mirror of
https://github.com/brl/mutter.git
synced 2024-12-25 12:32:05 +00:00
5d702853b8
If your OpenGL driver supports GLX_INTEL_swap_event that means when glXSwapBuffers is called it returns immediatly and an XEvent is sent when the actual swap has finished. Clutter can use the events that notify swap completion as a means to throttle rendering in the master clock without blocking the CPU and so it should help improve the performance of CPU bound applications.
569 lines
17 KiB
C
569 lines
17 KiB
C
/*
|
|
* Clutter.
|
|
*
|
|
* An OpenGL based 'interactive canvas' library.
|
|
*
|
|
* Authored By: Emmanuele Bassi <ebassi@linux.intel.com>
|
|
*
|
|
* Copyright (C) 2009 Intel Corporation.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* SECTION:clutter-master-clock
|
|
* @short_description: The master clock for all animations
|
|
*
|
|
* The #ClutterMasterClock class is responsible for advancing all
|
|
* #ClutterTimelines when a stage is being redrawn. The master clock
|
|
* makes sure that the scenegraph is always integrally updated before
|
|
* painting it.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "clutter-master-clock.h"
|
|
#include "clutter-debug.h"
|
|
#include "clutter-private.h"
|
|
#include "clutter-profile.h"
|
|
|
|
#define CLUTTER_MASTER_CLOCK_CLASS(klass) (G_TYPE_CHECK_CLASS_CAST ((klass), CLUTTER_TYPE_MASTER_CLOCK, ClutterMasterClockClass))
|
|
#define CLUTTER_IS_MASTER_CLOCK_CLASS(klass) (G_TYPE_CHECK_CLASS_TYPE ((klass), CLUTTER_TYPE_MASTER_CLOCK))
|
|
#define CLUTTER_MASTER_CLASS_GET_CLASS(obj) (G_TYPE_INSTANCE_GET_CLASS ((obj), CLUTTER_TYPE_MASTER_CLOCK, ClutterMasterClockClass))
|
|
|
|
typedef struct _ClutterClockSource ClutterClockSource;
|
|
typedef struct _ClutterMasterClockClass ClutterMasterClockClass;
|
|
|
|
struct _ClutterMasterClock
|
|
{
|
|
GObject parent_instance;
|
|
|
|
/* the list of timelines handled by the clock */
|
|
GSList *timelines;
|
|
|
|
/* the current state of the clock
|
|
*/
|
|
GTimeVal cur_tick;
|
|
|
|
/* the previous state of the clock, used to compute
|
|
* the delta
|
|
*/
|
|
GTimeVal prev_tick;
|
|
|
|
/* an idle source, used by the Master Clock to queue
|
|
* a redraw on the stage and drive the animations
|
|
*/
|
|
GSource *source;
|
|
|
|
/* If the master clock is idle that means it's
|
|
* fallen back to idle polling for timeline
|
|
* progressions and it may have been some time since
|
|
* the last real stage update.
|
|
*/
|
|
guint idle : 1;
|
|
guint ensure_next_iteration : 1;
|
|
};
|
|
|
|
struct _ClutterMasterClockClass
|
|
{
|
|
GObjectClass parent_class;
|
|
};
|
|
|
|
struct _ClutterClockSource
|
|
{
|
|
GSource source;
|
|
|
|
ClutterMasterClock *master_clock;
|
|
};
|
|
|
|
static gboolean clutter_clock_prepare (GSource *source,
|
|
gint *timeout);
|
|
static gboolean clutter_clock_check (GSource *source);
|
|
static gboolean clutter_clock_dispatch (GSource *source,
|
|
GSourceFunc callback,
|
|
gpointer user_data);
|
|
|
|
static ClutterMasterClock *default_clock = NULL;
|
|
|
|
static GSourceFuncs clock_funcs = {
|
|
clutter_clock_prepare,
|
|
clutter_clock_check,
|
|
clutter_clock_dispatch,
|
|
NULL
|
|
};
|
|
|
|
G_DEFINE_TYPE (ClutterMasterClock, clutter_master_clock, G_TYPE_OBJECT);
|
|
|
|
/*
|
|
* master_clock_is_running:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Checks if we should currently be advancing timelines or redrawing
|
|
* stages.
|
|
*
|
|
* Return value: %TRUE if the #ClutterMasterClock has at least
|
|
* one running timeline
|
|
*/
|
|
static gboolean
|
|
master_clock_is_running (ClutterMasterClock *master_clock)
|
|
{
|
|
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
|
|
const GSList *stages, *l;
|
|
gboolean stage_free = FALSE;
|
|
|
|
stages = clutter_stage_manager_peek_stages (stage_manager);
|
|
|
|
/* If all of the stages are busy waiting for a swap-buffers to complete
|
|
* then we stop the master clock... */
|
|
for (l = stages; l != NULL; l = l->next)
|
|
if (_clutter_stage_get_pending_swaps (l->data) == 0)
|
|
{
|
|
stage_free = TRUE;
|
|
break;
|
|
}
|
|
if (!stage_free)
|
|
return FALSE;
|
|
|
|
if (master_clock->timelines)
|
|
return TRUE;
|
|
|
|
for (l = stages; l; l = l->next)
|
|
if (_clutter_stage_has_queued_events (l->data) ||
|
|
_clutter_stage_needs_update (l->data))
|
|
return TRUE;
|
|
|
|
if (master_clock->ensure_next_iteration)
|
|
{
|
|
master_clock->ensure_next_iteration = FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
/*
|
|
* master_clock_next_frame_delay:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Computes the number of delay before we need to draw the next frame.
|
|
*
|
|
* Return value: -1 if there is no next frame pending, otherwise the
|
|
* number of millseconds before the we need to draw the next frame
|
|
*/
|
|
static gint
|
|
master_clock_next_frame_delay (ClutterMasterClock *master_clock)
|
|
{
|
|
GTimeVal now;
|
|
GTimeVal next;
|
|
|
|
if (!master_clock_is_running (master_clock))
|
|
return -1;
|
|
|
|
/* When we have sync-to-vblank, we count on swap-buffer requests (or
|
|
* swap-buffer-complete events if supported in the backend) to throttle our
|
|
* frame rate so no additional delay is needed to start the next frame.
|
|
*
|
|
* If the master-clock has become idle due to no timeline progression causing
|
|
* redraws then we can no longer rely on vblank synchronization because the
|
|
* last real stage update/redraw may have happened a long time ago and so we
|
|
* fallback to polling for timeline progressions every 1/frame_rate seconds.
|
|
*
|
|
* (NB: if there aren't even any timelines running then the master clock will
|
|
* be completely stopped in master_clock_is_running())
|
|
*/
|
|
if (clutter_feature_available (CLUTTER_FEATURE_SYNC_TO_VBLANK) &&
|
|
!master_clock->idle)
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "vblank available and updated stages");
|
|
return 0;
|
|
}
|
|
|
|
if (master_clock->prev_tick.tv_sec == 0)
|
|
{
|
|
/* If we weren't previously running, then draw the next frame
|
|
* immediately
|
|
*/
|
|
CLUTTER_NOTE (SCHEDULER, "draw the first frame immediately");
|
|
return 0;
|
|
}
|
|
|
|
/* Otherwise, wait at least 1/frame_rate seconds since we last
|
|
* started a frame
|
|
*/
|
|
g_source_get_current_time (master_clock->source, &now);
|
|
|
|
next = master_clock->prev_tick;
|
|
|
|
/* If time has gone backwards then there's no way of knowing how
|
|
long we should wait so let's just dispatch immediately */
|
|
if (now.tv_sec < next.tv_sec ||
|
|
(now.tv_sec == next.tv_sec && now.tv_usec <= next.tv_usec))
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "Time has gone backwards");
|
|
|
|
return 0;
|
|
}
|
|
|
|
g_time_val_add (&next, 1000000L / (gulong) clutter_get_default_frame_rate ());
|
|
|
|
if (next.tv_sec < now.tv_sec ||
|
|
(next.tv_sec == now.tv_sec && next.tv_usec <= now.tv_usec))
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "Less than %lu microsecs",
|
|
1000000L / (gulong) clutter_get_default_frame_rate ());
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "Waiting %lu msecs",
|
|
(next.tv_sec - now.tv_sec) * 1000 +
|
|
(next.tv_usec - now.tv_usec) / 1000);
|
|
|
|
return ((next.tv_sec - now.tv_sec) * 1000 +
|
|
(next.tv_usec - now.tv_usec) / 1000);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* clutter_clock_source_new:
|
|
* @master_clock: a #ClutterMasterClock for the source
|
|
*
|
|
* The #ClutterClockSource is an idle GSource that will queue a redraw
|
|
* if @master_clock has at least a running #ClutterTimeline. The redraw
|
|
* will cause @master_clock to advance all timelines, thus advancing all
|
|
* animations as well.
|
|
*
|
|
* Return value: the newly created #GSource
|
|
*/
|
|
static GSource *
|
|
clutter_clock_source_new (ClutterMasterClock *master_clock)
|
|
{
|
|
GSource *source = g_source_new (&clock_funcs, sizeof (ClutterClockSource));
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
|
|
clock_source->master_clock = master_clock;
|
|
|
|
return source;
|
|
}
|
|
|
|
static gboolean
|
|
clutter_clock_prepare (GSource *source,
|
|
gint *timeout)
|
|
{
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
ClutterMasterClock *master_clock = clock_source->master_clock;
|
|
int delay;
|
|
|
|
clutter_threads_enter ();
|
|
delay = master_clock_next_frame_delay (master_clock);
|
|
clutter_threads_leave ();
|
|
|
|
*timeout = delay;
|
|
|
|
return delay == 0;
|
|
}
|
|
|
|
static gboolean
|
|
clutter_clock_check (GSource *source)
|
|
{
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
ClutterMasterClock *master_clock = clock_source->master_clock;
|
|
int delay;
|
|
|
|
clutter_threads_enter ();
|
|
delay = master_clock_next_frame_delay (master_clock);
|
|
clutter_threads_leave ();
|
|
|
|
return delay == 0;
|
|
}
|
|
|
|
static gboolean
|
|
clutter_clock_dispatch (GSource *source,
|
|
GSourceFunc callback,
|
|
gpointer user_data)
|
|
{
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
ClutterMasterClock *master_clock = clock_source->master_clock;
|
|
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
|
|
GSList *stages, *l;
|
|
gboolean stages_updated = FALSE;
|
|
|
|
CLUTTER_STATIC_TIMER (master_dispatch_timer,
|
|
"Mainloop",
|
|
"Master Clock",
|
|
"Master clock dispatch",
|
|
0);
|
|
CLUTTER_STATIC_TIMER (master_event_process,
|
|
"Master Clock",
|
|
"Event Processing",
|
|
"The time spent processing events on all stages",
|
|
0);
|
|
|
|
CLUTTER_TIMER_START (_clutter_uprof_context, master_dispatch_timer);
|
|
|
|
CLUTTER_NOTE (SCHEDULER, "Master clock [tick]");
|
|
|
|
clutter_threads_enter ();
|
|
|
|
/* Get the time to use for this frame.
|
|
*/
|
|
g_source_get_current_time (source, &master_clock->cur_tick);
|
|
|
|
/* We need to protect ourselves against stages being destroyed during
|
|
* event handling
|
|
*/
|
|
stages = clutter_stage_manager_list_stages (stage_manager);
|
|
g_slist_foreach (stages, (GFunc) g_object_ref, NULL);
|
|
|
|
CLUTTER_TIMER_START (_clutter_uprof_context, master_event_process);
|
|
|
|
master_clock->idle = FALSE;
|
|
|
|
/* Process queued events */
|
|
for (l = stages; l != NULL; l = l->next)
|
|
{
|
|
/* NB: If a stage is busy waiting for a swap-buffers completion then
|
|
* we don't process its events so we can maximize the benefits of
|
|
* motion compression, and avoid multiple picks per frame.
|
|
*/
|
|
if (_clutter_stage_get_pending_swaps (l->data) == 0)
|
|
_clutter_stage_process_queued_events (l->data);
|
|
}
|
|
|
|
CLUTTER_TIMER_STOP (_clutter_uprof_context, master_event_process);
|
|
|
|
_clutter_master_clock_advance (master_clock);
|
|
|
|
_clutter_run_repaint_functions ();
|
|
|
|
/* Update any stage that needs redraw/relayout after the clock
|
|
* is advanced.
|
|
*/
|
|
for (l = stages; l != NULL; l = l->next)
|
|
{
|
|
/* If a stage has a swap-buffers pending we don't want to draw to it
|
|
* in case the driver may block the CPU while it waits for the next
|
|
* backbuffer to become available.
|
|
*
|
|
* TODO: We should be able to identify if we are running triple or N
|
|
* buffered and in these cases we can still draw if there is 1 swap
|
|
* pending so we can hopefully always be ready to swap for the next
|
|
* vblank and really match the vsync frequency.
|
|
*/
|
|
if (_clutter_stage_get_pending_swaps (l->data) == 0)
|
|
stages_updated |= _clutter_stage_do_update (l->data);
|
|
}
|
|
|
|
/* The master clock goes idle if no stages were updated and falls back
|
|
* to polling for timeline progressions... */
|
|
if (!stages_updated)
|
|
master_clock->idle = TRUE;
|
|
|
|
g_slist_foreach (stages, (GFunc) g_object_unref, NULL);
|
|
g_slist_free (stages);
|
|
|
|
master_clock->prev_tick = master_clock->cur_tick;
|
|
|
|
clutter_threads_leave ();
|
|
|
|
CLUTTER_TIMER_STOP (_clutter_uprof_context, master_dispatch_timer);
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_finalize (GObject *gobject)
|
|
{
|
|
ClutterMasterClock *master_clock = CLUTTER_MASTER_CLOCK (gobject);
|
|
|
|
g_slist_free (master_clock->timelines);
|
|
|
|
G_OBJECT_CLASS (clutter_master_clock_parent_class)->finalize (gobject);
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_class_init (ClutterMasterClockClass *klass)
|
|
{
|
|
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
|
|
|
|
gobject_class->finalize = clutter_master_clock_finalize;
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_init (ClutterMasterClock *self)
|
|
{
|
|
GSource *source;
|
|
|
|
source = clutter_clock_source_new (self);
|
|
self->source = source;
|
|
|
|
self->idle = FALSE;
|
|
self->ensure_next_iteration = FALSE;
|
|
|
|
g_source_set_priority (source, CLUTTER_PRIORITY_REDRAW);
|
|
g_source_set_can_recurse (source, FALSE);
|
|
g_source_attach (source, NULL);
|
|
}
|
|
|
|
/*
|
|
* _clutter_master_clock_get_default:
|
|
*
|
|
* Retrieves the default master clock. If this function has never
|
|
* been called before, the default master clock is created.
|
|
*
|
|
* Return value: the default master clock. The returned object is
|
|
* owned by Clutter and should not be modified or freed
|
|
*/
|
|
ClutterMasterClock *
|
|
_clutter_master_clock_get_default (void)
|
|
{
|
|
if (G_LIKELY (default_clock != NULL))
|
|
return default_clock;
|
|
|
|
default_clock = g_object_new (CLUTTER_TYPE_MASTER_CLOCK, NULL);
|
|
|
|
return default_clock;
|
|
}
|
|
|
|
/*
|
|
* _clutter_master_clock_add_timeline:
|
|
* @master_clock: a #ClutterMasterClock
|
|
* @timeline: a #ClutterTimeline
|
|
*
|
|
* Adds @timeline to the list of playing timelines held by the master
|
|
* clock.
|
|
*/
|
|
void
|
|
_clutter_master_clock_add_timeline (ClutterMasterClock *master_clock,
|
|
ClutterTimeline *timeline)
|
|
{
|
|
gboolean is_first;
|
|
|
|
if (g_slist_find (master_clock->timelines, timeline))
|
|
return;
|
|
|
|
is_first = master_clock->timelines == NULL;
|
|
|
|
master_clock->timelines = g_slist_prepend (master_clock->timelines,
|
|
timeline);
|
|
|
|
if (is_first)
|
|
_clutter_master_clock_start_running (master_clock);
|
|
}
|
|
|
|
/*
|
|
* _clutter_master_clock_remove_timeline:
|
|
* @master_clock: a #ClutterMasterClock
|
|
* @timeline: a #ClutterTimeline
|
|
*
|
|
* Removes @timeline from the list of playing timelines held by the
|
|
* master clock.
|
|
*/
|
|
void
|
|
_clutter_master_clock_remove_timeline (ClutterMasterClock *master_clock,
|
|
ClutterTimeline *timeline)
|
|
{
|
|
master_clock->timelines = g_slist_remove (master_clock->timelines,
|
|
timeline);
|
|
}
|
|
|
|
/*
|
|
* _clutter_master_clock_start_running:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Called when we have events or redraws to process; if the clock
|
|
* is stopped, does the processing necessary to wake it up again.
|
|
*/
|
|
void
|
|
_clutter_master_clock_start_running (ClutterMasterClock *master_clock)
|
|
{
|
|
/* If called from a different thread, we need to wake up the
|
|
* main loop to start running the timelines
|
|
*/
|
|
g_main_context_wakeup (NULL);
|
|
}
|
|
|
|
/*
|
|
* _clutter_master_clock_advance:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Advances all the timelines held by the master clock. This function
|
|
* should be called before calling clutter_redraw() to make sure that
|
|
* all the timelines are advanced and the scene is updated.
|
|
*/
|
|
void
|
|
_clutter_master_clock_advance (ClutterMasterClock *master_clock)
|
|
{
|
|
GSList *timelines, *l;
|
|
|
|
CLUTTER_STATIC_TIMER (master_timeline_advance,
|
|
"Master Clock",
|
|
"Timelines Advancement",
|
|
"The time spent advancing all timelines",
|
|
0);
|
|
|
|
g_return_if_fail (CLUTTER_IS_MASTER_CLOCK (master_clock));
|
|
|
|
CLUTTER_TIMER_START (_clutter_uprof_context, master_timeline_advance);
|
|
|
|
/* we protect ourselves from timelines being removed during
|
|
* the advancement by other timelines by copying the list of
|
|
* timelines, taking a reference on them, iterating over the
|
|
* copied list and then releasing the reference.
|
|
*
|
|
* we cannot simply take a reference on the timelines and still
|
|
* use the list held by the master clock because the do_tick()
|
|
* might result in the creation of a new timeline, which gets
|
|
* added at the end of the list with no reference increase and
|
|
* thus gets disposed at the end of the iteration.
|
|
*
|
|
* this implies that a newly added timeline will not be advanced
|
|
* by this clock iteration, which is perfectly fine since we're
|
|
* in its first cycle.
|
|
*
|
|
* we also cannot steal the master clock timelines list because
|
|
* a timeline might be removed as the direct result of do_tick()
|
|
* and remove_timeline() would not find the timeline, failing
|
|
* and leaving a dangling pointer behind.
|
|
*/
|
|
timelines = g_slist_copy (master_clock->timelines);
|
|
g_slist_foreach (timelines, (GFunc) g_object_ref, NULL);
|
|
|
|
for (l = timelines; l != NULL; l = l->next)
|
|
clutter_timeline_do_tick (l->data, &master_clock->cur_tick);
|
|
|
|
g_slist_foreach (timelines, (GFunc) g_object_unref, NULL);
|
|
g_slist_free (timelines);
|
|
|
|
CLUTTER_TIMER_STOP (_clutter_uprof_context, master_timeline_advance);
|
|
}
|
|
|
|
/**
|
|
* _clutter_master_clock_ensure_next_iteration:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Ensures that the master clock will run at least one iteration
|
|
*/
|
|
void
|
|
_clutter_master_clock_ensure_next_iteration (ClutterMasterClock *master_clock)
|
|
{
|
|
g_return_if_fail (CLUTTER_IS_MASTER_CLOCK (master_clock));
|
|
|
|
master_clock->ensure_next_iteration = TRUE;
|
|
}
|
|
|