mutter/clutter/clutter/clutter-frame-clock.c
2021-08-24 16:43:49 +08:00

844 lines
26 KiB
C

/*
* Copyright (C) 2019 Red Hat Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
#include "clutter-build-config.h"
#include "clutter/clutter-frame-clock.h"
#include "clutter/clutter-debug.h"
#include "clutter/clutter-main.h"
#include "clutter/clutter-private.h"
#include "clutter/clutter-timeline-private.h"
#include "cogl/cogl-trace.h"
enum
{
DESTROY,
N_SIGNALS
};
static guint signals[N_SIGNALS];
/* An estimate queue holds several int64_t values. Adding a new value to the
* queue overwrites the oldest value.
*/
#define ESTIMATE_QUEUE_LENGTH 16
typedef struct _EstimateQueue
{
int64_t values[ESTIMATE_QUEUE_LENGTH];
int next_index;
} EstimateQueue;
/* When heuristic render time is off,
* wait 2ms after vblank before starting to draw next frame.
*/
#define SYNC_DELAY_FALLBACK_US ms2us (2)
typedef struct _ClutterFrameListener
{
const ClutterFrameListenerIface *iface;
gpointer user_data;
} ClutterFrameListener;
typedef struct _ClutterClockSource
{
GSource source;
ClutterFrameClock *frame_clock;
} ClutterClockSource;
typedef enum _ClutterFrameClockState
{
CLUTTER_FRAME_CLOCK_STATE_INIT,
CLUTTER_FRAME_CLOCK_STATE_IDLE,
CLUTTER_FRAME_CLOCK_STATE_SCHEDULED,
CLUTTER_FRAME_CLOCK_STATE_DISPATCHING,
CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED,
} ClutterFrameClockState;
struct _ClutterFrameClock
{
GObject parent;
float refresh_rate;
int64_t refresh_interval_us;
ClutterFrameListener listener;
GSource *source;
int64_t frame_count;
ClutterFrameClockState state;
int64_t last_dispatch_time_us;
int64_t last_dispatch_lateness_us;
int64_t last_presentation_time_us;
gboolean is_next_presentation_time_valid;
int64_t next_presentation_time_us;
/* Buffer must be submitted to KMS and GPU rendering must be finished
* this amount of time before the next presentation time.
*/
int64_t vblank_duration_us;
/* Last KMS buffer submission time. */
int64_t last_flip_time_us;
/* Last few durations between dispatch start and buffer swap. */
EstimateQueue dispatch_to_swap_us;
/* Last few durations between buffer swap and GPU rendering finish. */
EstimateQueue swap_to_rendering_done_us;
/* Last few durations between buffer swap and KMS submission. */
EstimateQueue swap_to_flip_us;
/* If we got new measurements last frame. */
gboolean got_measurements_last_frame;
gboolean pending_reschedule;
gboolean pending_reschedule_now;
int inhibit_count;
GList *timelines;
};
G_DEFINE_TYPE (ClutterFrameClock, clutter_frame_clock,
G_TYPE_OBJECT)
static void
estimate_queue_add_value (EstimateQueue *queue,
int64_t value)
{
queue->values[queue->next_index] = value;
queue->next_index = (queue->next_index + 1) % ESTIMATE_QUEUE_LENGTH;
}
float
clutter_frame_clock_get_refresh_rate (ClutterFrameClock *frame_clock)
{
return frame_clock->refresh_rate;
}
static void
clutter_frame_clock_set_refresh_rate (ClutterFrameClock *frame_clock,
float refresh_rate)
{
frame_clock->refresh_rate = refresh_rate;
frame_clock->refresh_interval_us =
(int64_t) (0.5 + G_USEC_PER_SEC / refresh_rate);
}
void
clutter_frame_clock_add_timeline (ClutterFrameClock *frame_clock,
ClutterTimeline *timeline)
{
gboolean is_first;
if (g_list_find (frame_clock->timelines, timeline))
return;
is_first = !frame_clock->timelines;
frame_clock->timelines = g_list_prepend (frame_clock->timelines, timeline);
if (is_first)
clutter_frame_clock_schedule_update (frame_clock);
}
void
clutter_frame_clock_remove_timeline (ClutterFrameClock *frame_clock,
ClutterTimeline *timeline)
{
frame_clock->timelines = g_list_remove (frame_clock->timelines, timeline);
}
static void
advance_timelines (ClutterFrameClock *frame_clock,
int64_t time_us)
{
GList *timelines;
GList *l;
/* we protect ourselves from timelines being removed during
* the advancement by other timelines by copying the list of
* timelines, taking a reference on them, iterating over the
* copied list and then releasing the reference.
*
* we cannot simply take a reference on the timelines and still
* use the list held by the master clock because the do_tick()
* might result in the creation of a new timeline, which gets
* added at the end of the list with no reference increase and
* thus gets disposed at the end of the iteration.
*
* this implies that a newly added timeline will not be advanced
* by this clock iteration, which is perfectly fine since we're
* in its first cycle.
*
* we also cannot steal the frame clock timelines list because
* a timeline might be removed as the direct result of do_tick()
* and remove_timeline() would not find the timeline, failing
* and leaving a dangling pointer behind.
*/
timelines = g_list_copy (frame_clock->timelines);
g_list_foreach (timelines, (GFunc) g_object_ref, NULL);
for (l = timelines; l; l = l->next)
{
ClutterTimeline *timeline = l->data;
_clutter_timeline_do_tick (timeline, time_us / 1000);
}
g_list_free_full (timelines, g_object_unref);
}
static void
maybe_reschedule_update (ClutterFrameClock *frame_clock)
{
if (frame_clock->pending_reschedule ||
frame_clock->timelines)
{
frame_clock->pending_reschedule = FALSE;
if (frame_clock->pending_reschedule_now)
{
frame_clock->pending_reschedule_now = FALSE;
clutter_frame_clock_schedule_update_now (frame_clock);
}
else
{
clutter_frame_clock_schedule_update (frame_clock);
}
}
}
void
clutter_frame_clock_notify_presented (ClutterFrameClock *frame_clock,
ClutterFrameInfo *frame_info)
{
frame_clock->last_presentation_time_us = frame_info->presentation_time;
frame_clock->got_measurements_last_frame = FALSE;
if (frame_info->cpu_time_before_buffer_swap_us != 0 &&
frame_info->gpu_rendering_duration_ns != 0)
{
int64_t dispatch_to_swap_us, swap_to_rendering_done_us, swap_to_flip_us;
dispatch_to_swap_us =
frame_info->cpu_time_before_buffer_swap_us -
frame_clock->last_dispatch_time_us;
swap_to_rendering_done_us =
frame_info->gpu_rendering_duration_ns / 1000;
swap_to_flip_us =
frame_clock->last_flip_time_us -
frame_info->cpu_time_before_buffer_swap_us;
CLUTTER_NOTE (FRAME_TIMINGS,
"dispatch2swap %ld µs, swap2render %ld µs, swap2flip %ld µs",
dispatch_to_swap_us,
swap_to_rendering_done_us,
swap_to_flip_us);
estimate_queue_add_value (&frame_clock->dispatch_to_swap_us,
dispatch_to_swap_us);
estimate_queue_add_value (&frame_clock->swap_to_rendering_done_us,
swap_to_rendering_done_us);
estimate_queue_add_value (&frame_clock->swap_to_flip_us,
swap_to_flip_us);
frame_clock->got_measurements_last_frame = TRUE;
}
if (frame_info->refresh_rate > 1)
{
clutter_frame_clock_set_refresh_rate (frame_clock,
frame_info->refresh_rate);
}
switch (frame_clock->state)
{
case CLUTTER_FRAME_CLOCK_STATE_INIT:
case CLUTTER_FRAME_CLOCK_STATE_IDLE:
case CLUTTER_FRAME_CLOCK_STATE_SCHEDULED:
g_warn_if_reached ();
break;
case CLUTTER_FRAME_CLOCK_STATE_DISPATCHING:
case CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED:
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_IDLE;
maybe_reschedule_update (frame_clock);
break;
}
}
void
clutter_frame_clock_notify_ready (ClutterFrameClock *frame_clock)
{
switch (frame_clock->state)
{
case CLUTTER_FRAME_CLOCK_STATE_INIT:
case CLUTTER_FRAME_CLOCK_STATE_IDLE:
case CLUTTER_FRAME_CLOCK_STATE_SCHEDULED:
g_warn_if_reached ();
break;
case CLUTTER_FRAME_CLOCK_STATE_DISPATCHING:
case CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED:
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_IDLE;
maybe_reschedule_update (frame_clock);
break;
}
}
static int64_t
clutter_frame_clock_compute_max_render_time_us (ClutterFrameClock *frame_clock)
{
int64_t refresh_interval_us;
int64_t max_dispatch_to_swap_us = 0;
int64_t max_swap_to_rendering_done_us = 0;
int64_t max_swap_to_flip_us = 0;
int64_t max_render_time_us;
int i;
refresh_interval_us =
(int64_t) (0.5 + G_USEC_PER_SEC / frame_clock->refresh_rate);
if (!frame_clock->got_measurements_last_frame ||
G_UNLIKELY (clutter_paint_debug_flags &
CLUTTER_DEBUG_DISABLE_DYNAMIC_MAX_RENDER_TIME))
return refresh_interval_us - SYNC_DELAY_FALLBACK_US;
for (i = 0; i < ESTIMATE_QUEUE_LENGTH; ++i)
{
max_dispatch_to_swap_us =
MAX (max_dispatch_to_swap_us,
frame_clock->dispatch_to_swap_us.values[i]);
max_swap_to_rendering_done_us =
MAX (max_swap_to_rendering_done_us,
frame_clock->swap_to_rendering_done_us.values[i]);
max_swap_to_flip_us =
MAX (max_swap_to_flip_us,
frame_clock->swap_to_flip_us.values[i]);
}
/* Max render time shows how early the frame clock needs to be dispatched
* to make it to the predicted next presentation time. It is composed of:
* - An estimate of duration from dispatch start to buffer swap.
* - Maximum between estimates of duration from buffer swap to GPU rendering
* finish and duration from buffer swap to buffer submission to KMS. This
* is because both of these things need to happen before the vblank, and
* they are done in parallel.
* - Duration of the vblank.
* - A constant to account for variations in the above estimates.
*/
max_render_time_us =
max_dispatch_to_swap_us +
MAX (max_swap_to_rendering_done_us, max_swap_to_flip_us) +
frame_clock->vblank_duration_us +
clutter_max_render_time_constant_us;
max_render_time_us = CLAMP (max_render_time_us, 0, refresh_interval_us);
return max_render_time_us;
}
static void
calculate_next_update_time_us (ClutterFrameClock *frame_clock,
int64_t *out_next_update_time_us,
int64_t *out_next_presentation_time_us)
{
int64_t last_presentation_time_us;
int64_t now_us;
int64_t refresh_interval_us;
int64_t min_render_time_allowed_us;
int64_t max_render_time_allowed_us;
int64_t last_next_presentation_time_us;
int64_t time_since_last_next_presentation_time_us;
int64_t next_presentation_time_us;
int64_t next_update_time_us;
now_us = g_get_monotonic_time ();
refresh_interval_us = frame_clock->refresh_interval_us;
if (frame_clock->last_presentation_time_us == 0)
{
*out_next_update_time_us =
frame_clock->last_dispatch_time_us ?
((frame_clock->last_dispatch_time_us -
frame_clock->last_dispatch_lateness_us) + refresh_interval_us) :
now_us;
*out_next_presentation_time_us = 0;
return;
}
min_render_time_allowed_us = refresh_interval_us / 2;
max_render_time_allowed_us =
clutter_frame_clock_compute_max_render_time_us (frame_clock);
if (min_render_time_allowed_us > max_render_time_allowed_us)
min_render_time_allowed_us = max_render_time_allowed_us;
/*
* The common case is that the next presentation happens 1 refresh interval
* after the last presentation:
*
* last_presentation_time_us
* / next_presentation_time_us
* / /
* / /
* |--|--o----|-------|--> presentation times
* | | \ |
* | | now_us
* | \______/
* | refresh_interval_us
* |
* 0
*
*/
last_presentation_time_us = frame_clock->last_presentation_time_us;
next_presentation_time_us = last_presentation_time_us + refresh_interval_us;
/*
* However, the last presentation could have happened more than a frame ago.
* For example, due to idling (nothing on screen changed, so no need to
* redraw) or due to frames missing deadlines (GPU busy with heavy rendering).
* The following code adjusts next_presentation_time_us to be in the future,
* but still aligned to display presentation times. Instead of
* next presentation = last presentation + 1 * refresh interval, it will be
* next presentation = last presentation + N * refresh interval.
*/
if (next_presentation_time_us < now_us)
{
int64_t presentation_phase_us;
int64_t current_phase_us;
int64_t current_refresh_interval_start_us;
/*
* Let's say we're just past next_presentation_time_us.
*
* First, we compute presentation_phase_us. Real presentation times don't
* have to be exact multiples of refresh_interval_us and
* presentation_phase_us represents this difference. Next, we compute
* current phase and the refresh interval start corresponding to now_us.
* Finally, add presentation_phase_us and a refresh interval to get the
* next presentation after now_us.
*
* last_presentation_time_us
* / next_presentation_time_us
* / / now_us
* / / / new next_presentation_time_us
* |--|-------|---o---|-------|--> presentation times
* | __|
* | |presentation_phase_us
* | |
* | | now_us - presentation_phase_us
* | | /
* |-------|---o---|-------|-----> integer multiples of refresh_interval_us
* | \__/
* | |current_phase_us
* | \
* | current_refresh_interval_start_us
* 0
*
*/
presentation_phase_us = last_presentation_time_us % refresh_interval_us;
current_phase_us = (now_us - presentation_phase_us) % refresh_interval_us;
current_refresh_interval_start_us =
now_us - presentation_phase_us - current_phase_us;
next_presentation_time_us =
current_refresh_interval_start_us +
presentation_phase_us +
refresh_interval_us;
}
/*
* Skip one interval if we got an early presented event.
*
* last frame this was last_presentation_time
* / frame_clock->next_presentation_time_us
* / /
* |---|-o-----|-x----->
* | \
* \ next_presentation_time_us is thus right after the last one
* but got an unexpected early presentation
* \_/
* time_since_last_next_presentation_time_us
*
*/
last_next_presentation_time_us = frame_clock->next_presentation_time_us;
time_since_last_next_presentation_time_us =
next_presentation_time_us - last_next_presentation_time_us;
if (frame_clock->is_next_presentation_time_valid &&
time_since_last_next_presentation_time_us < (refresh_interval_us / 2))
{
next_presentation_time_us =
frame_clock->next_presentation_time_us + refresh_interval_us;
}
while (next_presentation_time_us < now_us + min_render_time_allowed_us)
next_presentation_time_us += refresh_interval_us;
next_update_time_us = next_presentation_time_us - max_render_time_allowed_us;
*out_next_update_time_us = next_update_time_us;
*out_next_presentation_time_us = next_presentation_time_us;
}
void
clutter_frame_clock_inhibit (ClutterFrameClock *frame_clock)
{
frame_clock->inhibit_count++;
if (frame_clock->inhibit_count == 1)
{
switch (frame_clock->state)
{
case CLUTTER_FRAME_CLOCK_STATE_INIT:
case CLUTTER_FRAME_CLOCK_STATE_IDLE:
break;
case CLUTTER_FRAME_CLOCK_STATE_SCHEDULED:
frame_clock->pending_reschedule = TRUE;
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_IDLE;
break;
case CLUTTER_FRAME_CLOCK_STATE_DISPATCHING:
case CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED:
break;
}
g_source_set_ready_time (frame_clock->source, -1);
}
}
void
clutter_frame_clock_uninhibit (ClutterFrameClock *frame_clock)
{
g_return_if_fail (frame_clock->inhibit_count > 0);
frame_clock->inhibit_count--;
if (frame_clock->inhibit_count == 0)
maybe_reschedule_update (frame_clock);
}
void
clutter_frame_clock_schedule_update_now (ClutterFrameClock *frame_clock)
{
int64_t next_update_time_us = -1;
if (frame_clock->inhibit_count > 0)
{
frame_clock->pending_reschedule = TRUE;
frame_clock->pending_reschedule_now = TRUE;
return;
}
switch (frame_clock->state)
{
case CLUTTER_FRAME_CLOCK_STATE_INIT:
case CLUTTER_FRAME_CLOCK_STATE_IDLE:
next_update_time_us = g_get_monotonic_time ();
break;
case CLUTTER_FRAME_CLOCK_STATE_SCHEDULED:
return;
case CLUTTER_FRAME_CLOCK_STATE_DISPATCHING:
case CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED:
frame_clock->pending_reschedule = TRUE;
frame_clock->pending_reschedule_now = TRUE;
return;
}
g_warn_if_fail (next_update_time_us != -1);
g_source_set_ready_time (frame_clock->source, next_update_time_us);
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_SCHEDULED;
frame_clock->is_next_presentation_time_valid = FALSE;
}
void
clutter_frame_clock_schedule_update (ClutterFrameClock *frame_clock)
{
int64_t next_update_time_us = -1;
if (frame_clock->inhibit_count > 0)
{
frame_clock->pending_reschedule = TRUE;
return;
}
switch (frame_clock->state)
{
case CLUTTER_FRAME_CLOCK_STATE_INIT:
next_update_time_us = g_get_monotonic_time ();
break;
case CLUTTER_FRAME_CLOCK_STATE_IDLE:
calculate_next_update_time_us (frame_clock,
&next_update_time_us,
&frame_clock->next_presentation_time_us);
frame_clock->is_next_presentation_time_valid =
(frame_clock->next_presentation_time_us != 0);
break;
case CLUTTER_FRAME_CLOCK_STATE_SCHEDULED:
return;
case CLUTTER_FRAME_CLOCK_STATE_DISPATCHING:
case CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED:
frame_clock->pending_reschedule = TRUE;
return;
}
g_warn_if_fail (next_update_time_us != -1);
g_source_set_ready_time (frame_clock->source, next_update_time_us);
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_SCHEDULED;
}
static void
clutter_frame_clock_dispatch (ClutterFrameClock *frame_clock,
int64_t time_us)
{
int64_t frame_count;
ClutterFrameResult result;
int64_t ideal_dispatch_time_us, lateness_us;
COGL_TRACE_BEGIN_SCOPED (ClutterFrameClockDispatch, "Frame Clock (dispatch)");
ideal_dispatch_time_us = (frame_clock->last_dispatch_time_us -
frame_clock->last_dispatch_lateness_us) +
frame_clock->refresh_interval_us;
lateness_us = time_us - ideal_dispatch_time_us;
if (lateness_us < 0 || lateness_us >= frame_clock->refresh_interval_us)
frame_clock->last_dispatch_lateness_us = 0;
else
frame_clock->last_dispatch_lateness_us = lateness_us;
frame_clock->last_dispatch_time_us = time_us;
g_source_set_ready_time (frame_clock->source, -1);
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_DISPATCHING;
frame_count = frame_clock->frame_count++;
COGL_TRACE_BEGIN (ClutterFrameClockEvents, "Frame Clock (before frame)");
if (frame_clock->listener.iface->before_frame)
{
frame_clock->listener.iface->before_frame (frame_clock,
frame_count,
frame_clock->listener.user_data);
}
COGL_TRACE_END (ClutterFrameClockEvents);
COGL_TRACE_BEGIN (ClutterFrameClockTimelines, "Frame Clock (timelines)");
advance_timelines (frame_clock, time_us);
COGL_TRACE_END (ClutterFrameClockTimelines);
COGL_TRACE_BEGIN (ClutterFrameClockFrame, "Frame Clock (frame)");
result = frame_clock->listener.iface->frame (frame_clock,
frame_count,
time_us,
frame_clock->listener.user_data);
COGL_TRACE_END (ClutterFrameClockFrame);
switch (frame_clock->state)
{
case CLUTTER_FRAME_CLOCK_STATE_INIT:
case CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED:
g_warn_if_reached ();
break;
case CLUTTER_FRAME_CLOCK_STATE_IDLE:
case CLUTTER_FRAME_CLOCK_STATE_SCHEDULED:
break;
case CLUTTER_FRAME_CLOCK_STATE_DISPATCHING:
switch (result)
{
case CLUTTER_FRAME_RESULT_PENDING_PRESENTED:
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_PENDING_PRESENTED;
break;
case CLUTTER_FRAME_RESULT_IDLE:
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_IDLE;
maybe_reschedule_update (frame_clock);
break;
}
break;
}
}
static gboolean
frame_clock_source_dispatch (GSource *source,
GSourceFunc callback,
gpointer user_data)
{
ClutterClockSource *clock_source = (ClutterClockSource *) source;
ClutterFrameClock *frame_clock = clock_source->frame_clock;
int64_t dispatch_time_us;
dispatch_time_us = g_source_get_time (source);
clutter_frame_clock_dispatch (frame_clock, dispatch_time_us);
return G_SOURCE_CONTINUE;
}
void
clutter_frame_clock_record_flip_time (ClutterFrameClock *frame_clock,
int64_t flip_time_us)
{
frame_clock->last_flip_time_us = flip_time_us;
}
GString *
clutter_frame_clock_get_max_render_time_debug_info (ClutterFrameClock *frame_clock)
{
int64_t max_dispatch_to_swap_us = 0;
int64_t max_swap_to_rendering_done_us = 0;
int64_t max_swap_to_flip_us = 0;
int i;
GString *string;
string = g_string_new (NULL);
g_string_append_printf (string, "Max render time: %ld µs",
clutter_frame_clock_compute_max_render_time_us (frame_clock));
if (frame_clock->got_measurements_last_frame)
g_string_append_printf (string, " =");
else
g_string_append_printf (string, " (no measurements last frame)");
for (i = 0; i < ESTIMATE_QUEUE_LENGTH; ++i)
{
max_dispatch_to_swap_us =
MAX (max_dispatch_to_swap_us,
frame_clock->dispatch_to_swap_us.values[i]);
max_swap_to_rendering_done_us =
MAX (max_swap_to_rendering_done_us,
frame_clock->swap_to_rendering_done_us.values[i]);
max_swap_to_flip_us =
MAX (max_swap_to_flip_us,
frame_clock->swap_to_flip_us.values[i]);
}
g_string_append_printf (string, "\nVblank duration: %ld µs +",
frame_clock->vblank_duration_us);
g_string_append_printf (string, "\nDispatch to swap: %ld µs +",
max_dispatch_to_swap_us);
g_string_append_printf (string, "\nmax(Swap to rendering done: %ld µs,",
max_swap_to_rendering_done_us);
g_string_append_printf (string, "\nSwap to flip: %ld µs) +",
max_swap_to_flip_us);
g_string_append_printf (string, "\nConstant: %d µs",
clutter_max_render_time_constant_us);
return string;
}
static GSourceFuncs frame_clock_source_funcs = {
NULL,
NULL,
frame_clock_source_dispatch,
NULL
};
static void
init_frame_clock_source (ClutterFrameClock *frame_clock)
{
GSource *source;
ClutterClockSource *clock_source;
g_autofree char *name = NULL;
source = g_source_new (&frame_clock_source_funcs, sizeof (ClutterClockSource));
clock_source = (ClutterClockSource *) source;
name = g_strdup_printf ("Clutter frame clock (%p)", frame_clock);
g_source_set_name (source, name);
g_source_set_priority (source, CLUTTER_PRIORITY_REDRAW);
g_source_set_can_recurse (source, FALSE);
clock_source->frame_clock = frame_clock;
frame_clock->source = source;
g_source_attach (source, NULL);
}
ClutterFrameClock *
clutter_frame_clock_new (float refresh_rate,
int64_t vblank_duration_us,
const ClutterFrameListenerIface *iface,
gpointer user_data)
{
ClutterFrameClock *frame_clock;
g_assert_cmpfloat (refresh_rate, >, 0.0);
frame_clock = g_object_new (CLUTTER_TYPE_FRAME_CLOCK, NULL);
frame_clock->listener.iface = iface;
frame_clock->listener.user_data = user_data;
init_frame_clock_source (frame_clock);
clutter_frame_clock_set_refresh_rate (frame_clock, refresh_rate);
frame_clock->vblank_duration_us = vblank_duration_us;
return frame_clock;
}
void
clutter_frame_clock_destroy (ClutterFrameClock *frame_clock)
{
g_object_run_dispose (G_OBJECT (frame_clock));
g_object_unref (frame_clock);
}
static void
clutter_frame_clock_dispose (GObject *object)
{
ClutterFrameClock *frame_clock = CLUTTER_FRAME_CLOCK (object);
if (frame_clock->source)
{
g_signal_emit (frame_clock, signals[DESTROY], 0);
g_source_destroy (frame_clock->source);
g_clear_pointer (&frame_clock->source, g_source_unref);
}
G_OBJECT_CLASS (clutter_frame_clock_parent_class)->dispose (object);
}
static void
clutter_frame_clock_init (ClutterFrameClock *frame_clock)
{
frame_clock->state = CLUTTER_FRAME_CLOCK_STATE_INIT;
}
static void
clutter_frame_clock_class_init (ClutterFrameClockClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
object_class->dispose = clutter_frame_clock_dispose;
signals[DESTROY] =
g_signal_new (I_("destroy"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
0,
NULL, NULL, NULL,
G_TYPE_NONE,
0);
}