mirror of
https://github.com/brl/mutter.git
synced 2024-12-23 19:42:05 +00:00
6c7f624f69
If we call _clutter_stage_do_update() on a ClutterStage that isn't
mapped/visible, no GL command will be queued, and the Mesa/DRI2
implementation of SwapBuffers will do nothing. This causes
GLX_INTEL_swap_event to not be emitted by the X server because no swapping
has been requested through DRI2 and it eventually leads to a deadlock
situation in ClutterStageCogl because we're waiting for an event before we
start the next draw cycle.
This patch removes the non mapped stages from the list of stages to process.
This is consistent with a previous patch for the ClutterMasterClockGdk [1].
[1] : 5733ad58e5
https://bugzilla.gnome.org/show_bug.cgi?id=755014
692 lines
21 KiB
C
692 lines
21 KiB
C
/*
|
|
* Clutter.
|
|
*
|
|
* An OpenGL based 'interactive canvas' library.
|
|
*
|
|
* Authored By: Emmanuele Bassi <ebassi@linux.intel.com>
|
|
*
|
|
* Copyright (C) 2009 Intel Corporation.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* SECTION:clutter-master-clock-default
|
|
* @short_description: The default master clock for all animations
|
|
*
|
|
* The #ClutterMasterClockDefault class is the default implementation
|
|
* of #ClutterMasterClock.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#include "clutter-master-clock.h"
|
|
#include "clutter-master-clock-default.h"
|
|
#include "clutter-debug.h"
|
|
#include "clutter-private.h"
|
|
#include "clutter-stage-manager-private.h"
|
|
#include "clutter-stage-private.h"
|
|
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
#define clutter_warn_if_over_budget(master_clock,start_time,section) G_STMT_START { \
|
|
gint64 __delta = g_get_monotonic_time () - start_time; \
|
|
gint64 __budget = master_clock->remaining_budget; \
|
|
if (__budget > 0 && __delta >= __budget) { \
|
|
_clutter_diagnostic_message ("%s took %" G_GINT64_FORMAT " microseconds " \
|
|
"more than the remaining budget of %" G_GINT64_FORMAT \
|
|
" microseconds", \
|
|
section, __delta - __budget, __budget); \
|
|
} } G_STMT_END
|
|
#else
|
|
#define clutter_warn_if_over_budget(master_clock,start_time,section)
|
|
#endif
|
|
|
|
typedef struct _ClutterClockSource ClutterClockSource;
|
|
|
|
struct _ClutterMasterClockDefault
|
|
{
|
|
GObject parent_instance;
|
|
|
|
/* the list of timelines handled by the clock */
|
|
GSList *timelines;
|
|
|
|
/* the current state of the clock, in usecs */
|
|
gint64 cur_tick;
|
|
|
|
/* the previous state of the clock, in usecs, used to compute the delta */
|
|
gint64 prev_tick;
|
|
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
gint64 frame_budget;
|
|
gint64 remaining_budget;
|
|
#endif
|
|
|
|
/* an idle source, used by the Master Clock to queue
|
|
* a redraw on the stage and drive the animations
|
|
*/
|
|
GSource *source;
|
|
|
|
/* If the master clock is idle that means it has
|
|
* fallen back to idle polling for timeline
|
|
* progressions and it may have been some time since
|
|
* the last real stage update.
|
|
*/
|
|
guint idle : 1;
|
|
guint ensure_next_iteration : 1;
|
|
|
|
guint paused : 1;
|
|
};
|
|
|
|
struct _ClutterClockSource
|
|
{
|
|
GSource source;
|
|
|
|
ClutterMasterClockDefault *master_clock;
|
|
};
|
|
|
|
static gboolean clutter_clock_prepare (GSource *source,
|
|
gint *timeout);
|
|
static gboolean clutter_clock_check (GSource *source);
|
|
static gboolean clutter_clock_dispatch (GSource *source,
|
|
GSourceFunc callback,
|
|
gpointer user_data);
|
|
|
|
static GSourceFuncs clock_funcs = {
|
|
clutter_clock_prepare,
|
|
clutter_clock_check,
|
|
clutter_clock_dispatch,
|
|
NULL
|
|
};
|
|
|
|
static void clutter_master_clock_iface_init (ClutterMasterClockIface *iface);
|
|
|
|
#define clutter_master_clock_default_get_type _clutter_master_clock_default_get_type
|
|
|
|
G_DEFINE_TYPE_WITH_CODE (ClutterMasterClockDefault,
|
|
clutter_master_clock_default,
|
|
G_TYPE_OBJECT,
|
|
G_IMPLEMENT_INTERFACE (CLUTTER_TYPE_MASTER_CLOCK,
|
|
clutter_master_clock_iface_init));
|
|
|
|
/*
|
|
* master_clock_is_running:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Checks if we should currently be advancing timelines or redrawing
|
|
* stages.
|
|
*
|
|
* Return value: %TRUE if the #ClutterMasterClock has at least
|
|
* one running timeline
|
|
*/
|
|
static gboolean
|
|
master_clock_is_running (ClutterMasterClockDefault *master_clock)
|
|
{
|
|
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
|
|
const GSList *stages, *l;
|
|
|
|
stages = clutter_stage_manager_peek_stages (stage_manager);
|
|
|
|
if (master_clock->paused)
|
|
return FALSE;
|
|
|
|
if (master_clock->timelines)
|
|
return TRUE;
|
|
|
|
for (l = stages; l; l = l->next)
|
|
{
|
|
if (clutter_actor_is_mapped (l->data) &&
|
|
(_clutter_stage_has_queued_events (l->data) ||
|
|
_clutter_stage_needs_update (l->data)))
|
|
return TRUE;
|
|
}
|
|
|
|
if (master_clock->ensure_next_iteration)
|
|
{
|
|
master_clock->ensure_next_iteration = FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
static gint
|
|
master_clock_get_swap_wait_time (ClutterMasterClockDefault *master_clock)
|
|
{
|
|
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
|
|
const GSList *stages, *l;
|
|
gint64 min_update_time = -1;
|
|
|
|
stages = clutter_stage_manager_peek_stages (stage_manager);
|
|
|
|
for (l = stages; l != NULL; l = l->next)
|
|
{
|
|
gint64 update_time = _clutter_stage_get_update_time (l->data);
|
|
if (min_update_time == -1 ||
|
|
(update_time != -1 && update_time < min_update_time))
|
|
min_update_time = update_time;
|
|
}
|
|
|
|
if (min_update_time == -1)
|
|
{
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
gint64 now = g_source_get_time (master_clock->source);
|
|
if (min_update_time < now)
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
gint64 delay_us = min_update_time - now;
|
|
return (delay_us + 999) / 1000;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
master_clock_schedule_stage_updates (ClutterMasterClockDefault *master_clock)
|
|
{
|
|
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
|
|
const GSList *stages, *l;
|
|
|
|
stages = clutter_stage_manager_peek_stages (stage_manager);
|
|
|
|
for (l = stages; l != NULL; l = l->next)
|
|
_clutter_stage_schedule_update (l->data);
|
|
}
|
|
|
|
static GSList *
|
|
master_clock_list_ready_stages (ClutterMasterClockDefault *master_clock)
|
|
{
|
|
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
|
|
const GSList *stages, *l;
|
|
GSList *result;
|
|
|
|
stages = clutter_stage_manager_peek_stages (stage_manager);
|
|
|
|
result = NULL;
|
|
for (l = stages; l != NULL; l = l->next)
|
|
{
|
|
gint64 update_time = _clutter_stage_get_update_time (l->data);
|
|
/* We carefully avoid to update stages that aren't mapped, because
|
|
* they have nothing to render and this could cause a deadlock with
|
|
* some of the SwapBuffers implementations (in particular
|
|
* GLX_INTEL_swap_event is not emitted if nothing was rendered).
|
|
*
|
|
* Also, if a stage has a swap-buffers pending we don't want to draw
|
|
* to it in case the driver may block the CPU while it waits for the
|
|
* next backbuffer to become available.
|
|
*
|
|
* TODO: We should be able to identify if we are running triple or N
|
|
* buffered and in these cases we can still draw if there is 1 swap
|
|
* pending so we can hopefully always be ready to swap for the next
|
|
* vblank and really match the vsync frequency.
|
|
*/
|
|
if (clutter_actor_is_mapped (l->data) &&
|
|
update_time != -1 && update_time <= master_clock->cur_tick)
|
|
result = g_slist_prepend (result, g_object_ref (l->data));
|
|
}
|
|
|
|
return g_slist_reverse (result);
|
|
}
|
|
|
|
static void
|
|
master_clock_reschedule_stage_updates (ClutterMasterClockDefault *master_clock,
|
|
GSList *stages)
|
|
{
|
|
const GSList *l;
|
|
|
|
for (l = stages; l != NULL; l = l->next)
|
|
{
|
|
/* Clear the old update time */
|
|
_clutter_stage_clear_update_time (l->data);
|
|
|
|
/* And if there is still work to be done, schedule a new one */
|
|
if (master_clock->timelines ||
|
|
_clutter_stage_has_queued_events (l->data) ||
|
|
_clutter_stage_needs_update (l->data))
|
|
_clutter_stage_schedule_update (l->data);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* master_clock_next_frame_delay:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Computes the number of delay before we need to draw the next frame.
|
|
*
|
|
* Return value: -1 if there is no next frame pending, otherwise the
|
|
* number of millseconds before the we need to draw the next frame
|
|
*/
|
|
static gint
|
|
master_clock_next_frame_delay (ClutterMasterClockDefault *master_clock)
|
|
{
|
|
gint64 now, next;
|
|
gint swap_delay;
|
|
|
|
if (!master_clock_is_running (master_clock))
|
|
return -1;
|
|
|
|
/* If all of the stages are busy waiting for a swap-buffers to complete
|
|
* then we wait for one to be ready.. */
|
|
swap_delay = master_clock_get_swap_wait_time (master_clock);
|
|
if (swap_delay != 0)
|
|
return swap_delay;
|
|
|
|
/* When we have sync-to-vblank, we count on swap-buffer requests (or
|
|
* swap-buffer-complete events if supported in the backend) to throttle our
|
|
* frame rate so no additional delay is needed to start the next frame.
|
|
*
|
|
* If the master-clock has become idle due to no timeline progression causing
|
|
* redraws then we can no longer rely on vblank synchronization because the
|
|
* last real stage update/redraw may have happened a long time ago and so we
|
|
* fallback to polling for timeline progressions every 1/frame_rate seconds.
|
|
*
|
|
* (NB: if there aren't even any timelines running then the master clock will
|
|
* be completely stopped in master_clock_is_running())
|
|
*/
|
|
if (clutter_feature_available (CLUTTER_FEATURE_SYNC_TO_VBLANK) &&
|
|
!master_clock->idle)
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "vblank available and updated stages");
|
|
return 0;
|
|
}
|
|
|
|
if (master_clock->prev_tick == 0)
|
|
{
|
|
/* If we weren't previously running, then draw the next frame
|
|
* immediately
|
|
*/
|
|
CLUTTER_NOTE (SCHEDULER, "draw the first frame immediately");
|
|
return 0;
|
|
}
|
|
|
|
/* Otherwise, wait at least 1/frame_rate seconds since we last
|
|
* started a frame
|
|
*/
|
|
now = g_source_get_time (master_clock->source);
|
|
|
|
next = master_clock->prev_tick;
|
|
|
|
/* If time has gone backwards then there's no way of knowing how
|
|
long we should wait so let's just dispatch immediately */
|
|
if (now <= next)
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "Time has gone backwards");
|
|
|
|
return 0;
|
|
}
|
|
|
|
next += (1000000L / clutter_get_default_frame_rate ());
|
|
|
|
if (next <= now)
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "Less than %lu microsecs",
|
|
1000000L / (gulong) clutter_get_default_frame_rate ());
|
|
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
CLUTTER_NOTE (SCHEDULER, "Waiting %" G_GINT64_FORMAT " msecs",
|
|
(next - now) / 1000);
|
|
|
|
return (next - now) / 1000;
|
|
}
|
|
}
|
|
|
|
static void
|
|
master_clock_process_events (ClutterMasterClockDefault *master_clock,
|
|
GSList *stages)
|
|
{
|
|
GSList *l;
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
gint64 start = g_get_monotonic_time ();
|
|
#endif
|
|
|
|
/* Process queued events */
|
|
for (l = stages; l != NULL; l = l->next)
|
|
_clutter_stage_process_queued_events (l->data);
|
|
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
if (_clutter_diagnostic_enabled ())
|
|
clutter_warn_if_over_budget (master_clock, start, "Event processing");
|
|
|
|
master_clock->remaining_budget -= (g_get_monotonic_time () - start);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* master_clock_advance_timelines:
|
|
* @master_clock: a #ClutterMasterClock
|
|
*
|
|
* Advances all the timelines held by the master clock. This function
|
|
* should be called before calling _clutter_stage_do_update() to
|
|
* make sure that all the timelines are advanced and the scene is updated.
|
|
*/
|
|
static void
|
|
master_clock_advance_timelines (ClutterMasterClockDefault *master_clock)
|
|
{
|
|
GSList *timelines, *l;
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
gint64 start = g_get_monotonic_time ();
|
|
#endif
|
|
|
|
/* we protect ourselves from timelines being removed during
|
|
* the advancement by other timelines by copying the list of
|
|
* timelines, taking a reference on them, iterating over the
|
|
* copied list and then releasing the reference.
|
|
*
|
|
* we cannot simply take a reference on the timelines and still
|
|
* use the list held by the master clock because the do_tick()
|
|
* might result in the creation of a new timeline, which gets
|
|
* added at the end of the list with no reference increase and
|
|
* thus gets disposed at the end of the iteration.
|
|
*
|
|
* this implies that a newly added timeline will not be advanced
|
|
* by this clock iteration, which is perfectly fine since we're
|
|
* in its first cycle.
|
|
*
|
|
* we also cannot steal the master clock timelines list because
|
|
* a timeline might be removed as the direct result of do_tick()
|
|
* and remove_timeline() would not find the timeline, failing
|
|
* and leaving a dangling pointer behind.
|
|
*/
|
|
timelines = g_slist_copy (master_clock->timelines);
|
|
g_slist_foreach (timelines, (GFunc) g_object_ref, NULL);
|
|
|
|
for (l = timelines; l != NULL; l = l->next)
|
|
_clutter_timeline_do_tick (l->data, master_clock->cur_tick / 1000);
|
|
|
|
g_slist_foreach (timelines, (GFunc) g_object_unref, NULL);
|
|
g_slist_free (timelines);
|
|
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
if (_clutter_diagnostic_enabled ())
|
|
clutter_warn_if_over_budget (master_clock, start, "Animations");
|
|
|
|
master_clock->remaining_budget -= (g_get_monotonic_time () - start);
|
|
#endif
|
|
}
|
|
|
|
static gboolean
|
|
master_clock_update_stages (ClutterMasterClockDefault *master_clock,
|
|
GSList *stages)
|
|
{
|
|
gboolean stages_updated = FALSE;
|
|
GSList *l;
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
gint64 start = g_get_monotonic_time ();
|
|
#endif
|
|
|
|
_clutter_run_repaint_functions (CLUTTER_REPAINT_FLAGS_PRE_PAINT);
|
|
|
|
/* Update any stage that needs redraw/relayout after the clock
|
|
* is advanced.
|
|
*/
|
|
for (l = stages; l != NULL; l = l->next)
|
|
stages_updated |= _clutter_stage_do_update (l->data);
|
|
|
|
_clutter_run_repaint_functions (CLUTTER_REPAINT_FLAGS_POST_PAINT);
|
|
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
if (_clutter_diagnostic_enabled ())
|
|
clutter_warn_if_over_budget (master_clock, start, "Updating the stage");
|
|
|
|
master_clock->remaining_budget -= (g_get_monotonic_time () - start);
|
|
#endif
|
|
|
|
return stages_updated;
|
|
}
|
|
|
|
/*
|
|
* clutter_clock_source_new:
|
|
* @master_clock: a #ClutterMasterClock for the source
|
|
*
|
|
* The #ClutterClockSource is an idle GSource that will queue a redraw
|
|
* if @master_clock has at least a running #ClutterTimeline. The redraw
|
|
* will cause @master_clock to advance all timelines, thus advancing all
|
|
* animations as well.
|
|
*
|
|
* Return value: the newly created #GSource
|
|
*/
|
|
static GSource *
|
|
clutter_clock_source_new (ClutterMasterClockDefault *master_clock)
|
|
{
|
|
GSource *source = g_source_new (&clock_funcs, sizeof (ClutterClockSource));
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
|
|
g_source_set_name (source, "Clutter master clock");
|
|
clock_source->master_clock = master_clock;
|
|
|
|
return source;
|
|
}
|
|
|
|
static gboolean
|
|
clutter_clock_prepare (GSource *source,
|
|
gint *timeout)
|
|
{
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
ClutterMasterClockDefault *master_clock = clock_source->master_clock;
|
|
int delay;
|
|
|
|
_clutter_threads_acquire_lock ();
|
|
|
|
if (G_UNLIKELY (clutter_paint_debug_flags &
|
|
CLUTTER_DEBUG_CONTINUOUS_REDRAW))
|
|
{
|
|
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
|
|
const GSList *stages, *l;
|
|
|
|
stages = clutter_stage_manager_peek_stages (stage_manager);
|
|
|
|
/* Queue a full redraw on all of the stages */
|
|
for (l = stages; l != NULL; l = l->next)
|
|
clutter_actor_queue_redraw (l->data);
|
|
}
|
|
|
|
delay = master_clock_next_frame_delay (master_clock);
|
|
|
|
_clutter_threads_release_lock ();
|
|
|
|
*timeout = delay;
|
|
|
|
return delay == 0;
|
|
}
|
|
|
|
static gboolean
|
|
clutter_clock_check (GSource *source)
|
|
{
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
ClutterMasterClockDefault *master_clock = clock_source->master_clock;
|
|
int delay;
|
|
|
|
_clutter_threads_acquire_lock ();
|
|
delay = master_clock_next_frame_delay (master_clock);
|
|
_clutter_threads_release_lock ();
|
|
|
|
return delay == 0;
|
|
}
|
|
|
|
static gboolean
|
|
clutter_clock_dispatch (GSource *source,
|
|
GSourceFunc callback,
|
|
gpointer user_data)
|
|
{
|
|
ClutterClockSource *clock_source = (ClutterClockSource *) source;
|
|
ClutterMasterClockDefault *master_clock = clock_source->master_clock;
|
|
gboolean stages_updated = FALSE;
|
|
GSList *stages;
|
|
|
|
CLUTTER_NOTE (SCHEDULER, "Master clock [tick]");
|
|
|
|
_clutter_threads_acquire_lock ();
|
|
|
|
/* Get the time to use for this frame */
|
|
master_clock->cur_tick = g_source_get_time (source);
|
|
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
master_clock->remaining_budget = master_clock->frame_budget;
|
|
#endif
|
|
|
|
/* We need to protect ourselves against stages being destroyed during
|
|
* event handling - master_clock_list_ready_stages() returns a
|
|
* list of referenced that we'll unref afterwards.
|
|
*/
|
|
stages = master_clock_list_ready_stages (master_clock);
|
|
|
|
master_clock->idle = FALSE;
|
|
|
|
/* Each frame is split into three separate phases: */
|
|
|
|
/* 1. process all the events; each stage goes through its events queue
|
|
* and processes each event according to its type, then emits the
|
|
* various signals that are associated with the event
|
|
*/
|
|
master_clock_process_events (master_clock, stages);
|
|
|
|
/* 2. advance the timelines */
|
|
master_clock_advance_timelines (master_clock);
|
|
|
|
/* 3. relayout and redraw the stages */
|
|
stages_updated = master_clock_update_stages (master_clock, stages);
|
|
|
|
/* The master clock goes idle if no stages were updated and falls back
|
|
* to polling for timeline progressions... */
|
|
if (!stages_updated)
|
|
master_clock->idle = TRUE;
|
|
|
|
master_clock_reschedule_stage_updates (master_clock, stages);
|
|
|
|
g_slist_foreach (stages, (GFunc) g_object_unref, NULL);
|
|
g_slist_free (stages);
|
|
|
|
master_clock->prev_tick = master_clock->cur_tick;
|
|
|
|
_clutter_threads_release_lock ();
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_finalize (GObject *gobject)
|
|
{
|
|
ClutterMasterClockDefault *master_clock = CLUTTER_MASTER_CLOCK_DEFAULT (gobject);
|
|
|
|
g_slist_free (master_clock->timelines);
|
|
|
|
G_OBJECT_CLASS (clutter_master_clock_default_parent_class)->finalize (gobject);
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_class_init (ClutterMasterClockDefaultClass *klass)
|
|
{
|
|
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
|
|
|
|
gobject_class->finalize = clutter_master_clock_default_finalize;
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_init (ClutterMasterClockDefault *self)
|
|
{
|
|
GSource *source;
|
|
|
|
source = clutter_clock_source_new (self);
|
|
self->source = source;
|
|
|
|
self->idle = FALSE;
|
|
self->ensure_next_iteration = FALSE;
|
|
self->paused = FALSE;
|
|
|
|
#ifdef CLUTTER_ENABLE_DEBUG
|
|
self->frame_budget = G_USEC_PER_SEC / 60;
|
|
#endif
|
|
|
|
g_source_set_priority (source, CLUTTER_PRIORITY_REDRAW);
|
|
g_source_set_can_recurse (source, FALSE);
|
|
g_source_attach (source, NULL);
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_add_timeline (ClutterMasterClock *clock,
|
|
ClutterTimeline *timeline)
|
|
{
|
|
ClutterMasterClockDefault *master_clock = (ClutterMasterClockDefault *) clock;
|
|
gboolean is_first;
|
|
|
|
if (g_slist_find (master_clock->timelines, timeline))
|
|
return;
|
|
|
|
is_first = master_clock->timelines == NULL;
|
|
|
|
master_clock->timelines = g_slist_prepend (master_clock->timelines,
|
|
timeline);
|
|
|
|
if (is_first)
|
|
{
|
|
master_clock_schedule_stage_updates (master_clock);
|
|
_clutter_master_clock_start_running (clock);
|
|
}
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_remove_timeline (ClutterMasterClock *clock,
|
|
ClutterTimeline *timeline)
|
|
{
|
|
ClutterMasterClockDefault *master_clock = (ClutterMasterClockDefault *) clock;
|
|
|
|
master_clock->timelines = g_slist_remove (master_clock->timelines,
|
|
timeline);
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_start_running (ClutterMasterClock *master_clock)
|
|
{
|
|
/* If called from a different thread, we need to wake up the
|
|
* main loop to start running the timelines
|
|
*/
|
|
g_main_context_wakeup (NULL);
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_ensure_next_iteration (ClutterMasterClock *clock)
|
|
{
|
|
ClutterMasterClockDefault *master_clock = (ClutterMasterClockDefault *) clock;
|
|
|
|
master_clock->ensure_next_iteration = TRUE;
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_default_set_paused (ClutterMasterClock *clock,
|
|
gboolean paused)
|
|
{
|
|
ClutterMasterClockDefault *master_clock = (ClutterMasterClockDefault *) clock;
|
|
|
|
master_clock->paused = !!paused;
|
|
}
|
|
|
|
static void
|
|
clutter_master_clock_iface_init (ClutterMasterClockIface *iface)
|
|
{
|
|
iface->add_timeline = clutter_master_clock_default_add_timeline;
|
|
iface->remove_timeline = clutter_master_clock_default_remove_timeline;
|
|
iface->start_running = clutter_master_clock_default_start_running;
|
|
iface->ensure_next_iteration = clutter_master_clock_default_ensure_next_iteration;
|
|
iface->set_paused = clutter_master_clock_default_set_paused;
|
|
}
|