mutter/clutter/cogl/common/cogl-primitives.c
Robert Bragg 845ff67301 [cogl] Improving Cogl journal to minimize driver overheads + GPU state changes
Previously the journal was always flushed at the end of
_cogl_rectangles_with_multitexture_coords, (i.e.  the end of any
cogl_rectangle* calls) but now we have broadened the potential for batching
geometry.  In ideal circumstances we will only flush once per scene.

In summary the journal works like this:

When you use any of the cogl_rectangle* APIs then nothing is emitted to the
GPU at this point, we just log one or more quads into the journal.  A
journal entry consists of the quad coordinates, an associated material
reference, and a modelview matrix.  Ideally the journal only gets flushed
once at the end of a scene, but in fact there are things to consider that
may cause unwanted flushing, including:

- modifying materials mid-scene
    This is because each quad in the journal has an associated material
    reference (i.e. not copy), so if you try and modify a material that is
    already referenced in the journal we force a flush first)

    NOTE: For now this means you should avoid using cogl_set_source_color()
	      since that currently uses a single shared material. Later we
	  should change it to use a pool of materials that is recycled
	  when the journal is flushed.

- modifying any state that isn't currently logged, such as depth, fog and
  backface culling enables.

The first thing that happens when flushing, is to upload all the vertex data
associated with the journal into a single VBO.

We then go through a process of splitting up the journal into batches that
have compatible state so they can be emitted to the GPU together.  This is
currently broken up into 3 levels so we can stagger the state changes:

1) we break the journal up according to changes in the number of material layers
   associated with logged quads. The number of layers in a material determines
   the stride of the associated vertices, so we have to update our vertex
   array offsets at this level. (i.e. calling gl{Vertex,Color},Pointer etc)
2) we further split batches up according to material compatability. (e.g.
   materials with different textures) We flush material state at this level.
3) Finally we split batches up according to modelview changes. At this level
   we update the modelview matrix and actually emit the actual draw command.

This commit is largely about putting the initial design in-place; this will be
followed by other changes that take advantage of the extended batching.
2009-06-30 17:13:34 +01:00

2179 lines
64 KiB
C

/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "cogl.h"
#include "cogl-internal.h"
#include "cogl-context.h"
#include "cogl-texture-private.h"
#include "cogl-material-private.h"
#include "cogl-vertex-buffer-private.h"
#include <string.h>
#include <gmodule.h>
#include <math.h>
#define _COGL_MAX_BEZ_RECURSE_DEPTH 16
#ifdef HAVE_COGL_GL
#define glGenBuffers ctx->pf_glGenBuffersARB
#define glBindBuffer ctx->pf_glBindBufferARB
#define glBufferData ctx->pf_glBufferDataARB
#define glBufferSubData ctx->pf_glBufferSubDataARB
#define glDeleteBuffers ctx->pf_glDeleteBuffersARB
#define glClientActiveTexture ctx->pf_glClientActiveTexture
#elif defined (HAVE_COGL_GLES2)
#include "../gles/cogl-gles2-wrapper.h"
#endif
/* XXX NB:
* Our journal's vertex data is arranged as follows:
* 4 vertices per quad:
* 2 or GLfloats per position
* 4 RGBA GLubytes,
* 2 GLfloats per tex coord * n_layers
*
* So for a given number of layers this gets the stride in
* 32bit words:
*/
#define GET_JOURNAL_VB_STRIDE_FOR_N_LAYERS(N_LAYERS) \
(2 + 1 + 2 * (N_LAYERS))
typedef void (*CoglJournalBatchCallback) (CoglJournalEntry *start,
int n_entries,
void *data);
typedef gboolean (*CoglJournalBatchTest) (CoglJournalEntry *entry0,
CoglJournalEntry *entry1);
typedef struct _CoglJournalFlushState
{
/* Note: this is a pointer to handle fallbacks. It normally holds a VBO
* offset, but when the driver doesn't support VBOs then this points into
* our GArray of logged vertices. */
char * vbo_offset;
GLuint vertex_offset;
#ifndef HAVE_COGL_GL
CoglJournalIndices *indices;
size_t indices_type_size;
#endif
} CoglJournalFlushState;
/* these are defined in the particular backend */
void _cogl_path_add_node (gboolean new_sub_path,
float x,
float y);
void _cogl_path_fill_nodes ();
void _cogl_path_stroke_nodes ();
void
_cogl_journal_dump_quad_vertices (guint8 *data, int n_layers)
{
size_t stride = GET_JOURNAL_VB_STRIDE_FOR_N_LAYERS (n_layers);
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
g_print ("stride = %d (%d bytes)\n", (int)stride, (int)stride * 4);
for (i = 0; i < 4; i++)
{
float *v = (float *)data + (i * stride);
guint8 *c = data + 8 + (i * stride * 4);
int j;
g_print ("v%d: x = %f, y = %f, rgba=0x%02X%02X%02X%02X",
i, v[0], v[1], c[0], c[1], c[2], c[3]);
for (j = 0; j < n_layers; j++)
{
float *t = v + 3 + 2 * j;
g_print (", tx%d = %f, ty%d = %f", j, t[0], j, t[1]);
}
g_print ("\n");
}
}
void
_cogl_journal_dump_quad_batch (guint8 *data, int n_layers, int n_quads)
{
size_t byte_stride = GET_JOURNAL_VB_STRIDE_FOR_N_LAYERS (n_layers) * 4;
int i;
g_print ("_cogl_journal_dump_quad_batch: n_layers = %d, n_quads = %d\n",
n_layers, n_quads);
for (i = 0; i < n_quads; i++)
_cogl_journal_dump_quad_vertices (data + byte_stride * 4 * i, n_layers);
}
static void
batch_and_call (CoglJournalEntry *entries,
int n_entries,
CoglJournalBatchTest can_batch_callback,
CoglJournalBatchCallback batch_callback,
void *data)
{
int i;
int batch_len = 1;
CoglJournalEntry *batch_start = entries;
for (i = 1; i < n_entries; i++)
{
CoglJournalEntry *entry0 = &entries[i - 1];
CoglJournalEntry *entry1 = entry0 + 1;
if (can_batch_callback (entry0, entry1))
{
batch_len++;
continue;
}
batch_callback (batch_start, batch_len, data);
batch_start = entry1;
batch_len = 1;
}
/* The last batch... */
batch_callback (batch_start, batch_len, data);
}
static void
_cogl_journal_flush_modelview_and_entries (CoglJournalEntry *batch_start,
int batch_len,
void *data)
{
CoglJournalFlushState *state = data;
GE (glLoadMatrixf ((GLfloat *)&batch_start->model_view));
#ifdef HAVE_COGL_GL
GE (glDrawArrays (GL_QUADS, state->vertex_offset, batch_len * 4));
#else /* HAVE_COGL_GL */
if (batch_len > 1)
{
int indices_offset = (state->vertex_offset / 4) * 6;
GE (glDrawElements (GL_TRIANGLES,
6 * batch_len,
indices->type,
indices_offset * state->indices_type_size));
}
else
{
GE (glDrawArrays (GL_TRIANGLE_FAN,
state->vertex_offset, /* first */
4)); /* n vertices */
}
#endif
/* DEBUGGING CODE XXX:
* This path will cause all rectangles to be drawn with a red, green
* or blue outline with no blending. This may e.g. help with debugging
* texture slicing issues or blending issues, plus it looks quite cool.
*/
if (cogl_debug_flags & COGL_DEBUG_RECTANGLES)
{
static CoglHandle outline = COGL_INVALID_HANDLE;
static int color = 0;
int i;
if (outline == COGL_INVALID_HANDLE)
outline = cogl_material_new ();
cogl_enable (COGL_ENABLE_VERTEX_ARRAY);
for (i = 0; i < batch_len; i++, color = (color + 1) % 3)
{
cogl_material_set_color4ub (outline,
color == 0 ? 0xff : 0x00,
color == 1 ? 0xff : 0x00,
color == 2 ? 0xff : 0x00,
0xff);
_cogl_material_flush_gl_state (outline, NULL);
GE( glDrawArrays (GL_LINE_LOOP, 4 * i, 4) );
}
}
state->vertex_offset += (4 * batch_len);
}
static gboolean
compare_entry_modelviews (CoglJournalEntry *entry0,
CoglJournalEntry *entry1)
{
/* Batch together quads with the same model view matrix */
/* FIXME: this is nasty, there are much nicer ways to track this
* (at the add_quad_vertices level) without resorting to a memcmp!
*
* E.g. If the cogl-current-matrix code maintained an "age" for
* the modelview matrix we could simply check in add_quad_vertices
* if the age has increased, and if so record the change as a
* boolean in the journal.
*/
if (memcmp (&entry0->model_view, &entry1->model_view,
sizeof (GLfloat) * 16) == 0)
return TRUE;
else
return FALSE;
}
/* At this point we have a run of quads that we know have compatible
* materials, but they may not all have the same modelview matrix */
static void
_cogl_journal_flush_material_and_entries (CoglJournalEntry *batch_start,
gint batch_len,
void *data)
{
gulong enable_flags = 0;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
#if 0
if (batch_len != 1)
g_debug ("batch len = %d", batch_len);
#endif
_cogl_material_flush_gl_state (batch_start->material,
&batch_start->flush_options);
/* FIXME: This api is a bit yukky, ideally it will be removed if we
* re-work the cogl_enable mechanism */
enable_flags |= _cogl_material_get_cogl_enable_flags (batch_start->material);
if (ctx->enable_backface_culling)
enable_flags |= COGL_ENABLE_BACKFACE_CULLING;
enable_flags |= COGL_ENABLE_VERTEX_ARRAY;
enable_flags |= COGL_ENABLE_COLOR_ARRAY;
cogl_enable (enable_flags);
batch_and_call (batch_start,
batch_len,
compare_entry_modelviews,
_cogl_journal_flush_modelview_and_entries,
data);
}
static gboolean
compare_entry_materials (CoglJournalEntry *entry0, CoglJournalEntry *entry1)
{
/* batch rectangles using compatible materials */
/* XXX: _cogl_material_equal may give false negatives since it avoids
* deep comparisons as an optimization. It aims to compare enough so
* that we that we are able to batch the 90% common cases, but may not
* look at less common differences. */
if (_cogl_material_equal (entry0->material,
&entry0->flush_options,
entry1->material,
&entry1->flush_options,
COGL_MATERIAL_EQUAL_FLAGS_ASSERT_ALL_DEFAULTS))
return TRUE;
else
return FALSE;
}
/* At this point we know the stride has changed from the previous batch
* of journal entries */
static void
_cogl_journal_flush_vbo_offsets_and_entries (CoglJournalEntry *batch_start,
gint batch_len,
void *data)
{
CoglJournalFlushState *state = data;
size_t stride;
int i;
int prev_n_texcoord_arrays_enabled;
#ifndef HAVE_COGL_GL
int needed_indices = batch_len * 6;
CoglHandle indices_handle;
CoglVertexBufferIndices *indices;
#endif
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* XXX NB:
* Our vertex data is arranged as follows:
* 4 vertices per quad: 2 GLfloats per position,
* 4 RGBA GLubytes,
* 2 GLfloats per tex coord * n_layers
*/
stride = GET_JOURNAL_VB_STRIDE_FOR_N_LAYERS (batch_start->n_layers);
stride *= sizeof (GLfloat);
GE (glVertexPointer (2, GL_FLOAT, stride, (void *)state->vbo_offset));
GE (glColorPointer (4, GL_UNSIGNED_BYTE, stride,
(void *)(state->vbo_offset + 8)));
for (i = 0; i < batch_start->n_layers; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glEnableClientState (GL_TEXTURE_COORD_ARRAY));
GE (glTexCoordPointer (2, GL_FLOAT, stride,
(void *)(state->vbo_offset + 12 + 8 * i)));
}
prev_n_texcoord_arrays_enabled =
ctx->n_texcoord_arrays_enabled;
ctx->n_texcoord_arrays_enabled = batch_start->n_layers;
for (; i < prev_n_texcoord_arrays_enabled; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glDisableClientState (GL_TEXTURE_COORD_ARRAY));
}
#ifndef HAVE_COGL_GL
indices_handle = cogl_vertex_buffer_indices_get_for_quads (needed_indices);
indices = _cogl_vertex_buffer_indices_pointer_from_handle (indices_handle);
state->indices = indices;
if (indices->type == GL_UNSIGNED_BYTE)
state->indices_type_size = 1;
else if (indices->type == GL_UNSIGNED_SHORT)
state->indices_type_size = 2;
else
g_critical ("unknown indices type %d", indices->type);
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER,
GPOINTER_TO_UINT (indices->vbo_name)));
#endif
/* We only call gl{Vertex,Color,Texture}Pointer when the stride within
* the VBO changes. (due to a change in the number of material layers)
* While the stride remains constant we walk forward through the above
* VBO use a vertex offset passed to glDraw{Arrays,Elements} */
state->vertex_offset = 0;
/* XXX: Uncomment for debugging */
#if 0
g_assert (cogl_get_features () & COGL_FEATURE_VBOS);
_cogl_journal_dump_quad_batch (((guint8 *)ctx->logged_vertices->data) +
(size_t)state->vbo_offset,
batch_start->n_layers,
batch_len);
#endif
batch_and_call (batch_start,
batch_len,
compare_entry_materials,
_cogl_journal_flush_material_and_entries,
data);
#ifndef HAVE_COGL_GL
GE (glBindBuffer (GL_ELEMENT_ARRAY_BUFFER, 0));
#endif
/* progress forward through the VBO containing all our vertices */
state->vbo_offset += (stride * 4 * batch_len);
}
static gboolean
compare_entry_strides (CoglJournalEntry *entry0, CoglJournalEntry *entry1)
{
/* Currently the only thing that affects the stride for our vertex arrays
* is the number of material layers. We need to update our VBO offsets
* whenever the stride changes. */
/* TODO: We should be padding the n_layers == 1 case as if it were
* n_layers == 2 so we can reduce the need to split batches. */
if (entry0->n_layers == entry1->n_layers)
return TRUE;
else
return FALSE;
}
static void
upload_vertices_to_vbo (GArray *vertices, CoglJournalFlushState *state)
{
size_t needed_vbo_len;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
needed_vbo_len = vertices->len * sizeof (GLfloat);
if (ctx->journal_vbo_len < needed_vbo_len)
{
GE (glDeleteBuffers (1, &ctx->journal_vbo));
GE (glGenBuffers (1, &ctx->journal_vbo));
GE (glBindBuffer (GL_ARRAY_BUFFER, ctx->journal_vbo));
GE (glBufferData (GL_ARRAY_BUFFER,
needed_vbo_len,
vertices->data,
GL_STATIC_DRAW));
ctx->journal_vbo_len = needed_vbo_len;
}
else
{
GE (glBindBuffer (GL_ARRAY_BUFFER, ctx->journal_vbo));
GE (glBufferData (GL_ARRAY_BUFFER,
needed_vbo_len,
NULL,
GL_STATIC_DRAW));
GE (glBufferSubData (GL_ARRAY_BUFFER,
0,
needed_vbo_len,
vertices->data));
}
/* As we flush the journal entries in batches we walk forward through the
* above VBO starting at offset 0... */
state->vbo_offset = 0;
}
/* XXX NB: When _cogl_journal_flush() returns all state relating
* to materials, all glEnable flags and current matrix state
* is undefined.
*/
void
_cogl_journal_flush (void)
{
CoglJournalFlushState state;
int i;
gboolean vbo_fallback =
(cogl_get_features () & COGL_FEATURE_VBOS) ? FALSE : TRUE;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->journal->len == 0)
return;
/* Load all the vertex data we have accumulated so far into a single VBO
* to minimize memory management costs within the GL driver. */
if (!vbo_fallback)
upload_vertices_to_vbo (ctx->logged_vertices, &state);
else
state.vbo_offset = (char *)ctx->logged_vertices->data;
/* Since the journal deals with emitting the modelview matrices manually
* we need to dirty our client side matrix stack cache... */
_cogl_current_matrix_state_dirty ();
/* batch_and_call() batches a list of journal entries according to some
* given criteria and calls a callback once for each determined batch.
*
* The process of flushing the journal is done by splitting the entries
* by three broad criteria:
* 1) We split the entries according the number of material layers.
* Each time the number of material layers changes, then the stride
* changes, so we need to call gl{Vertex,Color,Texture}Pointer to
* inform GL of new VO offsets.
* 2) We then split according to compatible Cogl materials.
* This is where we flush material state
* 3) Finally we split according to modelview matrix changes.
* This is when we finally tell GL to draw something.
*/
batch_and_call ((CoglJournalEntry *)ctx->journal->data, /* first entry */
ctx->journal->len, /* max number of entries to consider */
compare_entry_strides,
_cogl_journal_flush_vbo_offsets_and_entries, /* callback */
&state); /* data */
for (i = 0; i < ctx->journal->len; i++)
{
CoglJournalEntry *entry =
&g_array_index (ctx->journal, CoglJournalEntry, i);
_cogl_material_journal_unref (entry->material);
}
if (!vbo_fallback)
GE (glBindBuffer (GL_ARRAY_BUFFER, 0));
g_array_set_size (ctx->journal, 0);
g_array_set_size (ctx->logged_vertices, 0);
}
static void
_cogl_journal_log_quad (float x_1,
float y_1,
float x_2,
float y_2,
CoglHandle material,
int n_layers,
guint32 fallback_layers,
GLuint layer0_override_texture,
float *tex_coords,
guint tex_coords_len)
{
size_t stride;
size_t byte_stride;
int next_vert;
GLfloat *v;
GLubyte *c;
int i;
int next_entry;
guint32 disable_layers;
CoglJournalEntry *entry;
CoglColor color;
guint8 r, g, b, a;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* The vertex data is logged into a seperate array in a layout that can be
* directly passed to OpenGL
*/
/* XXX: See definition of GET_JOURNAL_VB_STRIDE_FOR_N_LAYERS for details
* about how we pack our vertex data */
stride = GET_JOURNAL_VB_STRIDE_FOR_N_LAYERS (n_layers);
/* NB: stride is in 32bit words */
byte_stride = stride * 4;
next_vert = ctx->logged_vertices->len;
g_array_set_size (ctx->logged_vertices, next_vert + 4 * stride);
v = &g_array_index (ctx->logged_vertices, GLfloat, next_vert);
c = (GLubyte *)(v + 2);
/* XXX: All the jumping around to fill in this strided buffer doesn't
* seem ideal. */
/* XXX: we could defer expanding the vertex data for GL until we come
* to flushing the journal. */
cogl_material_get_color (material, &color);
r = cogl_color_get_red_byte (&color);
g = cogl_color_get_green_byte (&color);
b = cogl_color_get_blue_byte (&color);
a = cogl_color_get_alpha_byte (&color);
v[0] = x_1; v[1] = y_1;
c[0] = r; c[1] = g; c[2] = b; c[3] = a;
v += stride;
c += byte_stride;
v[0] = x_1; v[1] = y_2;
c[0] = r; c[1] = g; c[2] = b; c[3] = a;
v += stride;
c += byte_stride;
v[0] = x_2; v[1] = y_2;
c[0] = r; c[1] = g; c[2] = b; c[3] = a;
v += stride;
c += byte_stride;
v[0] = x_2; v[1] = y_1;
c[0] = r; c[1] = g; c[2] = b; c[3] = a;
for (i = 0; i < n_layers; i++)
{
/* NB: See note at top about vertex buffer layout: */
GLfloat *t = &g_array_index (ctx->logged_vertices,
GLfloat, next_vert + 3 + 2 * i);
t[0] = tex_coords[0]; t[1] = tex_coords[1];
t += stride;
t[0] = tex_coords[0]; t[1] = tex_coords[3];
t += stride;
t[0] = tex_coords[2]; t[1] = tex_coords[3];
t += stride;
t[0] = tex_coords[2]; t[1] = tex_coords[1];
}
/* XXX: Uncomment for debugging */
#if 0
v = &g_array_index (ctx->logged_vertices, GLfloat, next_vert);
_cogl_journal_dump_quad_vertices ((guint8 *)v, n_layers);
#endif
next_entry = ctx->journal->len;
g_array_set_size (ctx->journal, next_entry + 1);
entry = &g_array_index (ctx->journal, CoglJournalEntry, next_entry);
disable_layers = (1 << n_layers) - 1;
disable_layers = ~disable_layers;
entry->material = _cogl_material_journal_ref (material);
entry->n_layers = n_layers;
entry->flush_options.flags =
COGL_MATERIAL_FLUSH_FALLBACK_MASK |
COGL_MATERIAL_FLUSH_DISABLE_MASK |
COGL_MATERIAL_FLUSH_LAYER0_OVERRIDE |
COGL_MATERIAL_FLUSH_SKIP_GL_COLOR;
entry->flush_options.fallback_layers = fallback_layers;
entry->flush_options.disable_layers = disable_layers;
entry->flush_options.layer0_override_texture = layer0_override_texture;
cogl_get_modelview_matrix (&entry->model_view);
if (cogl_debug_flags & COGL_DEBUG_DISABLE_BATCHING
|| cogl_debug_flags & COGL_DEBUG_RECTANGLES)
_cogl_journal_flush ();
}
static void
_cogl_texture_sliced_quad (CoglTexture *tex,
CoglHandle material,
float x_1,
float y_1,
float x_2,
float y_2,
float tx_1,
float ty_1,
float tx_2,
float ty_2)
{
CoglSpanIter iter_x , iter_y;
float tw , th;
float tqx , tqy;
float first_tx , first_ty;
float first_qx , first_qy;
float slice_tx1 , slice_ty1;
float slice_tx2 , slice_ty2;
float slice_qx1 , slice_qy1;
float slice_qx2 , slice_qy2;
GLuint gl_handle;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
COGL_NOTE (DRAW, "Drawing Tex Quad (Sliced Mode)");
/* We can't use hardware repeat so we need to set clamp to edge
otherwise it might pull in edge pixels from the other side */
_cogl_texture_set_wrap_mode_parameter (tex, GL_CLAMP_TO_EDGE);
/* If the texture coordinates are backwards then swap both the
geometry and texture coordinates so that the texture will be
flipped but we can still use the same algorithm to iterate the
slices */
if (tx_2 < tx_1)
{
float temp = x_1;
x_1 = x_2;
x_2 = temp;
temp = tx_1;
tx_1 = tx_2;
tx_2 = temp;
}
if (ty_2 < ty_1)
{
float temp = y_1;
y_1 = y_2;
y_2 = temp;
temp = ty_1;
ty_1 = ty_2;
ty_2 = temp;
}
/* Scale ratio from texture to quad widths */
tw = (float)(tex->bitmap.width);
th = (float)(tex->bitmap.height);
tqx = (x_2 - x_1) / (tw * (tx_2 - tx_1));
tqy = (y_2 - y_1) / (th * (ty_2 - ty_1));
/* Integral texture coordinate for first tile */
first_tx = (float)(floorf (tx_1));
first_ty = (float)(floorf (ty_1));
/* Denormalize texture coordinates */
first_tx = (first_tx * tw);
first_ty = (first_ty * th);
tx_1 = (tx_1 * tw);
ty_1 = (ty_1 * th);
tx_2 = (tx_2 * tw);
ty_2 = (ty_2 * th);
/* Quad coordinate of the first tile */
first_qx = x_1 - (tx_1 - first_tx) * tqx;
first_qy = y_1 - (ty_1 - first_ty) * tqy;
/* Iterate until whole quad height covered */
for (_cogl_span_iter_begin (&iter_y, tex->slice_y_spans,
first_ty, ty_1, ty_2) ;
!_cogl_span_iter_end (&iter_y) ;
_cogl_span_iter_next (&iter_y) )
{
float tex_coords[4];
/* Discard slices out of quad early */
if (!iter_y.intersects) continue;
/* Span-quad intersection in quad coordinates */
slice_qy1 = first_qy + (iter_y.intersect_start - first_ty) * tqy;
slice_qy2 = first_qy + (iter_y.intersect_end - first_ty) * tqy;
/* Localize slice texture coordinates */
slice_ty1 = iter_y.intersect_start - iter_y.pos;
slice_ty2 = iter_y.intersect_end - iter_y.pos;
/* Normalize texture coordinates to current slice
(rectangle texture targets take denormalized) */
#if HAVE_COGL_GL
if (tex->gl_target != CGL_TEXTURE_RECTANGLE_ARB)
#endif
{
slice_ty1 /= iter_y.span->size;
slice_ty2 /= iter_y.span->size;
}
/* Iterate until whole quad width covered */
for (_cogl_span_iter_begin (&iter_x, tex->slice_x_spans,
first_tx, tx_1, tx_2) ;
!_cogl_span_iter_end (&iter_x) ;
_cogl_span_iter_next (&iter_x) )
{
/* Discard slices out of quad early */
if (!iter_x.intersects) continue;
/* Span-quad intersection in quad coordinates */
slice_qx1 = first_qx + (iter_x.intersect_start - first_tx) * tqx;
slice_qx2 = first_qx + (iter_x.intersect_end - first_tx) * tqx;
/* Localize slice texture coordinates */
slice_tx1 = iter_x.intersect_start - iter_x.pos;
slice_tx2 = iter_x.intersect_end - iter_x.pos;
/* Normalize texture coordinates to current slice
(rectangle texture targets take denormalized) */
#if HAVE_COGL_GL
if (tex->gl_target != CGL_TEXTURE_RECTANGLE_ARB)
#endif
{
slice_tx1 /= iter_x.span->size;
slice_tx2 /= iter_x.span->size;
}
COGL_NOTE (DRAW,
"~~~~~ slice (%d, %d)\n"
"qx1: %f\t"
"qy1: %f\n"
"qx2: %f\t"
"qy2: %f\n"
"tx1: %f\t"
"ty1: %f\n"
"tx2: %f\t"
"ty2: %f\n",
iter_x.index, iter_y.index,
slice_qx1, slice_qy1,
slice_qx2, slice_qy2,
slice_tx1, slice_ty1,
slice_tx2, slice_ty2);
/* Pick and bind opengl texture object */
gl_handle = g_array_index (tex->slice_gl_handles, GLuint,
iter_y.index * iter_x.array->len +
iter_x.index);
tex_coords[0] = slice_tx1;
tex_coords[1] = slice_ty1;
tex_coords[2] = slice_tx2;
tex_coords[3] = slice_ty2;
_cogl_journal_log_quad (slice_qx1,
slice_qy1,
slice_qx2,
slice_qy2,
material,
1, /* one layer */
0, /* don't need to use fallbacks */
gl_handle, /* replace the layer0 texture */
tex_coords,
4);
}
}
}
static gboolean
_cogl_multitexture_unsliced_quad (float x_1,
float y_1,
float x_2,
float y_2,
CoglHandle material,
guint32 fallback_layers,
const float *user_tex_coords,
gint user_tex_coords_len)
{
int n_layers = cogl_material_get_n_layers (material);
float *final_tex_coords = alloca (sizeof (float) * 4 * n_layers);
const GList *layers;
GList *tmp;
int i;
_COGL_GET_CONTEXT (ctx, FALSE);
/*
* Validate the texture coordinates for this rectangle.
*/
layers = cogl_material_get_layers (material);
for (tmp = (GList *)layers, i = 0; tmp != NULL; tmp = tmp->next, i++)
{
CoglHandle layer = (CoglHandle)tmp->data;
/* CoglLayerInfo *layer_info; */
CoglHandle tex_handle;
CoglTexture *tex;
const float *in_tex_coords;
float *out_tex_coords;
CoglTexSliceSpan *x_span;
CoglTexSliceSpan *y_span;
/* layer_info = &layers[i]; */
/* FIXME - we shouldn't be checking this stuff if layer_info->gl_texture
* already == 0 */
tex_handle = cogl_material_layer_get_texture (layer);
tex = _cogl_texture_pointer_from_handle (tex_handle);
in_tex_coords = &user_tex_coords[i * 4];
out_tex_coords = &final_tex_coords[i * 4];
/* If the texture has waste or we are using GL_TEXTURE_RECT we
* can't handle texture repeating so we check that the texture
* coords lie in the range [0,1].
*
* NB: We already know that no texture matrix is being used
* if the texture has waste since we validated that early on.
* TODO: check for a texture matrix in the GL_TEXTURE_RECT
* case.
*/
if ((
#if HAVE_COGL_GL
tex->gl_target == GL_TEXTURE_RECTANGLE_ARB ||
#endif
_cogl_texture_span_has_waste (tex, 0, 0))
&& i < user_tex_coords_len / 4
&& (in_tex_coords[0] < 0 || in_tex_coords[0] > 1.0
|| in_tex_coords[1] < 0 || in_tex_coords[1] > 1.0
|| in_tex_coords[2] < 0 || in_tex_coords[2] > 1.0
|| in_tex_coords[3] < 0 || in_tex_coords[3] > 1.0))
{
if (i == 0)
{
if (n_layers > 1)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layers 1..n of your material since "
"the first layer has waste and you supplied "
"texture coordinates outside the range [0,1]. "
"We don't currently support any "
"multi-texturing using textures with waste "
"when repeating is necissary so we are "
"falling back to sliced textures assuming "
"layer 0 is the most important one keep");
warning_seen = TRUE;
}
return FALSE;
}
else
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layer %d of your material "
"consisting of a texture with waste since "
"you have supplied texture coords outside "
"the range [0,1] (unsupported when "
"multi-texturing)", i);
warning_seen = TRUE;
/* NB: marking for fallback will replace the layer with
* a default transparent texture */
fallback_layers |= (1 << i);
}
}
/*
* Setup the texture unit...
*/
/* NB: The user might not have supplied texture coordinates for all
* layers... */
if (i < (user_tex_coords_len / 4))
{
GLenum wrap_mode;
/* If the texture coords are all in the range [0,1] then we want to
clamp the coords to the edge otherwise it can pull in edge pixels
from the wrong side when scaled */
if (in_tex_coords[0] >= 0 && in_tex_coords[0] <= 1.0
&& in_tex_coords[1] >= 0 && in_tex_coords[1] <= 1.0
&& in_tex_coords[2] >= 0 && in_tex_coords[2] <= 1.0
&& in_tex_coords[3] >= 0 && in_tex_coords[3] <= 1.0)
wrap_mode = GL_CLAMP_TO_EDGE;
else
wrap_mode = GL_REPEAT;
memcpy (out_tex_coords, in_tex_coords, sizeof (GLfloat) * 4);
_cogl_texture_set_wrap_mode_parameter (tex, wrap_mode);
}
else
{
out_tex_coords[0] = 0; /* tx_1 */
out_tex_coords[1] = 0; /* ty_1 */
out_tex_coords[2] = 1.0; /* tx_2 */
out_tex_coords[3] = 1.0; /* ty_2 */
_cogl_texture_set_wrap_mode_parameter (tex, GL_CLAMP_TO_EDGE);
}
/* Don't include the waste in the texture coordinates */
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, 0);
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, 0);
out_tex_coords[0] =
out_tex_coords[0] * (x_span->size - x_span->waste) / x_span->size;
out_tex_coords[1] =
out_tex_coords[1] * (y_span->size - y_span->waste) / y_span->size;
out_tex_coords[2] =
out_tex_coords[2] * (x_span->size - x_span->waste) / x_span->size;
out_tex_coords[3] =
out_tex_coords[3] * (y_span->size - y_span->waste) / y_span->size;
#if HAVE_COGL_GL
/* Denormalize texture coordinates for rectangle textures */
if (tex->gl_target == GL_TEXTURE_RECTANGLE_ARB)
{
out_tex_coords[0] *= x_span->size;
out_tex_coords[1] *= y_span->size;
out_tex_coords[2] *= x_span->size;
out_tex_coords[3] *= y_span->size;
}
#endif
}
_cogl_journal_log_quad (x_1,
y_1,
x_2,
y_2,
material,
n_layers,
fallback_layers,
0, /* don't replace the layer0 texture */
final_tex_coords,
n_layers * 4);
return TRUE;
}
struct _CoglMutiTexturedRect
{
float x_1;
float y_1;
float x_2;
float y_2;
const float *tex_coords;
gint tex_coords_len;
};
static void
_cogl_rectangles_with_multitexture_coords (
struct _CoglMutiTexturedRect *rects,
gint n_rects)
{
CoglHandle material;
const GList *layers;
int n_layers;
const GList *tmp;
guint32 fallback_layers = 0;
gboolean all_use_sliced_quad_fallback = FALSE;
int i;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_clip_ensure ();
material = ctx->source_material;
layers = cogl_material_get_layers (material);
n_layers = cogl_material_get_n_layers (material);
/*
* Validate all the layers of the current source material...
*/
for (tmp = layers, i = 0; tmp != NULL; tmp = tmp->next, i++)
{
CoglHandle layer = tmp->data;
CoglHandle tex_handle = cogl_material_layer_get_texture (layer);
CoglTexture *texture = _cogl_texture_pointer_from_handle (tex_handle);
gulong flags;
if (cogl_material_layer_get_type (layer)
!= COGL_MATERIAL_LAYER_TYPE_TEXTURE)
continue;
/* XXX:
* For now, if the first layer is sliced then all other layers are
* ignored since we currently don't support multi-texturing with
* sliced textures. If the first layer is not sliced then any other
* layers found to be sliced will be skipped. (with a warning)
*
* TODO: Add support for multi-texturing rectangles with sliced
* textures if no texture matrices are in use.
*/
if (cogl_texture_is_sliced (tex_handle))
{
if (i == 0)
{
fallback_layers = ~1; /* fallback all except the first layer */
all_use_sliced_quad_fallback = TRUE;
if (tmp->next)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layers 1..n of your material since "
"the first layer is sliced. We don't currently "
"support any multi-texturing with sliced "
"textures but assume layer 0 is the most "
"important to keep");
warning_seen = TRUE;
}
break;
}
else
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layer %d of your material consisting of "
"a sliced texture (unsuported for multi texturing)",
i);
warning_seen = TRUE;
/* NB: marking for fallback will replace the layer with
* a default transparent texture */
fallback_layers |= (1 << i);
continue;
}
}
/* We don't support multi texturing using textures with any waste if the
* user has supplied a custom texture matrix, since we don't know if
* the result will end up trying to texture from the waste area. */
flags = _cogl_material_layer_get_flags (layer);
if (flags & COGL_MATERIAL_LAYER_FLAG_HAS_USER_MATRIX
&& _cogl_texture_span_has_waste (texture, 0, 0))
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Skipping layer %d of your material consisting of a "
"texture with waste since you have supplied a custom "
"texture matrix and the result may try to sample from "
"the waste area of your texture.", i);
warning_seen = TRUE;
/* NB: marking for fallback will replace the layer with
* a default transparent texture */
fallback_layers |= (1 << i);
continue;
}
}
/*
* Emit geometry for each of the rectangles...
*/
for (i = 0; i < n_rects; i++)
{
if (all_use_sliced_quad_fallback
|| !_cogl_multitexture_unsliced_quad (rects[i].x_1, rects[i].y_1,
rects[i].x_2, rects[i].y_2,
material,
fallback_layers,
rects[i].tex_coords,
rects[i].tex_coords_len))
{
CoglHandle first_layer, tex_handle;
CoglTexture *texture;
first_layer = layers->data;
tex_handle = cogl_material_layer_get_texture (first_layer);
texture = _cogl_texture_pointer_from_handle (tex_handle);
if (rects[i].tex_coords)
_cogl_texture_sliced_quad (texture,
material,
rects[i].x_1, rects[i].y_1,
rects[i].x_2, rects[i].y_2,
rects[i].tex_coords[0],
rects[i].tex_coords[1],
rects[i].tex_coords[2],
rects[i].tex_coords[3]);
else
_cogl_texture_sliced_quad (texture,
material,
rects[i].x_1, rects[i].y_1,
rects[i].x_2, rects[i].y_2,
0.0f, 0.0f, 1.0f, 1.0f);
}
}
#if 0
/* XXX: The current journal doesn't handle changes to the model view matrix
* so for now we force a flush at the end of every primitive. */
_cogl_journal_flush ();
#endif
}
void
cogl_rectangles (const float *verts,
guint n_rects)
{
struct _CoglMutiTexturedRect rects[n_rects];
int i;
for (i = 0; i < n_rects; i++)
{
rects[i].x_1 = verts[i * 4];
rects[i].y_1 = verts[i * 4 + 1];
rects[i].x_2 = verts[i * 4 + 2];
rects[i].y_2 = verts[i * 4 + 3];
rects[i].tex_coords = NULL;
rects[i].tex_coords_len = 0;
}
_cogl_rectangles_with_multitexture_coords (rects, n_rects);
}
void
cogl_rectangles_with_texture_coords (const float *verts,
guint n_rects)
{
struct _CoglMutiTexturedRect rects[n_rects];
int i;
for (i = 0; i < n_rects; i++)
{
rects[i].x_1 = verts[i * 8];
rects[i].y_1 = verts[i * 8 + 1];
rects[i].x_2 = verts[i * 8 + 2];
rects[i].y_2 = verts[i * 8 + 3];
/* FIXME: rect should be defined to have a const float *geom;
* instead, to avoid this copy
* rect[i].geom = &verts[n_rects * 8]; */
rects[i].tex_coords = &verts[i * 8 + 4];
rects[i].tex_coords_len = 4;
}
_cogl_rectangles_with_multitexture_coords (rects, n_rects);
}
void
cogl_rectangle_with_texture_coords (float x_1,
float y_1,
float x_2,
float y_2,
float tx_1,
float ty_1,
float tx_2,
float ty_2)
{
float verts[8];
verts[0] = x_1;
verts[1] = y_1;
verts[2] = x_2;
verts[3] = y_2;
verts[4] = tx_1;
verts[5] = ty_1;
verts[6] = tx_2;
verts[7] = ty_2;
cogl_rectangles_with_texture_coords (verts, 1);
}
void
cogl_rectangle_with_multitexture_coords (float x_1,
float y_1,
float x_2,
float y_2,
const float *user_tex_coords,
gint user_tex_coords_len)
{
struct _CoglMutiTexturedRect rect;
rect.x_1 = x_1;
rect.y_1 = y_1;
rect.x_2 = x_2;
rect.y_2 = y_2;
rect.tex_coords = user_tex_coords;
rect.tex_coords_len = user_tex_coords_len;
_cogl_rectangles_with_multitexture_coords (&rect, 1);
}
void
cogl_rectangle (float x_1,
float y_1,
float x_2,
float y_2)
{
cogl_rectangle_with_multitexture_coords (x_1, y_1,
x_2, y_2,
NULL, 0);
}
static void
_cogl_texture_sliced_polygon (CoglTextureVertex *vertices,
guint n_vertices,
guint stride,
gboolean use_color)
{
const GList *layers;
CoglHandle layer0;
CoglHandle tex_handle;
CoglTexture *tex;
CoglTexSliceSpan *y_span, *x_span;
int x, y, tex_num, i;
GLuint gl_handle;
GLfloat *v;
CoglMaterialFlushOptions options;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* We can assume in this case that we have at least one layer in the
* material that corresponds to a sliced cogl texture */
layers = cogl_material_get_layers (ctx->source_material);
layer0 = (CoglHandle)layers->data;
tex_handle = cogl_material_layer_get_texture (layer0);
tex = _cogl_texture_pointer_from_handle (tex_handle);
v = (GLfloat *)ctx->logged_vertices->data;
for (i = 0; i < n_vertices; i++)
{
guint8 *c;
v[0] = vertices[i].x;
v[1] = vertices[i].y;
v[2] = vertices[i].z;
if (use_color)
{
/* NB: [X,Y,Z,TX,TY,R,G,B,A,...] */
c = (guint8 *) (v + 5);
c[0] = cogl_color_get_red_byte (&vertices[i].color);
c[1] = cogl_color_get_green_byte (&vertices[i].color);
c[2] = cogl_color_get_blue_byte (&vertices[i].color);
c[3] = cogl_color_get_alpha_byte (&vertices[i].color);
}
v += stride;
}
/* Render all of the slices with the full geometry but use a
transparent border color so that any part of the texture not
covered by the slice will be ignored */
tex_num = 0;
for (y = 0; y < tex->slice_y_spans->len; y++)
{
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, y);
for (x = 0; x < tex->slice_x_spans->len; x++)
{
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, x);
gl_handle = g_array_index (tex->slice_gl_handles, GLuint, tex_num++);
/* Convert the vertices into an array of GLfloats ready to pass to
OpenGL */
v = (GLfloat *)ctx->logged_vertices->data;
for (i = 0; i < n_vertices; i++)
{
GLfloat *t;
float tx, ty;
tx = ((vertices[i].tx
- ((float)(x_span->start)
/ tex->bitmap.width))
* tex->bitmap.width / x_span->size);
ty = ((vertices[i].ty
- ((float)(y_span->start)
/ tex->bitmap.height))
* tex->bitmap.height / y_span->size);
#if HAVE_COGL_GL
/* Scale the coordinates up for rectangle textures */
if (tex->gl_target == CGL_TEXTURE_RECTANGLE_ARB)
{
tx *= x_span->size;
ty *= y_span->size;
}
#endif
/* NB: [X,Y,Z,TX,TY,R,G,B,A,...] */
t = v + 3;
t[0] = tx;
t[1] = ty;
v += stride;
}
options.flags =
COGL_MATERIAL_FLUSH_DISABLE_MASK |
COGL_MATERIAL_FLUSH_LAYER0_OVERRIDE;
/* disable all except the first layer */
options.disable_layers = (guint32)~1;
options.layer0_override_texture = gl_handle;
_cogl_material_flush_gl_state (ctx->source_material, &options);
_cogl_current_matrix_state_flush ();
GE( glDrawArrays (GL_TRIANGLE_FAN, 0, n_vertices) );
}
}
}
static void
_cogl_multitexture_unsliced_polygon (CoglTextureVertex *vertices,
guint n_vertices,
guint n_layers,
guint stride,
gboolean use_color,
guint32 fallback_layers)
{
CoglHandle material;
const GList *layers;
int i;
GList *tmp;
CoglTexSliceSpan *y_span, *x_span;
GLfloat *v;
CoglMaterialFlushOptions options;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
material = ctx->source_material;
layers = cogl_material_get_layers (material);
/* Convert the vertices into an array of GLfloats ready to pass to
OpenGL */
for (v = (GLfloat *)ctx->logged_vertices->data, i = 0;
i < n_vertices;
v += stride, i++)
{
guint8 *c;
int j;
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
v[0] = vertices[i].x;
v[1] = vertices[i].y;
v[2] = vertices[i].z;
for (tmp = (GList *)layers, j = 0; tmp != NULL; tmp = tmp->next, j++)
{
CoglHandle layer = (CoglHandle)tmp->data;
CoglHandle tex_handle;
CoglTexture *tex;
GLfloat *t;
float tx, ty;
tex_handle = cogl_material_layer_get_texture (layer);
tex = _cogl_texture_pointer_from_handle (tex_handle);
y_span = &g_array_index (tex->slice_y_spans, CoglTexSliceSpan, 0);
x_span = &g_array_index (tex->slice_x_spans, CoglTexSliceSpan, 0);
tx = ((vertices[i].tx
- ((float)(x_span->start)
/ tex->bitmap.width))
* tex->bitmap.width / x_span->size);
ty = ((vertices[i].ty
- ((float)(y_span->start)
/ tex->bitmap.height))
* tex->bitmap.height / y_span->size);
#if HAVE_COGL_GL
/* Scale the coordinates up for rectangle textures */
if (tex->gl_target == CGL_TEXTURE_RECTANGLE_ARB)
{
tx *= x_span->size;
ty *= y_span->size;
}
#endif
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
t = v + 3 + 2 * j;
t[0] = tx;
t[1] = ty;
}
if (use_color)
{
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
c = (guint8 *) (v + 3 + 2 * n_layers);
c[0] = cogl_color_get_red_byte (&vertices[i].color);
c[1] = cogl_color_get_green_byte (&vertices[i].color);
c[2] = cogl_color_get_blue_byte (&vertices[i].color);
c[3] = cogl_color_get_alpha_byte (&vertices[i].color);
}
}
options.flags = COGL_MATERIAL_FLUSH_FALLBACK_MASK;
if (use_color)
options.flags |= COGL_MATERIAL_FLUSH_SKIP_GL_COLOR;
options.fallback_layers = fallback_layers;
_cogl_material_flush_gl_state (ctx->source_material, &options);
_cogl_current_matrix_state_flush ();
GE (glDrawArrays (GL_TRIANGLE_FAN, 0, n_vertices));
}
void
cogl_polygon (CoglTextureVertex *vertices,
guint n_vertices,
gboolean use_color)
{
CoglHandle material;
const GList *layers;
int n_layers;
GList *tmp;
gboolean use_sliced_polygon_fallback = FALSE;
guint32 fallback_layers = 0;
int i;
gulong enable_flags;
guint stride;
gsize stride_bytes;
GLfloat *v;
int prev_n_texcoord_arrays_enabled;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
_cogl_journal_flush ();
cogl_clip_ensure ();
material = ctx->source_material;
layers = cogl_material_get_layers (ctx->source_material);
n_layers = g_list_length ((GList *)layers);
for (tmp = (GList *)layers, i = 0; tmp != NULL; tmp = tmp->next, i++)
{
CoglHandle layer = (CoglHandle)tmp->data;
CoglHandle tex_handle = cogl_material_layer_get_texture (layer);
if (i == 0 && cogl_texture_is_sliced (tex_handle))
{
#if defined (HAVE_COGL_GLES) || defined (HAVE_COGL_GLES2)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("cogl_polygon does not work for sliced textures "
"on GL ES");
warning_seen = TRUE;
return;
}
#endif
if (n_layers > 1)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
{
g_warning ("Disabling layers 1..n since multi-texturing with "
"cogl_polygon isn't supported when using sliced "
"textures\n");
warning_seen = TRUE;
}
}
use_sliced_polygon_fallback = TRUE;
n_layers = 1;
if (cogl_material_layer_get_min_filter (layer) != GL_NEAREST
|| cogl_material_layer_get_mag_filter (layer) != GL_NEAREST)
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
{
g_warning ("cogl_texture_polygon does not work for sliced textures "
"when the minification and magnification filters are not "
"CGL_NEAREST");
warning_seen = TRUE;
}
return;
}
#ifdef HAVE_COGL_GL
{
CoglTexture *tex = _cogl_texture_pointer_from_handle (tex_handle);
/* Temporarily change the wrapping mode on all of the slices to use
* a transparent border
* XXX: it's doesn't look like we save/restore this, like
* the comment implies? */
_cogl_texture_set_wrap_mode_parameter (tex, GL_CLAMP_TO_BORDER);
}
#endif
break;
}
if (cogl_texture_is_sliced (tex_handle))
{
static gboolean warning_seen = FALSE;
if (!warning_seen)
g_warning ("Disabling layer %d of the current source material, "
"because texturing with the vertex buffer API is not "
"currently supported using sliced textures, or "
"textures with waste\n", i);
warning_seen = TRUE;
fallback_layers |= (1 << i);
continue;
}
}
/* Our data is arranged like:
* [X, Y, Z, TX0, TY0, TX1, TY1..., R, G, B, A,...] */
stride = 3 + (2 * n_layers) + (use_color ? 1 : 0);
stride_bytes = stride * sizeof (GLfloat);
/* Make sure there is enough space in the global vertex
array. This is used so we can render the polygon with a single
call to OpenGL but still support any number of vertices */
g_array_set_size (ctx->logged_vertices, n_vertices * stride);
v = (GLfloat *)ctx->logged_vertices->data;
/* Prepare GL state */
enable_flags = COGL_ENABLE_VERTEX_ARRAY;
enable_flags |= _cogl_material_get_cogl_enable_flags (ctx->source_material);
if (ctx->enable_backface_culling)
enable_flags |= COGL_ENABLE_BACKFACE_CULLING;
if (use_color)
{
enable_flags |= COGL_ENABLE_COLOR_ARRAY;
GE( glColorPointer (4, GL_UNSIGNED_BYTE,
stride_bytes,
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
v + 3 + 2 * n_layers) );
}
cogl_enable (enable_flags);
GE (glVertexPointer (3, GL_FLOAT, stride_bytes, v));
for (i = 0; i < n_layers; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glEnableClientState (GL_TEXTURE_COORD_ARRAY));
GE (glTexCoordPointer (2, GL_FLOAT,
stride_bytes,
/* NB: [X,Y,Z,TX,TY...,R,G,B,A,...] */
v + 3 + 2 * i));
}
prev_n_texcoord_arrays_enabled =
ctx->n_texcoord_arrays_enabled;
ctx->n_texcoord_arrays_enabled = n_layers;
for (; i < prev_n_texcoord_arrays_enabled; i++)
{
GE (glClientActiveTexture (GL_TEXTURE0 + i));
GE (glDisableClientState (GL_TEXTURE_COORD_ARRAY));
}
if (use_sliced_polygon_fallback)
_cogl_texture_sliced_polygon (vertices,
n_vertices,
stride,
use_color);
else
_cogl_multitexture_unsliced_polygon (vertices,
n_vertices,
n_layers,
stride,
use_color,
fallback_layers);
/* Reset the size of the logged vertex array because rendering
rectangles expects it to start at 0 */
g_array_set_size (ctx->logged_vertices, 0);
}
void
cogl_path_fill (void)
{
cogl_path_fill_preserve ();
cogl_path_new ();
}
void
cogl_path_fill_preserve (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
_cogl_journal_flush ();
cogl_clip_ensure ();
if (ctx->path_nodes->len == 0)
return;
_cogl_path_fill_nodes ();
}
void
cogl_path_stroke (void)
{
cogl_path_stroke_preserve ();
cogl_path_new ();
}
void
cogl_path_stroke_preserve (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
if (ctx->path_nodes->len == 0)
return;
_cogl_journal_flush ();
cogl_clip_ensure ();
_cogl_path_stroke_nodes();
}
void
cogl_path_move_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* FIXME: handle multiple contours maybe? */
_cogl_path_add_node (TRUE, x, y);
ctx->path_start.x = x;
ctx->path_start.y = y;
ctx->path_pen = ctx->path_start;
}
void
cogl_path_rel_move_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_move_to (ctx->path_pen.x + x,
ctx->path_pen.y + y);
}
void
cogl_path_line_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
_cogl_path_add_node (FALSE, x, y);
ctx->path_pen.x = x;
ctx->path_pen.y = y;
}
void
cogl_path_rel_line_to (float x,
float y)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_line_to (ctx->path_pen.x + x,
ctx->path_pen.y + y);
}
void
cogl_path_close (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
_cogl_path_add_node (FALSE, ctx->path_start.x, ctx->path_start.y);
ctx->path_pen = ctx->path_start;
}
void
cogl_path_new (void)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
g_array_set_size (ctx->path_nodes, 0);
}
void
cogl_path_line (float x_1,
float y_1,
float x_2,
float y_2)
{
cogl_path_move_to (x_1, y_1);
cogl_path_line_to (x_2, y_2);
}
void
cogl_path_polyline (float *coords,
gint num_points)
{
gint c = 0;
cogl_path_move_to (coords[0], coords[1]);
for (c = 1; c < num_points; ++c)
cogl_path_line_to (coords[2*c], coords[2*c+1]);
}
void
cogl_path_polygon (float *coords,
gint num_points)
{
cogl_path_polyline (coords, num_points);
cogl_path_close ();
}
void
cogl_path_rectangle (float x_1,
float y_1,
float x_2,
float y_2)
{
cogl_path_move_to (x_1, y_1);
cogl_path_line_to (x_2, y_1);
cogl_path_line_to (x_2, y_2);
cogl_path_line_to (x_1, y_2);
cogl_path_close ();
}
static void
_cogl_path_arc (float center_x,
float center_y,
float radius_x,
float radius_y,
float angle_1,
float angle_2,
float angle_step,
guint move_first)
{
float a = 0x0;
float cosa = 0x0;
float sina = 0x0;
float px = 0x0;
float py = 0x0;
/* Fix invalid angles */
if (angle_1 == angle_2 || angle_step == 0x0)
return;
if (angle_step < 0x0)
angle_step = -angle_step;
/* Walk the arc by given step */
a = angle_1;
while (a != angle_2)
{
cosa = cosf (a * (G_PI/180.0));
sina = sinf (a * (G_PI/180.0));
px = center_x + (cosa * radius_x);
py = center_y + (sina * radius_y);
if (a == angle_1 && move_first)
cogl_path_move_to (px, py);
else
cogl_path_line_to (px, py);
if (G_LIKELY (angle_2 > angle_1))
{
a += angle_step;
if (a > angle_2)
a = angle_2;
}
else
{
a -= angle_step;
if (a < angle_2)
a = angle_2;
}
}
/* Make sure the final point is drawn */
cosa = cosf (angle_2 * (G_PI/180.0));
sina = sinf (angle_2 * (G_PI/180.0));
px = center_x + (cosa * radius_x);
py = center_y + (sina * radius_y);
cogl_path_line_to (px, py);
}
void
cogl_path_arc (float center_x,
float center_y,
float radius_x,
float radius_y,
float angle_1,
float angle_2)
{
float angle_step = 10;
/* it is documented that a move to is needed to create a freestanding
* arc
*/
_cogl_path_arc (center_x, center_y,
radius_x, radius_y,
angle_1, angle_2,
angle_step, 0 /* no move */);
}
void
cogl_path_arc_rel (float center_x,
float center_y,
float radius_x,
float radius_y,
float angle_1,
float angle_2,
float angle_step)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
_cogl_path_arc (ctx->path_pen.x + center_x,
ctx->path_pen.y + center_y,
radius_x, radius_y,
angle_1, angle_2,
angle_step, 0 /* no move */);
}
void
cogl_path_ellipse (float center_x,
float center_y,
float radius_x,
float radius_y)
{
float angle_step = 10;
/* FIXME: if shows to be slow might be optimized
* by mirroring just a quarter of it */
_cogl_path_arc (center_x, center_y,
radius_x, radius_y,
0, 360,
angle_step, 1 /* move first */);
cogl_path_close();
}
void
cogl_path_round_rectangle (float x_1,
float y_1,
float x_2,
float y_2,
float radius,
float arc_step)
{
float inner_width = x_2 - x_1 - radius * 2;
float inner_height = y_2 - y_1 - radius * 2;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_move_to (x_1, y_1 + radius);
cogl_path_arc_rel (radius, 0,
radius, radius,
180,
270,
arc_step);
cogl_path_line_to (ctx->path_pen.x + inner_width,
ctx->path_pen.y);
cogl_path_arc_rel (0, radius,
radius, radius,
-90,
0,
arc_step);
cogl_path_line_to (ctx->path_pen.x,
ctx->path_pen.y + inner_height);
cogl_path_arc_rel (-radius, 0,
radius, radius,
0,
90,
arc_step);
cogl_path_line_to (ctx->path_pen.x - inner_width,
ctx->path_pen.y);
cogl_path_arc_rel (0, -radius,
radius, radius,
90,
180,
arc_step);
cogl_path_close ();
}
static void
_cogl_path_bezier3_sub (CoglBezCubic *cubic)
{
CoglBezCubic cubics[_COGL_MAX_BEZ_RECURSE_DEPTH];
CoglBezCubic *cleft;
CoglBezCubic *cright;
CoglBezCubic *c;
floatVec2 dif1;
floatVec2 dif2;
floatVec2 mm;
floatVec2 c1;
floatVec2 c2;
floatVec2 c3;
floatVec2 c4;
floatVec2 c5;
gint cindex;
/* Put first curve on stack */
cubics[0] = *cubic;
cindex = 0;
while (cindex >= 0)
{
c = &cubics[cindex];
/* Calculate distance of control points from their
* counterparts on the line between end points */
dif1.x = (c->p2.x * 3) - (c->p1.x * 2) - c->p4.x;
dif1.y = (c->p2.y * 3) - (c->p1.y * 2) - c->p4.y;
dif2.x = (c->p3.x * 3) - (c->p4.x * 2) - c->p1.x;
dif2.y = (c->p3.y * 3) - (c->p4.y * 2) - c->p1.y;
if (dif1.x < 0)
dif1.x = -dif1.x;
if (dif1.y < 0)
dif1.y = -dif1.y;
if (dif2.x < 0)
dif2.x = -dif2.x;
if (dif2.y < 0)
dif2.y = -dif2.y;
/* Pick the greatest of two distances */
if (dif1.x < dif2.x) dif1.x = dif2.x;
if (dif1.y < dif2.y) dif1.y = dif2.y;
/* Cancel if the curve is flat enough */
if (dif1.x + dif1.y <= 1.0 ||
cindex == _COGL_MAX_BEZ_RECURSE_DEPTH-1)
{
/* Add subdivision point (skip last) */
if (cindex == 0)
return;
_cogl_path_add_node (FALSE, c->p4.x, c->p4.y);
--cindex;
continue;
}
/* Left recursion goes on top of stack! */
cright = c; cleft = &cubics[++cindex];
/* Subdivide into 2 sub-curves */
c1.x = ((c->p1.x + c->p2.x) / 2);
c1.y = ((c->p1.y + c->p2.y) / 2);
mm.x = ((c->p2.x + c->p3.x) / 2);
mm.y = ((c->p2.y + c->p3.y) / 2);
c5.x = ((c->p3.x + c->p4.x) / 2);
c5.y = ((c->p3.y + c->p4.y) / 2);
c2.x = ((c1.x + mm.x) / 2);
c2.y = ((c1.y + mm.y) / 2);
c4.x = ((mm.x + c5.x) / 2);
c4.y = ((mm.y + c5.y) / 2);
c3.x = ((c2.x + c4.x) / 2);
c3.y = ((c2.y + c4.y) / 2);
/* Add left recursion to stack */
cleft->p1 = c->p1;
cleft->p2 = c1;
cleft->p3 = c2;
cleft->p4 = c3;
/* Add right recursion to stack */
cright->p1 = c3;
cright->p2 = c4;
cright->p3 = c5;
cright->p4 = c->p4;
}
}
void
cogl_path_curve_to (float x_1,
float y_1,
float x_2,
float y_2,
float x_3,
float y_3)
{
CoglBezCubic cubic;
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
/* Prepare cubic curve */
cubic.p1 = ctx->path_pen;
cubic.p2.x = x_1;
cubic.p2.y = y_1;
cubic.p3.x = x_2;
cubic.p3.y = y_2;
cubic.p4.x = x_3;
cubic.p4.y = y_3;
/* Run subdivision */
_cogl_path_bezier3_sub (&cubic);
/* Add last point */
_cogl_path_add_node (FALSE, cubic.p4.x, cubic.p4.y);
ctx->path_pen = cubic.p4;
}
void
cogl_path_rel_curve_to (float x_1,
float y_1,
float x_2,
float y_2,
float x_3,
float y_3)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_curve_to (ctx->path_pen.x + x_1,
ctx->path_pen.y + y_1,
ctx->path_pen.x + x_2,
ctx->path_pen.y + y_2,
ctx->path_pen.x + x_3,
ctx->path_pen.y + y_3);
}
/* If second order beziers were needed the following code could
* be re-enabled:
*/
#if 0
static void
_cogl_path_bezier2_sub (CoglBezQuad *quad)
{
CoglBezQuad quads[_COGL_MAX_BEZ_RECURSE_DEPTH];
CoglBezQuad *qleft;
CoglBezQuad *qright;
CoglBezQuad *q;
floatVec2 mid;
floatVec2 dif;
floatVec2 c1;
floatVec2 c2;
floatVec2 c3;
gint qindex;
/* Put first curve on stack */
quads[0] = *quad;
qindex = 0;
/* While stack is not empty */
while (qindex >= 0)
{
q = &quads[qindex];
/* Calculate distance of control point from its
* counterpart on the line between end points */
mid.x = ((q->p1.x + q->p3.x) / 2);
mid.y = ((q->p1.y + q->p3.y) / 2);
dif.x = (q->p2.x - mid.x);
dif.y = (q->p2.y - mid.y);
if (dif.x < 0) dif.x = -dif.x;
if (dif.y < 0) dif.y = -dif.y;
/* Cancel if the curve is flat enough */
if (dif.x + dif.y <= 1.0 ||
qindex == _COGL_MAX_BEZ_RECURSE_DEPTH - 1)
{
/* Add subdivision point (skip last) */
if (qindex == 0) return;
_cogl_path_add_node (FALSE, q->p3.x, q->p3.y);
--qindex; continue;
}
/* Left recursion goes on top of stack! */
qright = q; qleft = &quads[++qindex];
/* Subdivide into 2 sub-curves */
c1.x = ((q->p1.x + q->p2.x) / 2);
c1.y = ((q->p1.y + q->p2.y) / 2);
c3.x = ((q->p2.x + q->p3.x) / 2);
c3.y = ((q->p2.y + q->p3.y) / 2);
c2.x = ((c1.x + c3.x) / 2);
c2.y = ((c1.y + c3.y) / 2);
/* Add left recursion onto stack */
qleft->p1 = q->p1;
qleft->p2 = c1;
qleft->p3 = c2;
/* Add right recursion onto stack */
qright->p1 = c2;
qright->p2 = c3;
qright->p3 = q->p3;
}
}
void
cogl_path_curve2_to (float x_1,
float y_1,
float x_2,
float y_2)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
CoglBezQuad quad;
/* Prepare quadratic curve */
quad.p1 = ctx->path_pen;
quad.p2.x = x_1;
quad.p2.y = y_1;
quad.p3.x = x_2;
quad.p3.y = y_2;
/* Run subdivision */
_cogl_path_bezier2_sub (&quad);
/* Add last point */
_cogl_path_add_node (FALSE, quad.p3.x, quad.p3.y);
ctx->path_pen = quad.p3;
}
void
cogl_rel_curve2_to (float x_1,
float y_1,
float x_2,
float y_2)
{
_COGL_GET_CONTEXT (ctx, NO_RETVAL);
cogl_path_curve2_to (ctx->path_pen.x + x_1,
ctx->path_pen.y + y_1,
ctx->path_pen.x + x_2,
ctx->path_pen.y + y_2);
}
#endif