mirror of
https://github.com/brl/mutter.git
synced 2024-12-24 20:12:06 +00:00
7365c3aa77
This splits out the cogl_path_ api into a separate cogl-path sub-library like cogl-pango and cogl-gst. This enables developers to build Cogl with this sub-library disabled if they don't need it which can be useful when its important to keep the size of an application and its dependencies down to a minimum. The functions cogl_framebuffer_{fill,stroke}_path have been renamed to cogl_path_{fill,stroke}. There were a few places in core cogl and cogl-gst that referenced the CoglPath api and these have been decoupled by using the CoglPrimitive api instead. In the case of cogl_framebuffer_push_path_clip() the core clip stack no longer accepts path clips directly but it's now possible to get a CoglPrimitive for the fill of a path and so the implementation of cogl_framebuffer_push_path_clip() now lives in cogl-path and works as a shim that first gets a CoglPrimitive and uses cogl_framebuffer_push_primitive_clip instead. We may want to consider renaming cogl_framebuffer_push_path_clip to put it in the cogl_path_ namespace. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 8aadfd829239534fb4ec8255cdea813d698c5a3f) So as to avoid breaking the 1.x API or even the ABI since we are quite late in the 1.16 development cycle the patch was modified to build cogl-path as a noinst_LTLIBRARY before building cogl and link the code directly into libcogl.so as it was previously. This way we can wait until the start of the 1.18 cycle before splitting the code into a separate libcogl-path.so. This also adds shims for cogl_framebuffer_fill/stroke_path() to avoid breaking the 1.x API/ABI.
265 lines
8.7 KiB
C
265 lines
8.7 KiB
C
/*
|
|
* SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008)
|
|
* Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice including the dates of first publication and
|
|
* either this permission notice or a reference to
|
|
* http://oss.sgi.com/projects/FreeB/
|
|
* shall be included in all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
|
|
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
|
|
* OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
* Except as contained in this notice, the name of Silicon Graphics, Inc.
|
|
* shall not be used in advertising or otherwise to promote the sale, use or
|
|
* other dealings in this Software without prior written authorization from
|
|
* Silicon Graphics, Inc.
|
|
*/
|
|
/*
|
|
** Author: Eric Veach, July 1994.
|
|
**
|
|
*/
|
|
|
|
#include "gluos.h"
|
|
#include <assert.h>
|
|
#include "mesh.h"
|
|
#include "geom.h"
|
|
|
|
int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
|
|
{
|
|
/* Returns TRUE if u is lexicographically <= v. */
|
|
|
|
return VertLeq( u, v );
|
|
}
|
|
|
|
GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|
{
|
|
/* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
|
|
* evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
|
* Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
|
|
* If uw is vertical (and thus passes thru v), the result is zero.
|
|
*
|
|
* The calculation is extremely accurate and stable, even when v
|
|
* is very close to u or w. In particular if we set v->t = 0 and
|
|
* let r be the negated result (this evaluates (uw)(v->s)), then
|
|
* r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
|
|
*/
|
|
GLdouble gapL, gapR;
|
|
|
|
assert( VertLeq( u, v ) && VertLeq( v, w ));
|
|
|
|
gapL = v->s - u->s;
|
|
gapR = w->s - v->s;
|
|
|
|
if( gapL + gapR > 0 ) {
|
|
if( gapL < gapR ) {
|
|
return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
|
|
} else {
|
|
return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
|
|
}
|
|
}
|
|
/* vertical line */
|
|
return 0;
|
|
}
|
|
|
|
GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|
{
|
|
/* Returns a number whose sign matches EdgeEval(u,v,w) but which
|
|
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
|
* as v is above, on, or below the edge uw.
|
|
*/
|
|
GLdouble gapL, gapR;
|
|
|
|
assert( VertLeq( u, v ) && VertLeq( v, w ));
|
|
|
|
gapL = v->s - u->s;
|
|
gapR = w->s - v->s;
|
|
|
|
if( gapL + gapR > 0 ) {
|
|
return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
|
|
}
|
|
/* vertical line */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/***********************************************************************
|
|
* Define versions of EdgeSign, EdgeEval with s and t transposed.
|
|
*/
|
|
|
|
GLdouble __gl_transEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|
{
|
|
/* Given three vertices u,v,w such that TransLeq(u,v) && TransLeq(v,w),
|
|
* evaluates the t-coord of the edge uw at the s-coord of the vertex v.
|
|
* Returns v->s - (uw)(v->t), ie. the signed distance from uw to v.
|
|
* If uw is vertical (and thus passes thru v), the result is zero.
|
|
*
|
|
* The calculation is extremely accurate and stable, even when v
|
|
* is very close to u or w. In particular if we set v->s = 0 and
|
|
* let r be the negated result (this evaluates (uw)(v->t)), then
|
|
* r is guaranteed to satisfy MIN(u->s,w->s) <= r <= MAX(u->s,w->s).
|
|
*/
|
|
GLdouble gapL, gapR;
|
|
|
|
assert( TransLeq( u, v ) && TransLeq( v, w ));
|
|
|
|
gapL = v->t - u->t;
|
|
gapR = w->t - v->t;
|
|
|
|
if( gapL + gapR > 0 ) {
|
|
if( gapL < gapR ) {
|
|
return (v->s - u->s) + (u->s - w->s) * (gapL / (gapL + gapR));
|
|
} else {
|
|
return (v->s - w->s) + (w->s - u->s) * (gapR / (gapL + gapR));
|
|
}
|
|
}
|
|
/* vertical line */
|
|
return 0;
|
|
}
|
|
|
|
GLdouble __gl_transSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|
{
|
|
/* Returns a number whose sign matches TransEval(u,v,w) but which
|
|
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
|
|
* as v is above, on, or below the edge uw.
|
|
*/
|
|
GLdouble gapL, gapR;
|
|
|
|
assert( TransLeq( u, v ) && TransLeq( v, w ));
|
|
|
|
gapL = v->t - u->t;
|
|
gapR = w->t - v->t;
|
|
|
|
if( gapL + gapR > 0 ) {
|
|
return (v->s - w->s) * gapL + (v->s - u->s) * gapR;
|
|
}
|
|
/* vertical line */
|
|
return 0;
|
|
}
|
|
|
|
|
|
int __gl_vertCCW( GLUvertex *u, GLUvertex *v, GLUvertex *w )
|
|
{
|
|
/* For almost-degenerate situations, the results are not reliable.
|
|
* Unless the floating-point arithmetic can be performed without
|
|
* rounding errors, *any* implementation will give incorrect results
|
|
* on some degenerate inputs, so the client must have some way to
|
|
* handle this situation.
|
|
*/
|
|
return (u->s*(v->t - w->t) + v->s*(w->t - u->t) + w->s*(u->t - v->t)) >= 0;
|
|
}
|
|
|
|
/* Given parameters a,x,b,y returns the value (b*x+a*y)/(a+b),
|
|
* or (x+y)/2 if a==b==0. It requires that a,b >= 0, and enforces
|
|
* this in the rare case that one argument is slightly negative.
|
|
* The implementation is extremely stable numerically.
|
|
* In particular it guarantees that the result r satisfies
|
|
* MIN(x,y) <= r <= MAX(x,y), and the results are very accurate
|
|
* even when a and b differ greatly in magnitude.
|
|
*/
|
|
#define RealInterpolate(a,x,b,y) \
|
|
(a = (a < 0) ? 0 : a, b = (b < 0) ? 0 : b, \
|
|
((a <= b) ? ((b == 0) ? ((x+y) / 2) \
|
|
: (x + (y-x) * (a/(a+b)))) \
|
|
: (y + (x-y) * (b/(a+b)))))
|
|
|
|
#ifndef FOR_TRITE_TEST_PROGRAM
|
|
#define Interpolate(a,x,b,y) RealInterpolate(a,x,b,y)
|
|
#else
|
|
|
|
/* Claim: the ONLY property the sweep algorithm relies on is that
|
|
* MIN(x,y) <= r <= MAX(x,y). This is a nasty way to test that.
|
|
*/
|
|
#include <stdlib.h>
|
|
extern int RandomInterpolate;
|
|
|
|
GLdouble Interpolate( GLdouble a, GLdouble x, GLdouble b, GLdouble y)
|
|
{
|
|
printf("*********************%d\n",RandomInterpolate);
|
|
if( RandomInterpolate ) {
|
|
a = 1.2 * drand48() - 0.1;
|
|
a = (a < 0) ? 0 : ((a > 1) ? 1 : a);
|
|
b = 1.0 - a;
|
|
}
|
|
return RealInterpolate(a,x,b,y);
|
|
}
|
|
|
|
#endif
|
|
|
|
#define Swap(a,b) do { GLUvertex *t = a; a = b; b = t; } while (0)
|
|
|
|
void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
|
|
GLUvertex *o2, GLUvertex *d2,
|
|
GLUvertex *v )
|
|
/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
|
|
* The computed point is guaranteed to lie in the intersection of the
|
|
* bounding rectangles defined by each edge.
|
|
*/
|
|
{
|
|
GLdouble z1, z2;
|
|
|
|
/* This is certainly not the most efficient way to find the intersection
|
|
* of two line segments, but it is very numerically stable.
|
|
*
|
|
* Strategy: find the two middle vertices in the VertLeq ordering,
|
|
* and interpolate the intersection s-value from these. Then repeat
|
|
* using the TransLeq ordering to find the intersection t-value.
|
|
*/
|
|
|
|
if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
|
|
if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
|
|
if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
|
|
|
if( ! VertLeq( o2, d1 )) {
|
|
/* Technically, no intersection -- do our best */
|
|
v->s = (o2->s + d1->s) / 2;
|
|
} else if( VertLeq( d1, d2 )) {
|
|
/* Interpolate between o2 and d1 */
|
|
z1 = EdgeEval( o1, o2, d1 );
|
|
z2 = EdgeEval( o2, d1, d2 );
|
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|
v->s = Interpolate( z1, o2->s, z2, d1->s );
|
|
} else {
|
|
/* Interpolate between o2 and d2 */
|
|
z1 = EdgeSign( o1, o2, d1 );
|
|
z2 = -EdgeSign( o1, d2, d1 );
|
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|
v->s = Interpolate( z1, o2->s, z2, d2->s );
|
|
}
|
|
|
|
/* Now repeat the process for t */
|
|
|
|
if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
|
|
if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
|
|
if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
|
|
|
|
if( ! TransLeq( o2, d1 )) {
|
|
/* Technically, no intersection -- do our best */
|
|
v->t = (o2->t + d1->t) / 2;
|
|
} else if( TransLeq( d1, d2 )) {
|
|
/* Interpolate between o2 and d1 */
|
|
z1 = TransEval( o1, o2, d1 );
|
|
z2 = TransEval( o2, d1, d2 );
|
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|
v->t = Interpolate( z1, o2->t, z2, d1->t );
|
|
} else {
|
|
/* Interpolate between o2 and d2 */
|
|
z1 = TransSign( o1, o2, d1 );
|
|
z2 = -TransSign( o1, d2, d1 );
|
|
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
|
|
v->t = Interpolate( z1, o2->t, z2, d2->t );
|
|
}
|
|
}
|