("The color of the stage"),
&default_stage_color,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_COLOR, pspec);
/**
* ClutterStage:perspective:
*
* The parameters used for the perspective projection from 3D
* coordinates to 2D
*
* Since: 0.8.2
*/
pspec = g_param_spec_boxed ("perspective",
P_("Perspective"),
P_("Perspective projection parameters"),
CLUTTER_TYPE_PERSPECTIVE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class,
PROP_PERSPECTIVE,
pspec);
/**
* ClutterStage:title:
*
* The stage's title - usually displayed in stage windows title decorations.
*
* Since: 0.4
*/
pspec = g_param_spec_string ("title",
P_("Title"),
P_("Stage Title"),
NULL,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_TITLE, pspec);
/**
* ClutterStage:use-fog:
*
* Whether the stage should use a linear GL "fog" in creating the
* depth-cueing effect, to enhance the perception of depth by fading
* actors farther from the viewpoint.
*
* Since: 0.6
*/
pspec = g_param_spec_boolean ("use-fog",
P_("Use Fog"),
P_("Whether to enable depth cueing"),
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_USE_FOG, pspec);
/**
* ClutterStage:fog:
*
* The settings for the GL "fog", used only if #ClutterStage:use-fog
* is set to %TRUE
*
* Since: 1.0
*/
pspec = g_param_spec_boxed ("fog",
P_("Fog"),
P_("Settings for the depth cueing"),
CLUTTER_TYPE_FOG,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_FOG, pspec);
/**
* ClutterStage:use-alpha:
*
* Whether the #ClutterStage should honour the alpha component of the
* #ClutterStage:color property when painting. If Clutter is run under
* a compositing manager this will result in the stage being blended
* with the underlying window(s)
*
* Since: 1.2
*/
pspec = g_param_spec_boolean ("use-alpha",
P_("Use Alpha"),
P_("Whether to honour the alpha component of the stage color"),
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_USE_ALPHA, pspec);
/**
* ClutterStage:key-focus:
*
* The #ClutterActor that will receive key events from the underlying
* windowing system.
*
* If %NULL, the #ClutterStage will receive the events.
*
* Since: 1.2
*/
pspec = g_param_spec_object ("key-focus",
P_("Key Focus"),
P_("The currently key focused actor"),
CLUTTER_TYPE_ACTOR,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_KEY_FOCUS, pspec);
/**
* ClutterStage:no-clear-hint:
*
* Whether or not the #ClutterStage should clear its contents
* before each paint cycle.
*
* See clutter_stage_set_no_clear_hint() for further information.
*
* Since: 1.4
*/
pspec = g_param_spec_boolean ("no-clear-hint",
P_("No Clear Hint"),
P_("Whether the stage should clear its contents"),
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_NO_CLEAR_HINT, pspec);
/**
* ClutterStage:accept-focus:
*
* Whether the #ClutterStage should accept key focus when shown.
*
* Since: 1.6
*/
pspec = g_param_spec_boolean ("accept-focus",
P_("Accept Focus"),
P_("Whether the stage should accept focus on show"),
TRUE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (gobject_class, PROP_ACCEPT_FOCUS, pspec);
/**
* ClutterStage::fullscreen
* @stage: the stage which was fullscreened
*
* The ::fullscreen signal is emitted when the stage is made fullscreen.
*
* Since: 0.6
*/
stage_signals[FULLSCREEN] =
g_signal_new (I_("fullscreen"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ClutterStageClass, fullscreen),
NULL, NULL,
_clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterStage::unfullscreen
* @stage: the stage which has left a fullscreen state.
*
* The ::unfullscreen signal is emitted when the stage leaves a fullscreen
* state.
*
* Since: 0.6
*/
stage_signals[UNFULLSCREEN] =
g_signal_new (I_("unfullscreen"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, unfullscreen),
NULL, NULL,
_clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterStage::activate
* @stage: the stage which was activated
*
* The ::activate signal is emitted when the stage receives key focus
* from the underlying window system.
*
* Since: 0.6
*/
stage_signals[ACTIVATE] =
g_signal_new (I_("activate"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, activate),
NULL, NULL,
_clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterStage::deactivate
* @stage: the stage which was deactivated
*
* The ::activate signal is emitted when the stage loses key focus
* from the underlying window system.
*
* Since: 0.6
*/
stage_signals[DEACTIVATE] =
g_signal_new (I_("deactivate"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, deactivate),
NULL, NULL,
_clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterStage::delete-event:
* @stage: the stage that received the event
* @event: a #ClutterEvent of type %CLUTTER_DELETE
*
* The ::delete-event signal is emitted when the user closes a
* #ClutterStage window using the window controls.
*
* Clutter by default will call clutter_main_quit() if @stage is
* the default stage, and clutter_actor_destroy() for any other
* stage.
*
* It is possible to override the default behaviour by connecting
* a new handler and returning %TRUE there.
*
* <note>This signal is emitted only on Clutter backends that
* embed #ClutterStage in native windows. It is not emitted for
* backends that use a static frame buffer.</note>
*
* Since: 1.2
*/
stage_signals[DELETE_EVENT] =
g_signal_new (I_("delete-event"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, delete_event),
_clutter_boolean_handled_accumulator, NULL,
_clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
klass->fullscreen = clutter_stage_real_fullscreen;
klass->activate = clutter_stage_real_activate;
klass->deactivate = clutter_stage_real_deactivate;
klass->delete_event = clutter_stage_real_delete_event;
g_type_class_add_private (gobject_class, sizeof (ClutterStagePrivate));
}
static void
clutter_stage_notify_min_size (ClutterStage *self)
{
self->priv->min_size_changed = TRUE;
}
static void
clutter_stage_init (ClutterStage *self)
{
ClutterStagePrivate *priv;
ClutterBackend *backend;
ClutterGeometry geom;
/* a stage is a top-level object */
CLUTTER_SET_PRIVATE_FLAGS (self, CLUTTER_IS_TOPLEVEL);
self->priv = priv = CLUTTER_STAGE_GET_PRIVATE (self);
CLUTTER_NOTE (BACKEND, "Creating stage from the default backend");
backend = clutter_get_default_backend ();
priv->impl = _clutter_backend_create_stage (backend, self, NULL);
if (!priv->impl)
{
g_warning ("Unable to create a new stage, falling back to the "
"default stage.");
priv->impl = _clutter_stage_get_default_window ();
/* at this point we must have a default stage, or we're screwed */
g_assert (priv->impl != NULL);
}
priv->event_queue = g_queue_new ();
priv->is_fullscreen = FALSE;
priv->is_user_resizable = FALSE;
priv->is_cursor_visible = TRUE;
priv->use_fog = FALSE;
priv->throttle_motion_events = TRUE;
priv->min_size_changed = FALSE;
priv->color = default_stage_color;
priv->perspective.fovy = 60.0; /* 60 Degrees */
priv->perspective.aspect = 1.0;
priv->perspective.z_near = 0.1;
priv->perspective.z_far = 100.0;
cogl_matrix_init_identity (&priv->projection);
cogl_matrix_perspective (&priv->projection,
priv->perspective.fovy,
priv->perspective.aspect,
priv->perspective.z_near,
priv->perspective.z_far);
/* depth cueing */
priv->fog.z_near = 1.0;
priv->fog.z_far = 2.0;
priv->relayout_pending = TRUE;
clutter_actor_set_reactive (CLUTTER_ACTOR (self), TRUE);
clutter_stage_set_title (self, g_get_prgname ());
clutter_stage_set_key_focus (self, NULL);
g_signal_connect (self, "notify::min-width",
G_CALLBACK (clutter_stage_notify_min_size), NULL);
g_signal_connect (self, "notify::min-height",
G_CALLBACK (clutter_stage_notify_min_size), NULL);
_clutter_stage_window_get_geometry (priv->impl, &geom);
_clutter_stage_set_viewport (self, 0, 0, geom.width, geom.height);
_clutter_stage_set_pick_buffer_valid (self, FALSE, CLUTTER_PICK_ALL);
_clutter_stage_reset_picks_per_frame_counter (self);
priv->paint_volume_stack =
g_array_new (FALSE, FALSE, sizeof (ClutterPaintVolume));
priv->devices = g_hash_table_new (NULL, NULL);
}
/**
* clutter_stage_get_default:
*
* Returns the main stage. The default #ClutterStage is a singleton,
* so the stage will be created the first time this function is
* called (typically, inside clutter_init()); all the subsequent
* calls to clutter_stage_get_default() will return the same instance.
*
* Clutter guarantess the existence of the default stage.
*
* Return value: (transfer none): the main #ClutterStage. You should never
* destroy or unref the returned actor.
*/
ClutterActor *
clutter_stage_get_default (void)
{
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
ClutterStage *stage;
stage = clutter_stage_manager_get_default_stage (stage_manager);
if (G_UNLIKELY (stage == NULL))
{
/* This will take care of automatically adding the stage to the
* stage manager and setting it as the default. Its floating
* reference will be claimed by the stage manager.
*/
stage = g_object_new (CLUTTER_TYPE_STAGE, NULL);
_clutter_stage_manager_set_default_stage (stage_manager, stage);
/* the default stage is realized by default */
clutter_actor_realize (CLUTTER_ACTOR (stage));
}
return CLUTTER_ACTOR (stage);
}
/**
* clutter_stage_set_color:
* @stage: A #ClutterStage
* @color: A #ClutterColor
*
* Sets the stage color.
*/
void
clutter_stage_set_color (ClutterStage *stage,
const ClutterColor *color)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (color != NULL);
priv = stage->priv;
priv->color = *color;
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
g_object_notify (G_OBJECT (stage), "color");
}
/**
* clutter_stage_get_color:
* @stage: A #ClutterStage
* @color: (out caller-allocates): return location for a #ClutterColor
*
* Retrieves the stage color.
*/
void
clutter_stage_get_color (ClutterStage *stage,
ClutterColor *color)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (color != NULL);
priv = stage->priv;
*color = priv->color;
}
/**
* clutter_stage_set_perspective:
* @stage: A #ClutterStage
* @perspective: A #ClutterPerspective
*
* Sets the stage perspective.
*/
void
clutter_stage_set_perspective (ClutterStage *stage,
ClutterPerspective *perspective)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (perspective != NULL);
g_return_if_fail (perspective->z_far - perspective->z_near != 0);
priv = stage->priv;
if (priv->perspective.fovy == perspective->fovy &&
priv->perspective.aspect == perspective->aspect &&
priv->perspective.z_near == perspective->z_near &&
priv->perspective.z_far == perspective->z_far)
return;
priv->perspective = *perspective;
cogl_matrix_init_identity (&priv->projection);
cogl_matrix_perspective (&priv->projection,
priv->perspective.fovy,
priv->perspective.aspect,
priv->perspective.z_near,
priv->perspective.z_far);
priv->dirty_projection = TRUE;
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
}
/**
* clutter_stage_get_perspective:
* @stage: A #ClutterStage
* @perspective: (out caller-allocates) (allow-none): return location for a
* #ClutterPerspective
*
* Retrieves the stage perspective.
*/
void
clutter_stage_get_perspective (ClutterStage *stage,
ClutterPerspective *perspective)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (perspective != NULL);
*perspective = stage->priv->perspective;
}
/*
* clutter_stage_get_projection_matrix:
* @stage: A #ClutterStage
* @projection: return location for a #CoglMatrix representing the
* perspective projection applied to actors on the given
* @stage.
*
* Retrieves the @stage's projection matrix. This is derived from the
* current perspective set using clutter_stage_set_perspective().
*
* Since: 1.6
*/
void
_clutter_stage_get_projection_matrix (ClutterStage *stage,
CoglMatrix *projection)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (projection != NULL);
*projection = stage->priv->projection;
}
/* This simply provides a simple mechanism for us to ensure that
* the projection matrix gets re-asserted before painting.
*
* This is used when switching between multiple stages */
void
_clutter_stage_dirty_projection (ClutterStage *stage)
{
stage->priv->dirty_projection = TRUE;
}
/*
* clutter_stage_set_viewport:
* @stage: A #ClutterStage
* @x: The X postition to render the stage at, in window coordinates
* @y: The Y position to render the stage at, in window coordinates
* @width: The width to render the stage at, in window coordinates
* @height: The height to render the stage at, in window coordinates
*
* Sets the stage viewport. The viewport defines a final scale and
* translation of your rendered stage and actors. This lets you render
* your stage into a subregion of the stage window or you could use it to
* pan a subregion of the stage if your stage window is smaller then
* the stage. (XXX: currently this isn't possible)
*
* Unlike a scale and translation done using the modelview matrix this
* is done after everything has had perspective projection applied, so
* for example if you were to pan across a subregion of the stage using
* the viewport then you would not see a change in perspective for the
* actors on the stage.
*
* Normally the stage viewport will automatically track the size of the
* stage window with no offset so the stage will fill your window. This
* behaviour can be changed with the "viewport-mimics-window" property
* which will automatically be set to FALSE if you use this API. If
* you want to revert to the original behaviour then you should set
* this property back to %TRUE using
* clutter_stage_set_viewport_mimics_window().
* (XXX: If we were to make this API public then we might want to do
* add that property.)
*
* Since: 1.6
*/
void
_clutter_stage_set_viewport (ClutterStage *stage,
int x,
int y,
int width,
int height)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (x == priv->viewport[0] &&
y == priv->viewport[1] &&
width == priv->viewport[2] &&
height == priv->viewport[3])
return;
priv->viewport[0] = x;
priv->viewport[1] = y;
priv->viewport[2] = width;
priv->viewport[3] = height;
priv->dirty_viewport = TRUE;
queue_full_redraw (stage);
}
/* This simply provides a simple mechanism for us to ensure that
* the viewport gets re-asserted before next painting.
*
* This is used when switching between multiple stages */
void
_clutter_stage_dirty_viewport (ClutterStage *stage)
{
stage->priv->dirty_viewport = TRUE;
}
/*
* clutter_stage_get_viewport:
* @stage: A #ClutterStage
* @x: A location for the X position where the stage is rendered,
* in window coordinates.
* @y: A location for the Y position where the stage is rendered,
* in window coordinates.
* @width: A location for the width the stage is rendered at,
* in window coordinates.
* @height: A location for the height the stage is rendered at,
* in window coordinates.
*
* Returns the viewport offset and size set using
* clutter_stage_set_viewport() or if the "viewport-mimics-window" property
* is TRUE then @x and @y will be set to 0 and @width and @height will equal
* the width if the stage window.
*
* Since: 1.6
*/
void
_clutter_stage_get_viewport (ClutterStage *stage,
int *x,
int *y,
int *width,
int *height)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
*x = priv->viewport[0];
*y = priv->viewport[1];
*width = priv->viewport[2];
*height = priv->viewport[3];
}
/**
* clutter_stage_set_fullscreen:
* @stage: a #ClutterStage
* @fullscreen: %TRUE to to set the stage fullscreen
*
* Asks to place the stage window in the fullscreen or unfullscreen
* states.
*
( Note that you shouldn't assume the window is definitely full screen
* afterward, because other entities (e.g. the user or window manager)
* could unfullscreen it again, and not all window managers honor
* requests to fullscreen windows.
*
* If you want to receive notification of the fullscreen state you
* should either use the #ClutterStage::fullscreen and
* #ClutterStage::unfullscreen signals, or use the notify signal
* for the #ClutterStage:fullscreen-set property
*
* Since: 1.0
*/
void
clutter_stage_set_fullscreen (ClutterStage *stage,
gboolean fullscreen)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->is_fullscreen != fullscreen)
{
ClutterStageWindow *impl = CLUTTER_STAGE_WINDOW (priv->impl);
ClutterStageWindowIface *iface;
iface = CLUTTER_STAGE_WINDOW_GET_IFACE (impl);
/* Only set if backend implements.
*
* Also see clutter_stage_event() for setting priv->is_fullscreen
* on state change event.
*/
if (iface->set_fullscreen)
iface->set_fullscreen (impl, fullscreen);
}
/* If the backend did fullscreen the stage window then we need to resize
* the stage and update its viewport so we queue a relayout. Note: if the
* fullscreen request is handled asynchronously we can't rely on this
* queue_relayout to update the viewport, but for example the X backend
* will recieve a ConfigureNotify after a successful resize which is how
* we ensure the viewport is updated on X.
*/
clutter_actor_queue_relayout (CLUTTER_ACTOR (stage));
}
/**
* clutter_stage_get_fullscreen:
* @stage: a #ClutterStage
*
* Retrieves whether the stage is full screen or not
*
* Return value: %TRUE if the stage is full screen
*
* Since: 1.0
*/
gboolean
clutter_stage_get_fullscreen (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->is_fullscreen;
}
/**
* clutter_stage_set_user_resizable:
* @stage: a #ClutterStage
* @resizable: whether the stage should be user resizable.
*
* Sets if the stage is resizable by user interaction (e.g. via
* window manager controls)
*
* Since: 0.4
*/
void
clutter_stage_set_user_resizable (ClutterStage *stage,
gboolean resizable)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (clutter_feature_available (CLUTTER_FEATURE_STAGE_USER_RESIZE)
&& priv->is_user_resizable != resizable)
{
ClutterStageWindow *impl = CLUTTER_STAGE_WINDOW (priv->impl);
ClutterStageWindowIface *iface;
iface = CLUTTER_STAGE_WINDOW_GET_IFACE (impl);
if (iface->set_user_resizable)
{
priv->is_user_resizable = resizable;
iface->set_user_resizable (impl, resizable);
g_object_notify (G_OBJECT (stage), "user-resizable");
}
}
}
/**
* clutter_stage_get_user_resizable:
* @stage: a #ClutterStage
*
* Retrieves the value set with clutter_stage_set_user_resizable().
*
* Return value: %TRUE if the stage is resizable by the user.
*
* Since: 0.4
*/
gboolean
clutter_stage_get_user_resizable (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->is_user_resizable;
}
/**
* clutter_stage_show_cursor:
* @stage: a #ClutterStage
*
* Shows the cursor on the stage window
*/
void
clutter_stage_show_cursor (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (!priv->is_cursor_visible)
{
ClutterStageWindow *impl = CLUTTER_STAGE_WINDOW (priv->impl);
ClutterStageWindowIface *iface;
iface = CLUTTER_STAGE_WINDOW_GET_IFACE (impl);
if (iface->set_cursor_visible)
{
priv->is_cursor_visible = TRUE;
iface->set_cursor_visible (impl, TRUE);
g_object_notify (G_OBJECT (stage), "cursor-visible");
}
}
}
/**
* clutter_stage_hide_cursor:
* @stage: a #ClutterStage
*
* Makes the cursor invisible on the stage window
*
* Since: 0.4
*/
void
clutter_stage_hide_cursor (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->is_cursor_visible)
{
ClutterStageWindow *impl = CLUTTER_STAGE_WINDOW (priv->impl);
ClutterStageWindowIface *iface;
iface = CLUTTER_STAGE_WINDOW_GET_IFACE (impl);
if (iface->set_cursor_visible)
{
priv->is_cursor_visible = FALSE;
iface->set_cursor_visible (impl, FALSE);
g_object_notify (G_OBJECT (stage), "cursor-visible");
}
}
}
/**
* clutter_stage_read_pixels:
* @stage: A #ClutterStage
* @x: x coordinate of the first pixel that is read from stage
* @y: y coordinate of the first pixel that is read from stage
* @width: Width dimention of pixels to be read, or -1 for the
* entire stage width
* @height: Height dimention of pixels to be read, or -1 for the
* entire stage height
*
* Makes a screenshot of the stage in RGBA 8bit data, returns a
* linear buffer with @width * 4 as rowstride.
*
* The alpha data contained in the returned buffer is driver-dependent,
* and not guaranteed to hold any sensible value.
*
* Return value: a pointer to newly allocated memory with the buffer
* or %NULL if the read failed. Use g_free() on the returned data
* to release the resources it has allocated.
*/
guchar *
clutter_stage_read_pixels (ClutterStage *stage,
gint x,
gint y,
gint width,
gint height)
{
guchar *pixels;
GLint viewport[4];
gint rowstride;
gint stage_width, stage_height;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
/* according to glReadPixels documentation pixels outside the viewport are
* undefined, but no error should be provoked, thus this is probably unnneed.
*/
g_return_val_if_fail (x >= 0 && y >= 0, NULL);
/* Force a redraw of the stage before reading back pixels */
clutter_stage_ensure_current (stage);
clutter_actor_paint (CLUTTER_ACTOR (stage));
glGetIntegerv (GL_VIEWPORT, viewport);
stage_width = viewport[2];
stage_height = viewport[3];
if (width < 0 || width > stage_width)
width = stage_width;
if (height < 0 || height > stage_height)
height = stage_height;
rowstride = width * 4;
pixels = g_malloc (height * rowstride);
cogl_read_pixels (x, y, width, height,
COGL_READ_PIXELS_COLOR_BUFFER,
COGL_PIXEL_FORMAT_RGBA_8888,
pixels);
return pixels;
}
/**
* clutter_stage_get_actor_at_pos:
* @stage: a #ClutterStage
* @pick_mode: how the scene graph should be painted
* @x: X coordinate to check
* @y: Y coordinate to check
*
* Checks the scene at the coordinates @x and @y and returns a pointer
* to the #ClutterActor at those coordinates.
*
* By using @pick_mode it is possible to control which actors will be
* painted and thus available.
*
* Return value: (transfer none): the actor at the specified coordinates,
* if any
*/
ClutterActor *
clutter_stage_get_actor_at_pos (ClutterStage *stage,
ClutterPickMode pick_mode,
gint x,
gint y)
{
return _clutter_do_pick (stage, x, y, pick_mode);
}
/**
* clutter_stage_event:
* @stage: a #ClutterStage
* @event: a #ClutterEvent
*
* This function is used to emit an event on the main stage.
*
* You should rarely need to use this function, except for
* synthetised events.
*
* Return value: the return value from the signal emission
*
* Since: 0.4
*/
gboolean
clutter_stage_event (ClutterStage *stage,
ClutterEvent *event)
{
ClutterStagePrivate *priv;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
g_return_val_if_fail (event != NULL, FALSE);
priv = stage->priv;
if (event->type == CLUTTER_DELETE)
{
gboolean retval = FALSE;
g_signal_emit_by_name (stage, "event", event, &retval);
if (!retval)
g_signal_emit_by_name (stage, "delete-event", event, &retval);
return retval;
}
if (event->type != CLUTTER_STAGE_STATE)
return FALSE;
/* emit raw event */
if (clutter_actor_event (CLUTTER_ACTOR (stage), event, FALSE))
return TRUE;
if (event->stage_state.changed_mask & CLUTTER_STAGE_STATE_FULLSCREEN)
{
if (event->stage_state.new_state & CLUTTER_STAGE_STATE_FULLSCREEN)
{
priv->is_fullscreen = TRUE;
g_signal_emit (stage, stage_signals[FULLSCREEN], 0);
g_object_notify (G_OBJECT (stage), "fullscreen-set");
}
else
{
priv->is_fullscreen = FALSE;
g_signal_emit (stage, stage_signals[UNFULLSCREEN], 0);
g_object_notify (G_OBJECT (stage), "fullscreen-set");
}
}
if (event->stage_state.changed_mask & CLUTTER_STAGE_STATE_ACTIVATED)
{
if (event->stage_state.new_state & CLUTTER_STAGE_STATE_ACTIVATED)
g_signal_emit (stage, stage_signals[ACTIVATE], 0);
else
g_signal_emit (stage, stage_signals[DEACTIVATE], 0);
}
return TRUE;
}
/**
* clutter_stage_set_title
* @stage: A #ClutterStage
* @title: A utf8 string for the stage windows title.
*
* Sets the stage title.
*
* Since: 0.4
**/
void
clutter_stage_set_title (ClutterStage *stage,
const gchar *title)
{
ClutterStagePrivate *priv;
ClutterStageWindow *impl;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
g_free (priv->title);
priv->title = g_strdup (title);
impl = CLUTTER_STAGE_WINDOW (priv->impl);
if (CLUTTER_STAGE_WINDOW_GET_IFACE(impl)->set_title != NULL)
CLUTTER_STAGE_WINDOW_GET_IFACE (impl)->set_title (impl, priv->title);
g_object_notify (G_OBJECT (stage), "title");
}
/**
* clutter_stage_get_title
* @stage: A #ClutterStage
*
* Gets the stage title.
*
* Return value: pointer to the title string for the stage. The
* returned string is owned by the actor and should not
* be modified or freed.
*
* Since: 0.4
**/
G_CONST_RETURN gchar *
clutter_stage_get_title (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
return stage->priv->title;
}
static void
on_key_focused_weak_notify (gpointer data,
GObject *where_the_object_was)
{
ClutterStagePrivate *priv;
ClutterStage *stage = CLUTTER_STAGE (data);
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
priv->key_focused_actor = NULL;
/* focused actor has dissapeared - fall back to stage
* FIXME: need some kind of signal dance/block here.
*/
clutter_stage_set_key_focus (stage, NULL);
}
/**
* clutter_stage_set_key_focus:
* @stage: the #ClutterStage
* @actor: (allow-none): the actor to set key focus to, or %NULL
*
* Sets the key focus on @actor. An actor with key focus will receive
* all the key events. If @actor is %NULL, the stage will receive
* focus.
*
* Since: 0.6
*/
void
clutter_stage_set_key_focus (ClutterStage *stage,
ClutterActor *actor)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (actor == NULL || CLUTTER_IS_ACTOR (actor));
priv = stage->priv;
if (priv->key_focused_actor == actor)
return;
if (priv->key_focused_actor)
{
ClutterActor *old_focused_actor;
old_focused_actor = priv->key_focused_actor;
/* set key_focused_actor to NULL before emitting the signal or someone
* might hide the previously focused actor in the signal handler and we'd
* get re-entrant call and get glib critical from g_object_weak_unref
*/
g_object_weak_unref (G_OBJECT (priv->key_focused_actor),
on_key_focused_weak_notify,
stage);
priv->key_focused_actor = NULL;
g_signal_emit_by_name (old_focused_actor, "key-focus-out");
}
else
g_signal_emit_by_name (stage, "key-focus-out");
/* Note, if someone changes key focus in focus-out signal handler we'd be
* overriding the latter call below moving the focus where it was originally
* intended. The order of events would be:
* 1st focus-out, 2nd focus-out (on stage), 2nd focus-in, 1st focus-in
*/
if (actor)
{
priv->key_focused_actor = actor;
g_object_weak_ref (G_OBJECT (actor),
on_key_focused_weak_notify,
stage);
g_signal_emit_by_name (priv->key_focused_actor, "key-focus-in");
}
else
g_signal_emit_by_name (stage, "key-focus-in");
g_object_notify (G_OBJECT (stage), "key-focus");
}
/**
* clutter_stage_get_key_focus:
* @stage: the #ClutterStage
*
* Retrieves the actor that is currently under key focus.
*
* Return value: (transfer none): the actor with key focus, or the stage
*
* Since: 0.6
*/
ClutterActor *
clutter_stage_get_key_focus (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
if (stage->priv->key_focused_actor)
return stage->priv->key_focused_actor;
return CLUTTER_ACTOR (stage);
}
/**
* clutter_stage_get_use_fog:
* @stage: the #ClutterStage
*
* Gets whether the depth cueing effect is enabled on @stage.
*
* Return value: %TRUE if the depth cueing effect is enabled
*
* Since: 0.6
*/
gboolean
clutter_stage_get_use_fog (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->use_fog;
}
/**
* clutter_stage_set_use_fog:
* @stage: the #ClutterStage
* @fog: %TRUE for enabling the depth cueing effect
*
* Sets whether the depth cueing effect on the stage should be enabled
* or not.
*
* Depth cueing is a 3D effect that makes actors farther away from the
* viewing point less opaque, by fading them with the stage color.
* The parameters of the GL fog used can be changed using the
* clutter_stage_set_fog() function.
*
* Since: 0.6
*/
void
clutter_stage_set_use_fog (ClutterStage *stage,
gboolean fog)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->use_fog != fog)
{
priv->use_fog = fog;
CLUTTER_NOTE (MISC, "%s depth-cueing inside stage",
priv->use_fog ? "enabling" : "disabling");
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
g_object_notify (G_OBJECT (stage), "use-fog");
}
}
/**
* clutter_stage_set_fog:
* @stage: the #ClutterStage
* @fog: a #ClutterFog structure
*
* Sets the fog (also known as "depth cueing") settings for the @stage.
*
* A #ClutterStage will only use a linear fog progression, which
* depends solely on the distance from the viewer. The cogl_set_fog()
* function in COGL exposes more of the underlying implementation,
* and allows changing the for progression function. It can be directly
* used by disabling the #ClutterStage:use-fog property and connecting
* a signal handler to the #ClutterActor::paint signal on the @stage,
* like:
*
* |[
* clutter_stage_set_use_fog (stage, FALSE);
* g_signal_connect (stage, "paint", G_CALLBACK (on_stage_paint), NULL);
* ]|
*
* The paint signal handler will call cogl_set_fog() with the
* desired settings:
*
* |[
* static void
* on_stage_paint (ClutterActor *actor)
* {
* ClutterColor stage_color = { 0, };
* CoglColor fog_color = { 0, };
*
* /&ast; set the fog color to the stage background color &ast;/
* clutter_stage_get_color (CLUTTER_STAGE (actor), &amp;stage_color);
* cogl_color_init_from_4ub (&amp;fog_color,
* stage_color.red,
* stage_color.green,
* stage_color.blue,
* stage_color.alpha);
*
* /&ast; enable fog &ast;/
* cogl_set_fog (&amp;fog_color,
* COGL_FOG_MODE_EXPONENTIAL, /&ast; mode &ast;/
* 0.5, /&ast; density &ast;/
* 5.0, 30.0); /&ast; z_near and z_far &ast;/
* }
* ]|
*
* <note>The fogging functions only work correctly when the visible actors use
* unmultiplied alpha colors. By default Cogl will premultiply textures and
* cogl_set_source_color() will premultiply colors, so unless you explicitly
* load your textures requesting an unmultiplied internal format and use
* cogl_material_set_color() you can only use fogging with fully opaque actors.
* Support for premultiplied colors will improve in the future when we can
* depend on fragment shaders.</note>
*
* Since: 0.6
*/
void
clutter_stage_set_fog (ClutterStage *stage,
ClutterFog *fog)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (fog != NULL);
priv = stage->priv;
priv->fog = *fog;
if (priv->use_fog)
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
}
/**
* clutter_stage_get_fog:
* @stage: the #ClutterStage
* @fog: return location for a #ClutterFog structure
*
* Retrieves the current depth cueing settings from the stage.
*
* Since: 0.6
*/
void
clutter_stage_get_fog (ClutterStage *stage,
ClutterFog *fog)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (fog != NULL);
*fog = stage->priv->fog;
}
/*** Perspective boxed type ******/
static gpointer
clutter_perspective_copy (gpointer data)
{
if (G_LIKELY (data))
return g_slice_dup (ClutterPerspective, data);
return NULL;
}
static void
clutter_perspective_free (gpointer data)
{
if (G_LIKELY (data))
g_slice_free (ClutterPerspective, data);
}
G_DEFINE_BOXED_TYPE (ClutterPerspective, clutter_perspective,
clutter_perspective_copy,
clutter_perspective_free);
static gpointer
clutter_fog_copy (gpointer data)
{
if (G_LIKELY (data))
return g_slice_dup (ClutterFog, data);
return NULL;
}
static void
clutter_fog_free (gpointer data)
{
if (G_LIKELY (data))
g_slice_free (ClutterFog, data);
}
G_DEFINE_BOXED_TYPE (ClutterFog, clutter_fog, clutter_fog_copy, clutter_fog_free);
/**
* clutter_stage_new:
*
* Creates a new, non-default stage. A non-default stage is a new
* top-level actor which can be used as another container. It works
* exactly like the default stage, but while clutter_stage_get_default()
* will always return the same instance, you will have to keep a pointer
* to any #ClutterStage returned by clutter_stage_new().
*
* The ability to support multiple stages depends on the current
* backend. Use clutter_feature_available() and
* %CLUTTER_FEATURE_STAGE_MULTIPLE to check at runtime whether a
* backend supports multiple stages.
*
* Return value: a new stage, or %NULL if the default backend does
* not support multiple stages. Use clutter_actor_destroy() to
* programmatically close the returned stage.
*
* Since: 0.8
*/
ClutterActor *
clutter_stage_new (void)
{
if (!clutter_feature_available (CLUTTER_FEATURE_STAGE_MULTIPLE))
{
g_warning ("Unable to create a new stage: the %s backend does not "
"support multiple stages.",
CLUTTER_FLAVOUR);
return NULL;
}
/* The stage manager will grab the floating reference when the stage
is added to it in the constructor */
return g_object_new (CLUTTER_TYPE_STAGE, NULL);
}
/**
* clutter_stage_ensure_current:
* @stage: the #ClutterStage
*
* This function essentially makes sure the right GL context is
* current for the passed stage. It is not intended to
* be used by applications.
*
* Since: 0.8
*/
void
clutter_stage_ensure_current (ClutterStage *stage)
{
ClutterBackend *backend;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
backend = clutter_get_default_backend ();
_clutter_backend_ensure_context (backend, stage);
}
/**
* clutter_stage_ensure_viewport:
* @stage: a #ClutterStage
*
* Ensures that the GL viewport is updated with the current
* stage window size.
*
* This function will queue a redraw of @stage.
*
* This function should not be called by applications; it is used
* when embedding a #ClutterStage into a toolkit with another
* windowing system, like GTK+.
*
* Since: 1.0
*/
void
clutter_stage_ensure_viewport (ClutterStage *stage)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
_clutter_stage_dirty_viewport (stage);
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
}
void
_clutter_stage_maybe_setup_viewport (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
if (priv->dirty_viewport)
{
CLUTTER_NOTE (PAINT,
"Setting up the viewport { w:%d, h:%d }",
priv->viewport[2], priv->viewport[3]);
cogl_set_viewport (priv->viewport[0],
priv->viewport[1],
priv->viewport[2],
priv->viewport[3]);
priv->dirty_viewport = FALSE;
}
if (priv->dirty_projection)
{
cogl_set_projection_matrix (&priv->projection);
priv->dirty_projection = FALSE;
}
}
/**
* clutter_stage_ensure_redraw:
* @stage: a #ClutterStage
*
* Ensures that @stage is redrawn
*
* This function should not be called by applications: it is
* used when embedding a #ClutterStage into a toolkit with
* another windowing system, like GTK+.
*
* Since: 1.0
*/
void
clutter_stage_ensure_redraw (ClutterStage *stage)
{
ClutterMasterClock *master_clock;
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
priv->relayout_pending = TRUE;
priv->redraw_pending = TRUE;
master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_start_running (master_clock);
}
/**
* clutter_stage_queue_redraw:
* @stage: the #ClutterStage
*
* Queues a redraw for the passed stage.
*
* <note>Applications should call clutter_actor_queue_redraw() and not
* this function.</note>
*
* <note>This function is just a wrapper for clutter_actor_queue_redraw()
* and should probably go away.</note>
*
* Since: 0.8
*/
void
clutter_stage_queue_redraw (ClutterStage *stage)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
}
/**
* clutter_stage_is_default:
* @stage: a #ClutterStage
*
* Checks if @stage is the default stage, or an instance created using
* clutter_stage_new() but internally using the same implementation.
*
* Return value: %TRUE if the passed stage is the default one
*
* Since: 0.8
*/
gboolean
clutter_stage_is_default (ClutterStage *stage)
{
ClutterStageManager *stage_manager;
ClutterStageWindow *impl;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
stage_manager = clutter_stage_manager_get_default ();
if (stage != clutter_stage_manager_get_default_stage (stage_manager))
return FALSE;
impl = _clutter_stage_get_window (stage);
if (impl != _clutter_stage_get_default_window ())
return FALSE;
return TRUE;
}
void
_clutter_stage_set_window (ClutterStage *stage,
ClutterStageWindow *stage_window)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (CLUTTER_IS_STAGE_WINDOW (stage_window));
if (stage->priv->impl)
g_object_unref (stage->priv->impl);
stage->priv->impl = stage_window;
}
ClutterStageWindow *
_clutter_stage_get_window (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
return CLUTTER_STAGE_WINDOW (stage->priv->impl);
}
ClutterStageWindow *
_clutter_stage_get_default_window (void)
{
ClutterActor *stage = clutter_stage_get_default ();
return _clutter_stage_get_window (CLUTTER_STAGE (stage));
}
/**
* clutter_stage_set_throttle_motion_events:
* @stage: a #ClutterStage
* @throttle: %TRUE to throttle motion events
*
* Sets whether motion events received between redraws should
* be throttled or not. If motion events are throttled, those
* events received by the windowing system between redraws will
* be compressed so that only the last event will be propagated
* to the @stage and its actors.
*
* This function should only be used if you want to have all
* the motion events delivered to your application code.
*
* Since: 1.0
*/
void
clutter_stage_set_throttle_motion_events (ClutterStage *stage,
gboolean throttle)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->throttle_motion_events != throttle)
priv->throttle_motion_events = throttle;
}
/**
* clutter_stage_get_throttle_motion_events:
* @stage: a #ClutterStage
*
* Retrieves the value set with clutter_stage_set_throttle_motion_events()
*
* Return value: %TRUE if the motion events are being throttled,
* and %FALSE otherwise
*
* Since: 1.0
*/
gboolean
clutter_stage_get_throttle_motion_events (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->throttle_motion_events;
}
/**
* clutter_stage_set_use_alpha:
* @stage: a #ClutterStage
* @use_alpha: whether the stage should honour the opacity or the
* alpha channel of the stage color
*
* Sets whether the @stage should honour the #ClutterActor:opacity and
* the alpha channel of the #ClutterStage:color
*
* Since: 1.2
*/
void
clutter_stage_set_use_alpha (ClutterStage *stage,
gboolean use_alpha)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->use_alpha != use_alpha)
{
priv->use_alpha = use_alpha;
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
g_object_notify (G_OBJECT (stage), "use-alpha");
}
}
/**
* clutter_stage_get_use_alpha:
* @stage: a #ClutterStage
*
* Retrieves the value set using clutter_stage_set_use_alpha()
*
* Return value: %TRUE if the stage should honour the opacity and the
* alpha channel of the stage color
*
* Since: 1.2
*/
gboolean
clutter_stage_get_use_alpha (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->use_alpha;
}
/**
* clutter_stage_set_minimum_size:
* @stage: a #ClutterStage
* @width: width, in pixels
* @height: height, in pixels
*
* Sets the minimum size for a stage window, if the default backend
* uses #ClutterStage inside a window
*
* This is a convenience function, and it is equivalent to setting the
* #ClutterActor:min-width and #ClutterActor:min-height on @stage
*
* If the current size of @stage is smaller than the minimum size, the
* @stage will be resized to the new @width and @height
*
* This function has no effect if @stage is fullscreen
*
* Since: 1.2
*/
void
clutter_stage_set_minimum_size (ClutterStage *stage,
guint width,
guint height)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail ((width > 0) && (height > 0));
g_object_set (G_OBJECT (stage),
"min-width", (gfloat) width,
"min-height", (gfloat )height,
NULL);
}
/**
* clutter_stage_get_minimum_size:
* @stage: a #ClutterStage
* @width: (out): return location for the minimum width, in pixels,
* or %NULL
* @height: (out): return location for the minimum height, in pixels,
* or %NULL
*
* Retrieves the minimum size for a stage window as set using
* clutter_stage_set_minimum_size().
*
* The returned size may not correspond to the actual minimum size and
* it is specific to the #ClutterStage implementation inside the
* Clutter backend
*
* Since: 1.2
*/
void
clutter_stage_get_minimum_size (ClutterStage *stage,
guint *width_p,
guint *height_p)
{
gfloat width, height;
gboolean width_set, height_set;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_object_get (G_OBJECT (stage),
"min-width", &width,
"min-width-set", &width_set,
"min-height", &height,
"min-height-set", &height_set,
NULL);
/* if not width or height have been set, then the Stage
* minimum size is defined to be 1x1
*/
if (!width_set)
width = 1;
if (!height_set)
height = 1;
if (width_p)
*width_p = (guint) width;
if (height_p)
*height_p = (guint) height;
}
/* Returns the number of swap buffers pending completion for the stage */
int
_clutter_stage_get_pending_swaps (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return 0;
stage_window = _clutter_stage_get_window (stage);
if (stage_window == NULL)
return 0;
return _clutter_stage_window_get_pending_swaps (stage_window);
}
/**
* clutter_stage_set_no_clear_hint:
* @stage: a #ClutterStage
* @no_clear: %TRUE if the @stage should not clear itself on every
* repaint cycle
*
* Sets whether the @stage should clear itself at the beginning
* of each paint cycle or not.
*
* Clearing the #ClutterStage can be a costly operation, especially
* if the stage is always covered - for instance, in a full-screen
* video player or in a game with a background texture.
*
* <note><para>This setting is a hint; Clutter might discard this
* hint depending on its internal state.</para></note>
*
* <warning><para>If parts of the stage are visible and you disable
* clearing you might end up with visual artifacts while painting the
* contents of the stage.</para></warning>
*
* Since: 1.4
*/
void
clutter_stage_set_no_clear_hint (ClutterStage *stage,
gboolean no_clear)
{
ClutterStagePrivate *priv;
ClutterStageHint new_hints;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
new_hints = priv->stage_hints;
if (no_clear)
new_hints |= CLUTTER_STAGE_NO_CLEAR_ON_PAINT;
else
new_hints &= ~CLUTTER_STAGE_NO_CLEAR_ON_PAINT;
if (priv->stage_hints == new_hints)
return;
priv->stage_hints = new_hints;
g_object_notify (G_OBJECT (stage), "no-clear-hint");
}
/**
* clutter_stage_get_no_clear_hint:
* @stage: a #ClutterStage
*
* Retrieves the hint set with clutter_stage_set_no_clear_hint()
*
* Return value: %TRUE if the stage should not clear itself on every paint
* cycle, and %FALSE otherwise
*
* Since: 1.4
*/
gboolean
clutter_stage_get_no_clear_hint (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return (stage->priv->stage_hints & CLUTTER_STAGE_NO_CLEAR_ON_PAINT) != 0;
}
gboolean
_clutter_stage_get_pick_buffer_valid (ClutterStage *stage, ClutterPickMode mode)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
if (stage->priv->pick_buffer_mode != mode)
return FALSE;
return stage->priv->have_valid_pick_buffer;
}
void
_clutter_stage_set_pick_buffer_valid (ClutterStage *stage,
gboolean valid,
ClutterPickMode mode)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
stage->priv->have_valid_pick_buffer = !!valid;
stage->priv->pick_buffer_mode = mode;
}
void
_clutter_stage_increment_picks_per_frame_counter (ClutterStage *stage)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
stage->priv->picks_per_frame++;
}
void
_clutter_stage_reset_picks_per_frame_counter (ClutterStage *stage)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
stage->priv->picks_per_frame = 0;
}
guint
_clutter_stage_get_picks_per_frame_counter (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), 0);
return stage->priv->picks_per_frame;
}
ClutterPaintVolume *
_clutter_stage_paint_volume_stack_allocate (ClutterStage *stage)
{
GArray *paint_volume_stack = stage->priv->paint_volume_stack;
g_array_set_size (paint_volume_stack,
paint_volume_stack->len+1);
return &g_array_index (paint_volume_stack,
ClutterPaintVolume,
paint_volume_stack->len - 1);
}
void
_clutter_stage_paint_volume_stack_free_all (ClutterStage *stage)
{
GArray *paint_volume_stack = stage->priv->paint_volume_stack;
int i;
for (i = 0; i < paint_volume_stack->len; i++)
{
ClutterPaintVolume *pv =
&g_array_index (paint_volume_stack, ClutterPaintVolume, i);
clutter_paint_volume_free (pv);
}
g_array_set_size (paint_volume_stack, 0);
}
/* The is an out-of-band paramater available while painting that
* can be used to cull actors. */
const ClutterGeometry *
_clutter_stage_get_clip (ClutterStage *stage)
{
return stage->priv->current_paint_clip;
}
/* When an actor queues a redraw we add it to a list on the stage that
* gets processed once all updates to the stage have been finished.
*
* This deferred approach to processing queue_redraw requests means
* that we can avoid redundant transformations of clip volumes if
* something later triggers a full stage redraw anyway. It also means
* we can be more sure that all the referenced actors will have valid
* allocations improving the chance that we can determine the actors
* paint volume so we can clip the redraw request even if the user
* didn't explicitly do so.
*/
ClutterStageQueueRedrawEntry *
_clutter_stage_queue_actor_redraw (ClutterStage *stage,
ClutterStageQueueRedrawEntry *entry,
ClutterActor *actor,
ClutterPaintVolume *clip)
{
ClutterStagePrivate *priv = stage->priv;
CLUTTER_NOTE (PAINT, "Redraw request number %lu",
CLUTTER_CONTEXT ()->redraw_count + 1);
if (!priv->redraw_pending)
{
ClutterMasterClock *master_clock;
priv->redraw_pending = TRUE;
master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_start_running (master_clock);
}
else
CLUTTER_CONTEXT ()->redraw_count += 1;
/* We have an optimization in _clutter_do_pick to detect when the
* scene is static so we can cache a full, un-clipped pick buffer to
* avoid continuous pick renders.
*
* Currently the assumption is that actors queue a redraw when some
* state changes that affects painting *or* picking so we can use
* this point to invalidate any currently cached pick buffer.
*/
_clutter_stage_set_pick_buffer_valid (stage, FALSE, -1);
if (entry)
{
/* Ignore all requests to queue a redraw for an actor if a full
* (non-clipped) redraw of the actor has already been queued. */
if (!entry->has_clip)
return entry;
/* If queuing a clipped redraw and a clipped redraw has
* previously been queued for this actor then combine the latest
* clip together with the existing clip */
if (clip)
clutter_paint_volume_union (&entry->clip, clip);
else
{
clutter_paint_volume_free (&entry->clip);
entry->has_clip = FALSE;
}
return entry;
}
else
{
entry = g_slice_new (ClutterStageQueueRedrawEntry);
entry->actor = g_object_ref (actor);
if (clip)
{
entry->has_clip = TRUE;
_clutter_paint_volume_init_static (actor, &entry->clip);
_clutter_paint_volume_set_from_volume (&entry->clip, clip);
}
else
entry->has_clip = FALSE;
stage->priv->pending_queue_redraws =
g_list_prepend (stage->priv->pending_queue_redraws, entry);
return entry;
}
}
static void
free_queue_redraw_entry (ClutterStageQueueRedrawEntry *entry)
{
if (entry->actor)
g_object_unref (entry->actor);
if (entry->has_clip)
clutter_paint_volume_free (&entry->clip);
g_slice_free (ClutterStageQueueRedrawEntry, entry);
}
void
_clutter_stage_queue_redraw_entry_invalidate (ClutterStageQueueRedrawEntry *entry)
{
if (entry == NULL)
return;
if (entry->actor != NULL)
{
g_object_unref (entry->actor);
entry->actor = NULL;
}
if (entry->has_clip)
{
clutter_paint_volume_free (&entry->clip);
entry->has_clip = FALSE;
}
}
static void
_clutter_stage_maybe_finish_queue_redraws (ClutterStage *stage)
{
/* Note: we have to repeat until the pending_queue_redraws list is
* empty because actors are allowed to queue redraws in response to
* the queue-redraw signal. For example Clone actors or
* texture_new_from_actor actors will have to queue a redraw if
* their source queues a redraw.
*/
while (stage->priv->pending_queue_redraws)
{
GList *l;
/* XXX: we need to allow stage->priv->pending_queue_redraws to
* be updated while we process the current entries in the list
* so we steal the list pointer and then reset it to an empty
* list before processing... */
GList *stolen_list = stage->priv->pending_queue_redraws;
stage->priv->pending_queue_redraws = NULL;
for (l = stolen_list; l; l = l->next)
{
ClutterStageQueueRedrawEntry *entry = l->data;
ClutterPaintVolume *clip;
/* NB: Entries may be invalidated if the actor gets destroyed */
if (G_LIKELY (entry->actor != NULL))
{
clip = entry->has_clip ? &entry->clip : NULL;
_clutter_actor_finish_queue_redraw (entry->actor, clip);
}
free_queue_redraw_entry (entry);
}
g_list_free (stolen_list);
}
}
/**
* clutter_stage_set_accept_focus:
* @stage: a #ClutterStage
* @accept_focus: %TRUE to accept focus on show
*
* Sets whether the @stage should accept the key focus when shown.
*
* This function should be called before showing @stage using
* clutter_actor_show().
*
* Since: 1.6
*/
void
clutter_stage_set_accept_focus (ClutterStage *stage,
gboolean accept_focus)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
accept_focus = !!accept_focus;
priv = stage->priv;
if (priv->accept_focus != accept_focus)
{
_clutter_stage_window_set_accept_focus (priv->impl, accept_focus);
g_object_notify (G_OBJECT (stage), "accept-focus");
}
}
/**
* clutter_stage_get_accept_focus:
* @stage: a #ClutterStage
*
* Retrieves the value set with clutter_stage_set_accept_focus().
*
* Return value: %TRUE if the #ClutterStage should accept focus, and %FALSE
* otherwise
*
* Since: 1.6
*/
gboolean
clutter_stage_get_accept_focus (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), TRUE);
return stage->priv->accept_focus;
}
void
_clutter_stage_add_device (ClutterStage *stage,
ClutterInputDevice *device)
{
ClutterStagePrivate *priv = stage->priv;
if (g_hash_table_lookup (priv->devices, device) != NULL)
return;
g_hash_table_insert (priv->devices, device, GINT_TO_POINTER (1));
_clutter_input_device_set_stage (device, stage);
}
void
_clutter_stage_remove_device (ClutterStage *stage,
ClutterInputDevice *device)
{
ClutterStagePrivate *priv = stage->priv;
_clutter_input_device_set_stage (device, NULL);
g_hash_table_remove (priv->devices, device);
}
gboolean
_clutter_stage_has_device (ClutterStage *stage,
ClutterInputDevice *device)
{
ClutterStagePrivate *priv = stage->priv;
return g_hash_table_lookup (priv->devices, device) != NULL;
}