mutter/cogl/cogl/cogl-bitmap-conversion.c
Sebastian Wick a0a1d102a0 cogl/bitmap-conversion: Don't break strict-aliasing for flt_pack/unpack
Simply reinterpreting the bytes differently is a strict-aliasing
violation if the type of the object isn't char or the target type of the
reinterpretation. None of that is the case here, so we have to resort to
a memcpy.

Fixes: 60c082caa ("cogl/bitmap-conversion: Support packing fp16 formats")
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/3499>
2024-01-09 14:43:16 +00:00

962 lines
28 KiB
C

/*
* Cogl
*
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*
*/
#include "config.h"
#include "cogl/cogl-private.h"
#include "cogl/cogl-bitmap-private.h"
#include "cogl/cogl-context-private.h"
#include "cogl/cogl-texture-private.h"
#include "cogl/cogl-half-float.h"
#include <string.h>
typedef enum
{
MEDIUM_TYPE_8,
MEDIUM_TYPE_16,
MEDIUM_TYPE_FLOAT,
} MediumType;
G_STATIC_ASSERT (sizeof (uint32_t) == sizeof (GLfloat));
inline static uint32_t
pack_flt (GLfloat b)
{
uint32_t ret;
memcpy (&ret, &b, sizeof (uint32_t));
return ret;
}
inline static GLfloat
unpack_flt (uint32_t b)
{
GLfloat ret;
memcpy (&ret, &b, sizeof (GLfloat));
return ret;
}
#define CLAMP_NORM(b) (MAX (MIN ((b), 1.0), 0.0))
#define UNPACK_1(b) ((b) * ((1 << (sizeof (component_type) * 8)) - 1))
#define UNPACK_2(b) (((b) * ((1 << (sizeof (component_type) * 8)) - 1) + \
1) / 3)
#define UNPACK_4(b) (((b) * ((1 << (sizeof (component_type) * 8)) - 1) + \
7) / 0xf)
#define UNPACK_5(b) (((b) * ((1 << (sizeof (component_type) * 8)) - 1) + \
0xf) / 0x1f)
#define UNPACK_6(b) (((b) * ((1 << (sizeof (component_type) * 8)) - 1) + \
0x1f) / 0x3f)
#define UNPACK_10(b) (((b) * ((1 << (sizeof (component_type) * 8)) - 1) + \
0x1ff) / 0x3ff)
#define UNPACK_16(b) (((b) * ((1 << (sizeof (component_type) * 8)) - 1) + \
0x7fff) / 0xffff)
#define UNPACK_SHORT(b) (CLAMP_NORM (cogl_half_to_float (b)) * \
((1 << (sizeof (component_type) * 8)) - 1))
#define UNPACK_FLOAT(b) (CLAMP_NORM (unpack_flt (b)) * \
((1 << (sizeof (component_type) * 8)) - 1))
/* Pack and round to nearest */
#define PACK_SIZE(b, max) \
(((b) * (max) + (1 << (sizeof (component_type) * 8 - 1)) - 1) / \
((1 << (sizeof (component_type) * 8)) - 1))
#define PACK_1(b) PACK_SIZE (b, 1)
#define PACK_2(b) PACK_SIZE (b, 3)
#define PACK_4(b) PACK_SIZE (b, 0xf)
#define PACK_5(b) PACK_SIZE (b, 0x1f)
#define PACK_6(b) PACK_SIZE (b, 0x3f)
#define PACK_10(b) PACK_SIZE (b, 0x3ff)
#define PACK_16(b) PACK_SIZE (b, 0xffff)
#define PACK_SHORT(b) cogl_float_to_half ( \
(b) / ((1 << (sizeof (component_type) * 8)) - 1))
#define PACK_FLOAT(b) pack_flt ((b) / ((1 << (sizeof (component_type) * 8)) - 1))
#define component_type uint8_t
#define component_size 8
/* We want to specially optimise the packing when we are converting
to/from an 8-bit type so that it won't do anything. That way for
example if we are just doing a swizzle conversion then the inner
loop for the conversion will be really simple */
#define UNPACK_BYTE(b) (b)
#define PACK_BYTE(b) (b)
#include "cogl/cogl-bitmap-packing.h"
#undef PACK_BYTE
#undef UNPACK_BYTE
#undef component_type
#undef component_size
#define component_type uint16_t
#define component_size 16
#define UNPACK_BYTE(b) (((b) * 65535 + 127) / 255)
#define PACK_BYTE(b) (((b) * 255 + 32767) / 65535)
#include "cogl/cogl-bitmap-packing.h"
#undef PACK_BYTE
#undef UNPACK_BYTE
#undef component_type
#undef component_size
#undef CLAMP_NORM
#undef UNPACK_1
#undef UNPACK_2
#undef UNPACK_4
#undef UNPACK_5
#undef UNPACK_6
#undef UNPACK_10
#undef UNPACK_16
#undef UNPACK_SHORT
#undef UNPACK_FLOAT
#undef PACK_SIZE
#undef PACK_1
#undef PACK_2
#undef PACK_4
#undef PACK_5
#undef PACK_6
#undef PACK_10
#undef PACK_16
#undef PACK_SHORT
#undef PACK_FLOAT
#define UNPACK_1(b) ((b) / 1.0f)
#define UNPACK_2(b) ((b) / 3.0f)
#define UNPACK_4(b) ((b) / 15.0f)
#define UNPACK_5(b) ((b) / 31.0f)
#define UNPACK_6(b) ((b) / 63.0f)
#define UNPACK_BYTE(b) ((b) / 255.0f)
#define UNPACK_10(b) ((b) / 1023.0f)
#define UNPACK_16(b) ((b) / 65535.0f)
#define UNPACK_SHORT(b) cogl_half_to_float (b)
#define UNPACK_FLOAT(b) unpack_flt (b)
#define PACK_1(b) ((uint32_t) (b))
#define PACK_2(b) ((uint32_t) ((b) * 3.5f))
#define PACK_4(b) ((uint32_t) ((b) * 15.5f))
#define PACK_5(b) ((uint32_t) ((b) * 31.5f))
#define PACK_6(b) ((uint32_t) ((b) * 63.5f))
#define PACK_BYTE(b) ((uint32_t) ((b) * 255.5f))
#define PACK_10(b) ((uint32_t) ((b) * 1023.5f))
#define PACK_16(b) ((uint32_t) ((b) * 65535.0f))
#define PACK_SHORT(b) cogl_float_to_half (b)
#define PACK_FLOAT(b) pack_flt((b) / 1.0)
#define component_type float
#define component_size float
#include "cogl-bitmap-packing.h"
#undef PACK_BYTE
#undef UNPACK_BYTE
#undef component_type
#undef component_size
#undef UNPACK_1
#undef UNPACK_2
#undef UNPACK_4
#undef UNPACK_5
#undef UNPACK_6
#undef UNPACK_10
#undef UNPACK_16
#undef UNPACK_SHORT
#undef UNPACK_FLOAT
#undef PACK_1
#undef PACK_2
#undef PACK_4
#undef PACK_5
#undef PACK_6
#undef PACK_10
#undef PACK_16
#undef PACK_SHORT
#undef PACK_FLOAT
/* (Un)Premultiplication */
inline static void
_cogl_unpremult_alpha_0 (uint8_t *dst)
{
dst[0] = 0;
dst[1] = 0;
dst[2] = 0;
dst[3] = 0;
}
inline static void
_cogl_unpremult_alpha_last (uint8_t *dst)
{
uint8_t alpha = dst[3];
dst[0] = (dst[0] * 255) / alpha;
dst[1] = (dst[1] * 255) / alpha;
dst[2] = (dst[2] * 255) / alpha;
}
inline static void
_cogl_unpremult_alpha_first (uint8_t *dst)
{
uint8_t alpha = dst[0];
dst[1] = (dst[1] * 255) / alpha;
dst[2] = (dst[2] * 255) / alpha;
dst[3] = (dst[3] * 255) / alpha;
}
/* No division form of floor((c*a + 128)/255) (I first encountered
* this in the RENDER implementation in the X server.) Being exact
* is important for a == 255 - we want to get exactly c.
*/
#define MULT(d,a,t) \
G_STMT_START { \
t = d * a + 128; \
d = ((t >> 8) + t) >> 8; \
} G_STMT_END
inline static void
_cogl_premult_alpha_last (uint8_t *dst)
{
uint8_t alpha = dst[3];
/* Using a separate temporary per component has given slightly better
* code generation with GCC in the past; it shouldn't do any worse in
* any case.
*/
unsigned int t1, t2, t3;
MULT(dst[0], alpha, t1);
MULT(dst[1], alpha, t2);
MULT(dst[2], alpha, t3);
}
inline static void
_cogl_premult_alpha_first (uint8_t *dst)
{
uint8_t alpha = dst[0];
unsigned int t1, t2, t3;
MULT(dst[1], alpha, t1);
MULT(dst[2], alpha, t2);
MULT(dst[3], alpha, t3);
}
#undef MULT
/* Use the SSE optimized version to premult four pixels at once when
it is available. The same assembler code works for x86 and x86-64
because it doesn't refer to any non-SSE registers directly */
#if defined(__SSE2__) && defined(__GNUC__) \
&& (defined(__x86_64) || defined(__i386))
#define COGL_USE_PREMULT_SSE2
#endif
#ifdef COGL_USE_PREMULT_SSE2
inline static void
_cogl_premult_alpha_last_four_pixels_sse2 (uint8_t *p)
{
/* 8 copies of 128 used below */
static const int16_t eight_halves[8] __attribute__ ((aligned (16))) =
{ 128, 128, 128, 128, 128, 128, 128, 128 };
/* Mask of the rgb components of the four pixels */
static const int8_t just_rgb[16] __attribute__ ((aligned (16))) =
{ 0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00,
0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x00 };
/* Each SSE register only holds two pixels because we need to work
with 16-bit intermediate values. We still do four pixels by
interleaving two registers in the hope that it will pipeline
better */
asm (/* Load eight_halves into xmm5 for later */
"movdqa (%1), %%xmm5\n"
/* Clear xmm3 */
"pxor %%xmm3, %%xmm3\n"
/* Load two pixels from p into the low half of xmm0 */
"movlps (%0), %%xmm0\n"
/* Load the next set of two pixels from p into the low half of xmm1 */
"movlps 8(%0), %%xmm1\n"
/* Unpack 8 bytes from the low quad-words in each register to 8
16-bit values */
"punpcklbw %%xmm3, %%xmm0\n"
"punpcklbw %%xmm3, %%xmm1\n"
/* Copy alpha values of the first pixel in xmm0 to all
components of the first pixel in xmm2 */
"pshuflw $255, %%xmm0, %%xmm2\n"
/* same for xmm1 and xmm3 */
"pshuflw $255, %%xmm1, %%xmm3\n"
/* The above also copies the second pixel directly so we now
want to replace the RGB components with copies of the alpha
components */
"pshufhw $255, %%xmm2, %%xmm2\n"
"pshufhw $255, %%xmm3, %%xmm3\n"
/* Multiply the rgb components by the alpha */
"pmullw %%xmm2, %%xmm0\n"
"pmullw %%xmm3, %%xmm1\n"
/* Add 128 to each component */
"paddw %%xmm5, %%xmm0\n"
"paddw %%xmm5, %%xmm1\n"
/* Copy the results to temporary registers xmm4 and xmm5 */
"movdqa %%xmm0, %%xmm4\n"
"movdqa %%xmm1, %%xmm5\n"
/* Divide the results by 256 */
"psrlw $8, %%xmm0\n"
"psrlw $8, %%xmm1\n"
/* Add the temporaries back in */
"paddw %%xmm4, %%xmm0\n"
"paddw %%xmm5, %%xmm1\n"
/* Divide again */
"psrlw $8, %%xmm0\n"
"psrlw $8, %%xmm1\n"
/* Pack the results back as bytes */
"packuswb %%xmm1, %%xmm0\n"
/* Load just_rgb into xmm3 for later */
"movdqa (%2), %%xmm3\n"
/* Reload all four pixels into xmm2 */
"movups (%0), %%xmm2\n"
/* Mask out the alpha from the results */
"andps %%xmm3, %%xmm0\n"
/* Mask out the RGB from the original four pixels */
"andnps %%xmm2, %%xmm3\n"
/* Combine the two to get the right alpha values */
"orps %%xmm3, %%xmm0\n"
/* Write to memory */
"movdqu %%xmm0, (%0)\n"
: /* no outputs */
: "r" (p), "r" (eight_halves), "r" (just_rgb)
: "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
}
#endif /* COGL_USE_PREMULT_SSE2 */
static void
_cogl_bitmap_premult_unpacked_span_8 (uint8_t *data,
int width)
{
#ifdef COGL_USE_PREMULT_SSE2
/* Process 4 pixels at a time */
while (width >= 4)
{
_cogl_premult_alpha_last_four_pixels_sse2 (data);
data += 4 * 4;
width -= 4;
}
/* If there are any pixels left we will fall through and
handle them below */
#endif /* COGL_USE_PREMULT_SSE2 */
while (width-- > 0)
{
_cogl_premult_alpha_last (data);
data += 4;
}
}
static void
_cogl_bitmap_unpremult_unpacked_span_8 (uint8_t *data,
int width)
{
int x;
for (x = 0; x < width; x++)
{
if (data[3] == 0)
_cogl_unpremult_alpha_0 (data);
else
_cogl_unpremult_alpha_last (data);
data += 4;
}
}
static void
_cogl_bitmap_unpremult_unpacked_span_16 (uint16_t *data,
int width)
{
while (width-- > 0)
{
uint16_t alpha = data[3];
if (alpha == 0)
memset (data, 0, sizeof (uint16_t) * 3);
else
{
data[0] = (data[0] * 65535) / alpha;
data[1] = (data[1] * 65535) / alpha;
data[2] = (data[2] * 65535) / alpha;
}
}
}
static void
_cogl_bitmap_premult_unpacked_span_16 (uint16_t *data,
int width)
{
while (width-- > 0)
{
uint16_t alpha = data[3];
data[0] = (data[0] * alpha) / 65535;
data[1] = (data[1] * alpha) / 65535;
data[2] = (data[2] * alpha) / 65535;
}
}
static void
_cogl_bitmap_unpremult_unpacked_span_float (float *data,
int width)
{
while (width-- > 0)
{
float alpha = data[3];
if (alpha == 0.0)
memset (data, 0, sizeof (float) * 3);
else
{
data[0] = data[0] / alpha;
data[1] = data[1] / alpha;
data[2] = data[2] / alpha;
}
}
}
static void
_cogl_bitmap_premult_unpacked_span_float (float *data,
int width)
{
while (width-- > 0)
{
float alpha = data[3];
data[0] = data[0] * alpha;
data[1] = data[1] * alpha;
data[2] = data[2] * alpha;
}
}
static gboolean
_cogl_bitmap_can_fast_premult (CoglPixelFormat format)
{
switch (format & ~COGL_PREMULT_BIT)
{
case COGL_PIXEL_FORMAT_RGBA_8888:
case COGL_PIXEL_FORMAT_BGRA_8888:
case COGL_PIXEL_FORMAT_ARGB_8888:
case COGL_PIXEL_FORMAT_ABGR_8888:
return TRUE;
default:
return FALSE;
}
}
static gboolean
determine_medium_size (CoglPixelFormat format)
{
switch (format)
{
case COGL_PIXEL_FORMAT_DEPTH_16:
case COGL_PIXEL_FORMAT_DEPTH_24_STENCIL_8:
case COGL_PIXEL_FORMAT_ANY:
case COGL_PIXEL_FORMAT_YUV:
g_assert_not_reached ();
case COGL_PIXEL_FORMAT_A_8:
case COGL_PIXEL_FORMAT_RG_88:
case COGL_PIXEL_FORMAT_RGB_565:
case COGL_PIXEL_FORMAT_RGBA_4444:
case COGL_PIXEL_FORMAT_RGBA_5551:
case COGL_PIXEL_FORMAT_R_8:
case COGL_PIXEL_FORMAT_RGB_888:
case COGL_PIXEL_FORMAT_BGR_888:
case COGL_PIXEL_FORMAT_RGBX_8888:
case COGL_PIXEL_FORMAT_RGBA_8888:
case COGL_PIXEL_FORMAT_BGRX_8888:
case COGL_PIXEL_FORMAT_BGRA_8888:
case COGL_PIXEL_FORMAT_XRGB_8888:
case COGL_PIXEL_FORMAT_ARGB_8888:
case COGL_PIXEL_FORMAT_XBGR_8888:
case COGL_PIXEL_FORMAT_ABGR_8888:
case COGL_PIXEL_FORMAT_RGBA_8888_PRE:
case COGL_PIXEL_FORMAT_BGRA_8888_PRE:
case COGL_PIXEL_FORMAT_ARGB_8888_PRE:
case COGL_PIXEL_FORMAT_ABGR_8888_PRE:
case COGL_PIXEL_FORMAT_RGBA_4444_PRE:
case COGL_PIXEL_FORMAT_RGBA_5551_PRE:
return MEDIUM_TYPE_8;
case COGL_PIXEL_FORMAT_RGBA_1010102:
case COGL_PIXEL_FORMAT_BGRA_1010102:
case COGL_PIXEL_FORMAT_XRGB_2101010:
case COGL_PIXEL_FORMAT_ARGB_2101010:
case COGL_PIXEL_FORMAT_XBGR_2101010:
case COGL_PIXEL_FORMAT_ABGR_2101010:
case COGL_PIXEL_FORMAT_RGBA_1010102_PRE:
case COGL_PIXEL_FORMAT_BGRA_1010102_PRE:
case COGL_PIXEL_FORMAT_ARGB_2101010_PRE:
case COGL_PIXEL_FORMAT_ABGR_2101010_PRE:
case COGL_PIXEL_FORMAT_R_16:
case COGL_PIXEL_FORMAT_RG_1616:
case COGL_PIXEL_FORMAT_RGBA_16161616:
case COGL_PIXEL_FORMAT_RGBA_16161616_PRE:
return MEDIUM_TYPE_16;
case COGL_PIXEL_FORMAT_RGBX_FP_16161616:
case COGL_PIXEL_FORMAT_RGBA_FP_16161616:
case COGL_PIXEL_FORMAT_BGRX_FP_16161616:
case COGL_PIXEL_FORMAT_BGRA_FP_16161616:
case COGL_PIXEL_FORMAT_XRGB_FP_16161616:
case COGL_PIXEL_FORMAT_ARGB_FP_16161616:
case COGL_PIXEL_FORMAT_XBGR_FP_16161616:
case COGL_PIXEL_FORMAT_ABGR_FP_16161616:
case COGL_PIXEL_FORMAT_RGBA_FP_16161616_PRE:
case COGL_PIXEL_FORMAT_BGRA_FP_16161616_PRE:
case COGL_PIXEL_FORMAT_ARGB_FP_16161616_PRE:
case COGL_PIXEL_FORMAT_ABGR_FP_16161616_PRE:
case COGL_PIXEL_FORMAT_RGBA_FP_32323232:
case COGL_PIXEL_FORMAT_RGBA_FP_32323232_PRE:
return MEDIUM_TYPE_FLOAT;
}
g_assert_not_reached ();
return FALSE;
}
static size_t
calculate_medium_size_pixel_size (MediumType medium_type)
{
switch (medium_type)
{
case MEDIUM_TYPE_8:
return sizeof (uint8_t) * 4;
case MEDIUM_TYPE_16:
return sizeof (uint16_t) * 4;
case MEDIUM_TYPE_FLOAT:
return sizeof (float) * 4;
}
g_assert_not_reached ();
}
gboolean
_cogl_bitmap_convert_into_bitmap (CoglBitmap *src_bmp,
CoglBitmap *dst_bmp,
GError **error)
{
uint8_t *src_data;
uint8_t *dst_data;
uint8_t *src;
uint8_t *dst;
void *tmp_row;
int src_rowstride;
int dst_rowstride;
int y;
int width, height;
CoglPixelFormat src_format;
CoglPixelFormat dst_format;
MediumType medium_type;
gboolean need_premult;
src_format = cogl_bitmap_get_format (src_bmp);
src_rowstride = cogl_bitmap_get_rowstride (src_bmp);
dst_format = cogl_bitmap_get_format (dst_bmp);
dst_rowstride = cogl_bitmap_get_rowstride (dst_bmp);
width = cogl_bitmap_get_width (src_bmp);
height = cogl_bitmap_get_height (src_bmp);
g_return_val_if_fail (width == cogl_bitmap_get_width (dst_bmp), FALSE);
g_return_val_if_fail (height == cogl_bitmap_get_height (dst_bmp), FALSE);
need_premult
= ((src_format & COGL_PREMULT_BIT) != (dst_format & COGL_PREMULT_BIT) &&
src_format != COGL_PIXEL_FORMAT_A_8 &&
dst_format != COGL_PIXEL_FORMAT_A_8 &&
(src_format & dst_format & COGL_A_BIT));
/* If the base format is the same then we can just copy the bitmap
instead */
if ((src_format & ~COGL_PREMULT_BIT) == (dst_format & ~COGL_PREMULT_BIT) &&
(!need_premult || _cogl_bitmap_can_fast_premult (dst_format)))
{
if (!_cogl_bitmap_copy_subregion (src_bmp, dst_bmp,
0, 0, /* src_x / src_y */
0, 0, /* dst_x / dst_y */
width, height,
error))
return FALSE;
if (need_premult)
{
if ((dst_format & COGL_PREMULT_BIT))
{
if (!_cogl_bitmap_premult (dst_bmp, error))
return FALSE;
}
else
{
if (!_cogl_bitmap_unpremult (dst_bmp, error))
return FALSE;
}
}
return TRUE;
}
src_data = _cogl_bitmap_map (src_bmp, COGL_BUFFER_ACCESS_READ, 0, error);
if (src_data == NULL)
return FALSE;
dst_data = _cogl_bitmap_map (dst_bmp,
COGL_BUFFER_ACCESS_WRITE,
COGL_BUFFER_MAP_HINT_DISCARD,
error);
if (dst_data == NULL)
{
_cogl_bitmap_unmap (src_bmp);
return FALSE;
}
medium_type = determine_medium_size (dst_format);
/* Allocate a buffer to hold a temporary RGBA row */
tmp_row = g_malloc (width * calculate_medium_size_pixel_size (medium_type));
/* FIXME: Optimize */
for (y = 0; y < height; y++)
{
src = src_data + y * src_rowstride;
dst = dst_data + y * dst_rowstride;
switch (medium_type)
{
case MEDIUM_TYPE_8:
_cogl_unpack_8 (src_format, src, tmp_row, width);
break;
case MEDIUM_TYPE_16:
_cogl_unpack_16 (src_format, src, tmp_row, width);
break;
case MEDIUM_TYPE_FLOAT:
_cogl_unpack_float (src_format, src, tmp_row, width);
break;
}
/* Handle premultiplication */
if (need_premult)
{
if (dst_format & COGL_PREMULT_BIT)
{
switch (medium_type)
{
case MEDIUM_TYPE_8:
_cogl_bitmap_premult_unpacked_span_8 (tmp_row, width);
break;
case MEDIUM_TYPE_16:
_cogl_bitmap_premult_unpacked_span_16 (tmp_row, width);
break;
case MEDIUM_TYPE_FLOAT:
_cogl_bitmap_premult_unpacked_span_float (tmp_row, width);
break;
}
}
else
{
switch (medium_type)
{
case MEDIUM_TYPE_8:
_cogl_bitmap_unpremult_unpacked_span_8 (tmp_row, width);
break;
case MEDIUM_TYPE_16:
_cogl_bitmap_unpremult_unpacked_span_16 (tmp_row, width);
break;
case MEDIUM_TYPE_FLOAT:
_cogl_bitmap_unpremult_unpacked_span_float (tmp_row, width);
break;
}
}
}
switch (medium_type)
{
case MEDIUM_TYPE_8:
_cogl_pack_8 (dst_format, tmp_row, dst, width);
break;
case MEDIUM_TYPE_16:
_cogl_pack_16 (dst_format, tmp_row, dst, width);
break;
case MEDIUM_TYPE_FLOAT:
_cogl_pack_float (dst_format, tmp_row, dst, width);
break;
}
}
_cogl_bitmap_unmap (src_bmp);
_cogl_bitmap_unmap (dst_bmp);
g_free (tmp_row);
return TRUE;
}
CoglBitmap *
_cogl_bitmap_convert (CoglBitmap *src_bmp,
CoglPixelFormat dst_format,
GError **error)
{
CoglBitmap *dst_bmp;
int width, height;
CoglContext *ctx;
ctx = _cogl_bitmap_get_context (src_bmp);
width = cogl_bitmap_get_width (src_bmp);
height = cogl_bitmap_get_height (src_bmp);
dst_bmp = _cogl_bitmap_new_with_malloc_buffer (ctx,
width, height,
dst_format,
error);
if (!dst_bmp)
return NULL;
if (!_cogl_bitmap_convert_into_bitmap (src_bmp, dst_bmp, error))
{
g_object_unref (dst_bmp);
return NULL;
}
return dst_bmp;
}
static gboolean
driver_can_convert (CoglContext *ctx,
CoglPixelFormat src_format,
CoglPixelFormat internal_format)
{
if (!_cogl_has_private_feature (ctx, COGL_PRIVATE_FEATURE_FORMAT_CONVERSION))
return FALSE;
if (src_format == internal_format)
return TRUE;
/* If the driver doesn't natively support alpha textures then it
* won't work correctly to convert to/from component-alpha
* textures */
if (!_cogl_has_private_feature (ctx, COGL_PRIVATE_FEATURE_ALPHA_TEXTURES) &&
(src_format == COGL_PIXEL_FORMAT_A_8 ||
internal_format == COGL_PIXEL_FORMAT_A_8))
return FALSE;
/* Same for red-green textures. If red-green textures aren't
* supported then the internal format should never be RG_88 but we
* should still be able to convert from an RG source image */
if (!cogl_has_feature (ctx, COGL_FEATURE_ID_TEXTURE_RG) &&
src_format == COGL_PIXEL_FORMAT_RG_88)
return FALSE;
return TRUE;
}
CoglBitmap *
_cogl_bitmap_convert_for_upload (CoglBitmap *src_bmp,
CoglPixelFormat internal_format,
GError **error)
{
CoglContext *ctx = _cogl_bitmap_get_context (src_bmp);
CoglPixelFormat src_format = cogl_bitmap_get_format (src_bmp);
CoglBitmap *dst_bmp;
g_return_val_if_fail (internal_format != COGL_PIXEL_FORMAT_ANY, NULL);
/* OpenGL supports specifying a different format for the internal
format when uploading texture data. We should use this to convert
formats because it is likely to be faster and support more types
than the Cogl bitmap code. However under GLES the internal format
must be the same as the bitmap format and it only supports a
limited number of formats so we must convert using the Cogl
bitmap code instead */
if (driver_can_convert (ctx, src_format, internal_format))
{
/* If the source format does not have the same premult flag as the
internal_format then we need to copy and convert it */
if (_cogl_texture_needs_premult_conversion (src_format,
internal_format))
{
dst_bmp = _cogl_bitmap_convert (src_bmp,
src_format ^ COGL_PREMULT_BIT,
error);
if (dst_bmp == NULL)
return NULL;
}
else
dst_bmp = g_object_ref (src_bmp);
}
else
{
CoglPixelFormat closest_format;
closest_format =
ctx->driver_vtable->pixel_format_to_gl (ctx,
internal_format,
NULL, /* ignore gl intformat */
NULL, /* ignore gl format */
NULL); /* ignore gl type */
if (closest_format != src_format)
dst_bmp = _cogl_bitmap_convert (src_bmp, closest_format, error);
else
dst_bmp = g_object_ref (src_bmp);
}
return dst_bmp;
}
gboolean
_cogl_bitmap_unpremult (CoglBitmap *bmp,
GError **error)
{
uint8_t *p, *data;
uint16_t *tmp_row;
int x,y;
CoglPixelFormat format;
int width, height;
int rowstride;
format = cogl_bitmap_get_format (bmp);
width = cogl_bitmap_get_width (bmp);
height = cogl_bitmap_get_height (bmp);
rowstride = cogl_bitmap_get_rowstride (bmp);
if ((data = _cogl_bitmap_map (bmp,
COGL_BUFFER_ACCESS_READ |
COGL_BUFFER_ACCESS_WRITE,
0,
error)) == NULL)
return FALSE;
/* If we can't directly unpremult the data inline then we'll
allocate a temporary row and unpack the data. This assumes if we
can fast premult then we can also fast unpremult */
if (_cogl_bitmap_can_fast_premult (format))
tmp_row = NULL;
else
tmp_row = g_malloc (sizeof (uint16_t) * 4 * width);
for (y = 0; y < height; y++)
{
p = (uint8_t*) data + y * rowstride;
if (tmp_row)
{
_cogl_unpack_16 (format, p, tmp_row, width);
_cogl_bitmap_unpremult_unpacked_span_16 (tmp_row, width);
_cogl_pack_16 (format, tmp_row, p, width);
}
else
{
if (format & COGL_AFIRST_BIT)
{
for (x = 0; x < width; x++)
{
if (p[0] == 0)
_cogl_unpremult_alpha_0 (p);
else
_cogl_unpremult_alpha_first (p);
p += 4;
}
}
else
_cogl_bitmap_unpremult_unpacked_span_8 (p, width);
}
}
g_free (tmp_row);
_cogl_bitmap_unmap (bmp);
_cogl_bitmap_set_format (bmp, format & ~COGL_PREMULT_BIT);
return TRUE;
}
gboolean
_cogl_bitmap_premult (CoglBitmap *bmp,
GError **error)
{
uint8_t *p, *data;
uint16_t *tmp_row;
int x,y;
CoglPixelFormat format;
int width, height;
int rowstride;
format = cogl_bitmap_get_format (bmp);
width = cogl_bitmap_get_width (bmp);
height = cogl_bitmap_get_height (bmp);
rowstride = cogl_bitmap_get_rowstride (bmp);
if ((data = _cogl_bitmap_map (bmp,
COGL_BUFFER_ACCESS_READ |
COGL_BUFFER_ACCESS_WRITE,
0,
error)) == NULL)
return FALSE;
/* If we can't directly premult the data inline then we'll allocate
a temporary row and unpack the data. */
if (_cogl_bitmap_can_fast_premult (format))
tmp_row = NULL;
else
tmp_row = g_malloc (sizeof (uint16_t) * 4 * width);
for (y = 0; y < height; y++)
{
p = (uint8_t*) data + y * rowstride;
if (tmp_row)
{
_cogl_unpack_16 (format, p, tmp_row, width);
_cogl_bitmap_premult_unpacked_span_16 (tmp_row, width);
_cogl_pack_16 (format, tmp_row, p, width);
}
else
{
if (format & COGL_AFIRST_BIT)
{
for (x = 0; x < width; x++)
{
_cogl_premult_alpha_first (p);
p += 4;
}
}
else
_cogl_bitmap_premult_unpacked_span_8 (p, width);
}
}
g_free (tmp_row);
_cogl_bitmap_unmap (bmp);
_cogl_bitmap_set_format (bmp, format | COGL_PREMULT_BIT);
return TRUE;
}