mirror of
https://github.com/brl/mutter.git
synced 2024-12-25 20:32:16 +00:00
18193e5322
This adds cogl_matrix api for multiplying matrices either by a perspective or ortho projective transform. The internal matrix stack and current-matrix APIs also have corresponding support added. New public API: cogl_matrix_perspective cogl_matrix_ortho cogl_ortho cogl_set_modelview_matrix cogl_set_projection_matrix
280 lines
7.8 KiB
C
280 lines
7.8 KiB
C
/*
|
|
* Cogl
|
|
*
|
|
* An object oriented GL/GLES Abstraction/Utility Layer
|
|
*
|
|
* Copyright (C) 2008,2009 Intel Corporation.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the
|
|
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
* Boston, MA 02111-1307, USA.
|
|
*
|
|
* Authors:
|
|
* Robert Bragg <robert@linux.intel.com>
|
|
*/
|
|
|
|
#include <cogl-matrix.h>
|
|
|
|
#include <glib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
void
|
|
cogl_matrix_init_identity (CoglMatrix *matrix)
|
|
{
|
|
matrix->xx = 1; matrix->xy = 0; matrix->xz = 0; matrix->xw = 0;
|
|
matrix->yx = 0; matrix->yy = 1; matrix->yz = 0; matrix->yw = 0;
|
|
matrix->zx = 0; matrix->zy = 0; matrix->zz = 1; matrix->zw = 0;
|
|
matrix->wx = 0; matrix->wy = 0; matrix->wz = 0; matrix->ww = 1;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_multiply (CoglMatrix *result,
|
|
const CoglMatrix *a,
|
|
const CoglMatrix *b)
|
|
{
|
|
CoglMatrix r;
|
|
|
|
/* row 0 */
|
|
r.xx = a->xx * b->xx + a->xy * b->yx + a->xz * b->zx + a->xw * b->wx;
|
|
r.xy = a->xx * b->xy + a->xy * b->yy + a->xz * b->zy + a->xw * b->wy;
|
|
r.xz = a->xx * b->xz + a->xy * b->yz + a->xz * b->zz + a->xw * b->wz;
|
|
r.xw = a->xx * b->xw + a->xy * b->yw + a->xz * b->zw + a->xw * b->ww;
|
|
|
|
/* row 1 */
|
|
r.yx = a->yx * b->xx + a->yy * b->yx + a->yz * b->zx + a->yw * b->wx;
|
|
r.yy = a->yx * b->xy + a->yy * b->yy + a->yz * b->zy + a->yw * b->wy;
|
|
r.yz = a->yx * b->xz + a->yy * b->yz + a->yz * b->zz + a->yw * b->wz;
|
|
r.yw = a->yx * b->xw + a->yy * b->yw + a->yz * b->zw + a->yw * b->ww;
|
|
|
|
/* row 2 */
|
|
r.zx = a->zx * b->xx + a->zy * b->yx + a->zz * b->zx + a->zw * b->wx;
|
|
r.zy = a->zx * b->xy + a->zy * b->yy + a->zz * b->zy + a->zw * b->wy;
|
|
r.zz = a->zx * b->xz + a->zy * b->yz + a->zz * b->zz + a->zw * b->wz;
|
|
r.zw = a->zx * b->xw + a->zy * b->yw + a->zz * b->zw + a->zw * b->ww;
|
|
|
|
/* row 3 */
|
|
r.wx = a->wx * b->xx + a->wy * b->yx + a->wz * b->zx + a->ww * b->wx;
|
|
r.wy = a->wx * b->xy + a->wy * b->yy + a->wz * b->zy + a->ww * b->wy;
|
|
r.wz = a->wx * b->xz + a->wy * b->yz + a->wz * b->zz + a->ww * b->wz;
|
|
r.ww = a->wx * b->xw + a->wy * b->yw + a->wz * b->zw + a->ww * b->ww;
|
|
|
|
/* The idea was that having this unrolled; it might be easier for the
|
|
* compiler to vectorize, but that's probably not true. Mesa does it
|
|
* using a single for (i=0; i<4; i++) approach, may that's better...
|
|
*/
|
|
|
|
*result = r;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_rotate (CoglMatrix *matrix,
|
|
float angle,
|
|
float x,
|
|
float y,
|
|
float z)
|
|
{
|
|
CoglMatrix rotation;
|
|
CoglMatrix result;
|
|
angle *= G_PI / 180.0f;
|
|
float c = cosf (angle);
|
|
float s = sinf (angle);
|
|
|
|
rotation.xx = x * x * (1.0f - c) + c;
|
|
rotation.yx = y * x * (1.0f - c) + z * s;
|
|
rotation.zx = x * z * (1.0f - c) - y * s;
|
|
rotation.wx = 0.0f;
|
|
|
|
rotation.xy = x * y * (1.0f - c) - z * s;
|
|
rotation.yy = y * y * (1.0f - c) + c;
|
|
rotation.zy = y * z * (1.0f - c) + x * s;
|
|
rotation.wy = 0.0f;
|
|
|
|
rotation.xz = x * z * (1.0f - c) + y * s;
|
|
rotation.yz = y * z * (1.0f - c) - x * s;
|
|
rotation.zz = z * z * (1.0f - c) + c;
|
|
rotation.wz = 0.0f;
|
|
|
|
rotation.xw = 0.0f;
|
|
rotation.yw = 0.0f;
|
|
rotation.zw = 0.0f;
|
|
rotation.ww = 1.0f;
|
|
|
|
cogl_matrix_multiply (&result, matrix, &rotation);
|
|
*matrix = result;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_translate (CoglMatrix *matrix,
|
|
float x,
|
|
float y,
|
|
float z)
|
|
{
|
|
matrix->xw = matrix->xx * x + matrix->xy * y + matrix->xz * z + matrix->xw;
|
|
matrix->yw = matrix->yx * x + matrix->yy * y + matrix->yz * z + matrix->yw;
|
|
matrix->zw = matrix->zx * x + matrix->zy * y + matrix->zz * z + matrix->zw;
|
|
matrix->ww = matrix->wx * x + matrix->wy * y + matrix->wz * z + matrix->ww;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_scale (CoglMatrix *matrix,
|
|
float sx,
|
|
float sy,
|
|
float sz)
|
|
{
|
|
matrix->xx *= sx; matrix->xy *= sy; matrix->xz *= sz;
|
|
matrix->yx *= sx; matrix->yy *= sy; matrix->yz *= sz;
|
|
matrix->zx *= sx; matrix->zy *= sy; matrix->zz *= sz;
|
|
matrix->wx *= sx; matrix->wy *= sy; matrix->wz *= sz;
|
|
}
|
|
|
|
#if 0
|
|
gboolean
|
|
cogl_matrix_invert (CoglMatrix *matrix)
|
|
{
|
|
/* TODO */
|
|
/* Note: It might be nice to also use the flag based tricks that mesa does
|
|
* to alow it to track the type of transformations a matrix represents
|
|
* so it can use various assumptions to optimise the inversion.
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
void
|
|
cogl_matrix_frustum (CoglMatrix *matrix,
|
|
float left,
|
|
float right,
|
|
float bottom,
|
|
float top,
|
|
float z_near,
|
|
float z_far)
|
|
{
|
|
float x, y, a, b, c, d;
|
|
CoglMatrix frustum;
|
|
|
|
x = (2.0f * z_near) / (right - left);
|
|
y = (2.0f * z_near) / (top - bottom);
|
|
a = (right + left) / (right - left);
|
|
b = (top + bottom) / (top - bottom);
|
|
c = -(z_far + z_near) / ( z_far - z_near);
|
|
d = -(2.0f * z_far* z_near) / (z_far - z_near);
|
|
|
|
frustum.xx = x;
|
|
frustum.yx = 0.0f;
|
|
frustum.zx = 0.0f;
|
|
frustum.wx = 0.0f;
|
|
|
|
frustum.xy = 0.0f;
|
|
frustum.yy = y;
|
|
frustum.zy = 0.0f;
|
|
frustum.wy = 0.0f;
|
|
|
|
frustum.xz = a;
|
|
frustum.yz = b;
|
|
frustum.zz = c;
|
|
frustum.wz = -1.0f;
|
|
|
|
frustum.xw = 0.0f;
|
|
frustum.yw = 0.0f;
|
|
frustum.zw = d;
|
|
frustum.ww = 0.0f;
|
|
|
|
cogl_matrix_multiply (matrix, matrix, &frustum);
|
|
}
|
|
|
|
void
|
|
cogl_matrix_perspective (CoglMatrix *matrix,
|
|
float fov_y,
|
|
float aspect,
|
|
float z_near,
|
|
float z_far)
|
|
{
|
|
float ymax = z_near * tan (fov_y * G_PI / 360.0);
|
|
|
|
cogl_matrix_frustum (matrix,
|
|
-ymax * aspect, /* left */
|
|
ymax * aspect, /* right */
|
|
-ymax, /* bottom */
|
|
ymax, /* top */
|
|
z_near,
|
|
z_far);
|
|
}
|
|
|
|
void
|
|
cogl_matrix_ortho (CoglMatrix *matrix,
|
|
float left,
|
|
float right,
|
|
float bottom,
|
|
float top,
|
|
float near,
|
|
float far)
|
|
{
|
|
CoglMatrix ortho;
|
|
|
|
/* column 0 */
|
|
ortho.xx = 2.0 / (right - left);
|
|
ortho.yx = 0.0;
|
|
ortho.zx = 0.0;
|
|
ortho.wx = 0.0;
|
|
|
|
/* column 1 */
|
|
ortho.xy = 0.0;
|
|
ortho.yy = 2.0 / (top - bottom);
|
|
ortho.zy = 0.0;
|
|
ortho.wy = 0.0;
|
|
|
|
/* column 2 */
|
|
ortho.xz = 0.0;
|
|
ortho.yz = 0.0;
|
|
ortho.zz = -2.0 / (far - near);
|
|
ortho.wz = 0.0;
|
|
|
|
/* column 3 */
|
|
ortho.xw = -(right + left) / (right - left);
|
|
ortho.yw = -(top + bottom) / (top - bottom);
|
|
ortho.zw = -(far + near) / (far - near);
|
|
ortho.ww = 1.0;
|
|
|
|
cogl_matrix_multiply (matrix, matrix, &ortho);
|
|
}
|
|
|
|
void
|
|
cogl_matrix_init_from_array (CoglMatrix *matrix, const float *array)
|
|
{
|
|
memcpy (matrix, array, sizeof (float) * 16);
|
|
}
|
|
|
|
const float *
|
|
cogl_matrix_get_array (const CoglMatrix *matrix)
|
|
{
|
|
return (float *)matrix;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_transform_point (const CoglMatrix *matrix,
|
|
float *x,
|
|
float *y,
|
|
float *z,
|
|
float *w)
|
|
{
|
|
float _x = *x, _y = *y, _z = *z, _w = *w;
|
|
|
|
*x = matrix->xx * _x + matrix->xy * _y + matrix->xz * _z + matrix->xw * _w;
|
|
*y = matrix->yx * _x + matrix->yy * _y + matrix->yz * _z + matrix->yw * _w;
|
|
*z = matrix->zx * _x + matrix->zy * _y + matrix->zz * _z + matrix->zw * _w;
|
|
*w = matrix->wx * _x + matrix->wy * _y + matrix->wz * _z + matrix->ww * _w;
|
|
}
|
|
|
|
|