mutter/clutter/clutter/clutter-stage.c
Marco Trevisan (Treviño) b69d2aa6a0 stage: Compute view perspective when parameters changed
Clutter stage used to compute the initial projection using a fixed z
translation which wasn't matching the one we computed in
calculate_z_translation().
This caused to have a wrong initial projection on startup which was then
correctly recomputed only at the first paint.

However, since this calculation doesn't depend on view, but only on viewport
size, perspective's fovy and z_near we can safely do this at startup and
only when any of those parameters change.

Then we can move the computation out _clutter_stage_maybe_setup_viewport()
since the cogl framebuffer viewport sizes aren't affecting this.

Fixes https://gitlab.gnome.org/GNOME/gnome-shell/issues/1639
https://gitlab.gnome.org/GNOME/mutter/merge_requests/803
2019-09-20 13:51:33 +02:00

4922 lines
142 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Clutter.
*
* An OpenGL based 'interactive canvas' library.
*
* Authored By Matthew Allum <mallum@openedhand.com>
*
* Copyright (C) 2006 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see <http://www.gnu.org/licenses/>.
*/
/**
* SECTION:clutter-stage
* @short_description: Top level visual element to which actors are placed.
*
* #ClutterStage is a top level 'window' on which child actors are placed
* and manipulated.
*
* Backends might provide support for multiple stages. The support for this
* feature can be checked at run-time using the clutter_feature_available()
* function and the %CLUTTER_FEATURE_STAGE_MULTIPLE flag. If the backend used
* supports multiple stages, new #ClutterStage instances can be created
* using clutter_stage_new(). These stages must be managed by the developer
* using clutter_actor_destroy(), which will take care of destroying all the
* actors contained inside them.
*
* #ClutterStage is a proxy actor, wrapping the backend-specific implementation
* (a #StageWindow) of the windowing system. It is possible to subclass
* #ClutterStage, as long as every overridden virtual function chains up to the
* parent class corresponding function.
*/
#include "clutter-build-config.h"
#include <math.h>
#include <cairo.h>
#define CLUTTER_DISABLE_DEPRECATION_WARNINGS
#define CLUTTER_ENABLE_EXPERIMENTAL_API
#include "clutter-stage.h"
#include "deprecated/clutter-stage.h"
#include "deprecated/clutter-container.h"
#include "clutter-actor-private.h"
#include "clutter-backend-private.h"
#include "clutter-cairo.h"
#include "clutter-color.h"
#include "clutter-container.h"
#include "clutter-debug.h"
#include "clutter-device-manager-private.h"
#include "clutter-enum-types.h"
#include "clutter-event-private.h"
#include "clutter-id-pool.h"
#include "clutter-main.h"
#include "clutter-marshal.h"
#include "clutter-master-clock.h"
#include "clutter-mutter.h"
#include "clutter-paint-volume-private.h"
#include "clutter-private.h"
#include "clutter-stage-manager-private.h"
#include "clutter-stage-private.h"
#include "clutter-stage-view-private.h"
#include "clutter-private.h"
#include "cogl/cogl.h"
#include "cogl/cogl-trace.h"
/* <private>
* ClutterStageHint:
* @CLUTTER_STAGE_NONE: No hint set
* @CLUTTER_STAGE_NO_CLEAR_ON_PAINT: When this hint is set, the stage
* should not clear the viewport; this flag is useful when painting
* fully opaque actors covering the whole visible area of the stage,
* i.e. when no blending with the stage color happens over the whole
* stage viewport
*
* A series of hints that enable or disable behaviours on the stage
*/
typedef enum /*< prefix=CLUTTER_STAGE >*/
{
CLUTTER_STAGE_HINT_NONE = 0,
CLUTTER_STAGE_NO_CLEAR_ON_PAINT = 1 << 0
} ClutterStageHint;
#define STAGE_NO_CLEAR_ON_PAINT(s) ((((ClutterStage *) (s))->priv->stage_hints & CLUTTER_STAGE_NO_CLEAR_ON_PAINT) != 0)
struct _ClutterStageQueueRedrawEntry
{
ClutterActor *actor;
gboolean has_clip;
ClutterPaintVolume clip;
};
typedef struct _PickRecord
{
ClutterPoint vertex[4];
ClutterActor *actor;
int clip_stack_top;
} PickRecord;
typedef struct _PickClipRecord
{
int prev;
ClutterPoint vertex[4];
} PickClipRecord;
struct _ClutterStagePrivate
{
/* the stage implementation */
ClutterStageWindow *impl;
ClutterPerspective perspective;
CoglMatrix projection;
CoglMatrix inverse_projection;
CoglMatrix view;
float viewport[4];
ClutterFog fog;
gchar *title;
ClutterActor *key_focused_actor;
GQueue *event_queue;
ClutterStageHint stage_hints;
GArray *paint_volume_stack;
ClutterPlane current_clip_planes[4];
GList *pending_queue_redraws;
CoglFramebuffer *active_framebuffer;
gint sync_delay;
GTimer *fps_timer;
gint32 timer_n_frames;
GArray *pick_stack;
GArray *pick_clip_stack;
int pick_clip_stack_top;
gboolean pick_stack_frozen;
ClutterPickMode cached_pick_mode;
#ifdef CLUTTER_ENABLE_DEBUG
gulong redraw_count;
#endif /* CLUTTER_ENABLE_DEBUG */
ClutterStageState current_state;
gpointer paint_data;
GDestroyNotify paint_notify;
cairo_rectangle_int_t view_clip;
int update_freeze_count;
guint relayout_pending : 1;
guint redraw_pending : 1;
guint is_cursor_visible : 1;
guint use_fog : 1;
guint throttle_motion_events : 1;
guint use_alpha : 1;
guint min_size_changed : 1;
guint accept_focus : 1;
guint motion_events_enabled : 1;
guint has_custom_perspective : 1;
guint stage_was_relayout : 1;
};
enum
{
PROP_0,
PROP_COLOR,
PROP_CURSOR_VISIBLE,
PROP_PERSPECTIVE,
PROP_TITLE,
PROP_USE_FOG,
PROP_FOG,
PROP_USE_ALPHA,
PROP_KEY_FOCUS,
PROP_NO_CLEAR_HINT,
PROP_ACCEPT_FOCUS,
PROP_LAST
};
static GParamSpec *obj_props[PROP_LAST] = { NULL, };
enum
{
ACTIVATE,
DEACTIVATE,
DELETE_EVENT,
AFTER_PAINT,
PAINT_VIEW,
PRESENTED,
LAST_SIGNAL
};
static guint stage_signals[LAST_SIGNAL] = { 0, };
static const ClutterColor default_stage_color = { 255, 255, 255, 255 };
static void clutter_stage_maybe_finish_queue_redraws (ClutterStage *stage);
static void free_queue_redraw_entry (ClutterStageQueueRedrawEntry *entry);
static void capture_view_into (ClutterStage *stage,
gboolean paint,
ClutterStageView *view,
cairo_rectangle_int_t *rect,
uint8_t *data,
int stride);
static void clutter_stage_update_view_perspective (ClutterStage *stage);
static void clutter_container_iface_init (ClutterContainerIface *iface);
G_DEFINE_TYPE_WITH_CODE (ClutterStage, clutter_stage, CLUTTER_TYPE_GROUP,
G_ADD_PRIVATE (ClutterStage)
G_IMPLEMENT_INTERFACE (CLUTTER_TYPE_CONTAINER,
clutter_container_iface_init))
static void
clutter_stage_real_add (ClutterContainer *container,
ClutterActor *child)
{
clutter_actor_add_child (CLUTTER_ACTOR (container), child);
}
static void
clutter_stage_real_remove (ClutterContainer *container,
ClutterActor *child)
{
clutter_actor_remove_child (CLUTTER_ACTOR (container), child);
}
static void
clutter_stage_real_foreach (ClutterContainer *container,
ClutterCallback callback,
gpointer user_data)
{
ClutterActorIter iter;
ClutterActor *child;
clutter_actor_iter_init (&iter, CLUTTER_ACTOR (container));
while (clutter_actor_iter_next (&iter, &child))
callback (child, user_data);
}
static void
clutter_stage_real_raise (ClutterContainer *container,
ClutterActor *child,
ClutterActor *sibling)
{
clutter_actor_set_child_above_sibling (CLUTTER_ACTOR (container),
child,
sibling);
}
static void
clutter_stage_real_lower (ClutterContainer *container,
ClutterActor *child,
ClutterActor *sibling)
{
clutter_actor_set_child_below_sibling (CLUTTER_ACTOR (container),
child,
sibling);
}
static void
clutter_stage_real_sort_depth_order (ClutterContainer *container)
{
}
static void
clutter_container_iface_init (ClutterContainerIface *iface)
{
iface->add = clutter_stage_real_add;
iface->remove = clutter_stage_real_remove;
iface->foreach = clutter_stage_real_foreach;
iface->raise = clutter_stage_real_raise;
iface->lower = clutter_stage_real_lower;
iface->sort_depth_order = clutter_stage_real_sort_depth_order;
}
static void
clutter_stage_get_preferred_width (ClutterActor *self,
gfloat for_height,
gfloat *min_width_p,
gfloat *natural_width_p)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
cairo_rectangle_int_t geom;
if (priv->impl == NULL)
return;
_clutter_stage_window_get_geometry (priv->impl, &geom);
if (min_width_p)
*min_width_p = geom.width;
if (natural_width_p)
*natural_width_p = geom.width;
}
static void
clutter_stage_get_preferred_height (ClutterActor *self,
gfloat for_width,
gfloat *min_height_p,
gfloat *natural_height_p)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
cairo_rectangle_int_t geom;
if (priv->impl == NULL)
return;
_clutter_stage_window_get_geometry (priv->impl, &geom);
if (min_height_p)
*min_height_p = geom.height;
if (natural_height_p)
*natural_height_p = geom.height;
}
static void
add_pick_stack_weak_refs (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
int i;
if (priv->pick_stack_frozen)
return;
for (i = 0; i < priv->pick_stack->len; i++)
{
PickRecord *rec = &g_array_index (priv->pick_stack, PickRecord, i);
if (rec->actor)
g_object_add_weak_pointer (G_OBJECT (rec->actor),
(gpointer) &rec->actor);
}
priv->pick_stack_frozen = TRUE;
}
static void
remove_pick_stack_weak_refs (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
int i;
if (!priv->pick_stack_frozen)
return;
for (i = 0; i < priv->pick_stack->len; i++)
{
PickRecord *rec = &g_array_index (priv->pick_stack, PickRecord, i);
if (rec->actor)
g_object_remove_weak_pointer (G_OBJECT (rec->actor),
(gpointer) &rec->actor);
}
priv->pick_stack_frozen = FALSE;
}
static void
_clutter_stage_clear_pick_stack (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
remove_pick_stack_weak_refs (stage);
g_array_set_size (priv->pick_stack, 0);
g_array_set_size (priv->pick_clip_stack, 0);
priv->pick_clip_stack_top = -1;
priv->cached_pick_mode = CLUTTER_PICK_NONE;
}
void
clutter_stage_log_pick (ClutterStage *stage,
const ClutterPoint *vertices,
ClutterActor *actor)
{
ClutterStagePrivate *priv;
PickRecord rec;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (actor != NULL);
priv = stage->priv;
g_assert (!priv->pick_stack_frozen);
memcpy (rec.vertex, vertices, 4 * sizeof (ClutterPoint));
rec.actor = actor;
rec.clip_stack_top = priv->pick_clip_stack_top;
g_array_append_val (priv->pick_stack, rec);
}
void
clutter_stage_push_pick_clip (ClutterStage *stage,
const ClutterPoint *vertices)
{
ClutterStagePrivate *priv;
PickClipRecord clip;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
g_assert (!priv->pick_stack_frozen);
clip.prev = priv->pick_clip_stack_top;
memcpy (clip.vertex, vertices, 4 * sizeof (ClutterPoint));
g_array_append_val (priv->pick_clip_stack, clip);
priv->pick_clip_stack_top = priv->pick_clip_stack->len - 1;
}
void
clutter_stage_pop_pick_clip (ClutterStage *stage)
{
ClutterStagePrivate *priv;
const PickClipRecord *top;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
g_assert (!priv->pick_stack_frozen);
g_assert (priv->pick_clip_stack_top >= 0);
/* Individual elements of pick_clip_stack are not freed. This is so they
* can be shared as part of a tree of different stacks used by different
* actors in the pick_stack. The whole pick_clip_stack does however get
* freed later in _clutter_stage_clear_pick_stack.
*/
top = &g_array_index (priv->pick_clip_stack,
PickClipRecord,
priv->pick_clip_stack_top);
priv->pick_clip_stack_top = top->prev;
}
static gboolean
is_quadrilateral_axis_aligned_rectangle (const ClutterPoint *vertices)
{
int i;
for (i = 0; i < 4; i++)
{
if (!G_APPROX_VALUE (vertices[i].x,
vertices[(i + 1) % 4].x,
FLT_EPSILON) &&
!G_APPROX_VALUE (vertices[i].y,
vertices[(i + 1) % 4].y,
FLT_EPSILON))
return FALSE;
}
return TRUE;
}
static gboolean
is_inside_axis_aligned_rectangle (const ClutterPoint *point,
const ClutterPoint *vertices)
{
float min_x = FLT_MAX;
float max_x = FLT_MIN;
float min_y = FLT_MAX;
float max_y = FLT_MIN;
int i;
for (i = 0; i < 3; i++)
{
min_x = MIN (min_x, vertices[i].x);
min_y = MIN (min_y, vertices[i].y);
max_x = MAX (max_x, vertices[i].x);
max_y = MAX (max_y, vertices[i].y);
}
return (point->x >= min_x &&
point->y >= min_y &&
point->x < max_x &&
point->y < max_y);
}
static gboolean
is_inside_input_region (const ClutterPoint *point,
const ClutterPoint *vertices)
{
if (is_quadrilateral_axis_aligned_rectangle (vertices))
return is_inside_axis_aligned_rectangle (point, vertices);
else
return clutter_point_inside_quadrilateral (point, vertices);
}
static gboolean
pick_record_contains_pixel (ClutterStage *stage,
const PickRecord *rec,
int x,
int y)
{
const ClutterPoint point = CLUTTER_POINT_INIT (x, y);
ClutterStagePrivate *priv;
int clip_index;
if (!is_inside_input_region (&point, rec->vertex))
return FALSE;
priv = stage->priv;
clip_index = rec->clip_stack_top;
while (clip_index >= 0)
{
const PickClipRecord *clip = &g_array_index (priv->pick_clip_stack,
PickClipRecord,
clip_index);
if (!is_inside_input_region (&point, clip->vertex))
return FALSE;
clip_index = clip->prev;
}
return TRUE;
}
static inline void
queue_full_redraw (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return;
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
/* Just calling clutter_actor_queue_redraw will typically only
* redraw the bounding box of the children parented on the stage but
* in this case we really need to ensure that the full stage is
* redrawn so we add a NULL redraw clip to the stage window. */
stage_window = _clutter_stage_get_window (stage);
if (stage_window == NULL)
return;
_clutter_stage_window_add_redraw_clip (stage_window, NULL);
}
static gboolean
stage_is_default (ClutterStage *stage)
{
ClutterStageManager *stage_manager;
ClutterStageWindow *impl;
stage_manager = clutter_stage_manager_get_default ();
if (stage != clutter_stage_manager_get_default_stage (stage_manager))
return FALSE;
impl = _clutter_stage_get_window (stage);
if (impl != _clutter_stage_get_default_window ())
return FALSE;
return TRUE;
}
static void
clutter_stage_allocate (ClutterActor *self,
const ClutterActorBox *box,
ClutterAllocationFlags flags)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
ClutterActorBox alloc = CLUTTER_ACTOR_BOX_INIT_ZERO;
float old_width, old_height;
float new_width, new_height;
float width, height;
cairo_rectangle_int_t window_size;
if (priv->impl == NULL)
return;
/* our old allocation */
clutter_actor_get_allocation_box (self, &alloc);
clutter_actor_box_get_size (&alloc, &old_width, &old_height);
/* the current allocation */
clutter_actor_box_get_size (box, &width, &height);
/* the current Stage implementation size */
_clutter_stage_window_get_geometry (priv->impl, &window_size);
/* if the stage is fixed size (for instance, it's using a EGL framebuffer)
* then we simply ignore any allocation request and override the
* allocation chain - because we cannot forcibly change the size of the
* stage window.
*/
if (!clutter_feature_available (CLUTTER_FEATURE_STAGE_STATIC))
{
CLUTTER_NOTE (LAYOUT,
"Following allocation to %.2fx%.2f (absolute origin %s)",
width, height,
(flags & CLUTTER_ABSOLUTE_ORIGIN_CHANGED)
? "changed"
: "not changed");
clutter_actor_set_allocation (self, box,
flags | CLUTTER_DELEGATE_LAYOUT);
/* Ensure the window is sized correctly */
if (priv->min_size_changed)
{
gfloat min_width, min_height;
gboolean min_width_set, min_height_set;
g_object_get (G_OBJECT (self),
"min-width", &min_width,
"min-width-set", &min_width_set,
"min-height", &min_height,
"min-height-set", &min_height_set,
NULL);
if (!min_width_set)
min_width = 1;
if (!min_height_set)
min_height = 1;
if (width < min_width)
width = min_width;
if (height < min_height)
height = min_height;
priv->min_size_changed = FALSE;
}
if (window_size.width != CLUTTER_NEARBYINT (width) ||
window_size.height != CLUTTER_NEARBYINT (height))
{
_clutter_stage_window_resize (priv->impl,
CLUTTER_NEARBYINT (width),
CLUTTER_NEARBYINT (height));
}
}
else
{
ClutterActorBox override = { 0, };
/* override the passed allocation */
override.x1 = 0;
override.y1 = 0;
override.x2 = window_size.width;
override.y2 = window_size.height;
CLUTTER_NOTE (LAYOUT,
"Overriding original allocation of %.2fx%.2f "
"with %.2fx%.2f (absolute origin %s)",
width, height,
override.x2, override.y2,
(flags & CLUTTER_ABSOLUTE_ORIGIN_CHANGED)
? "changed"
: "not changed");
/* and store the overridden allocation */
clutter_actor_set_allocation (self, &override,
flags | CLUTTER_DELEGATE_LAYOUT);
}
/* XXX: Until Cogl becomes fully responsible for backend windows
* Clutter need to manually keep it informed of the current window
* size. We do this after the allocation above so that the stage
* window has a chance to update the window size based on the
* allocation.
*/
_clutter_stage_window_get_geometry (priv->impl, &window_size);
cogl_onscreen_clutter_backend_set_size (window_size.width,
window_size.height);
/* reset the viewport if the allocation effectively changed */
clutter_actor_get_allocation_box (self, &alloc);
clutter_actor_box_get_size (&alloc, &new_width, &new_height);
if (CLUTTER_NEARBYINT (old_width) != CLUTTER_NEARBYINT (new_width) ||
CLUTTER_NEARBYINT (old_height) != CLUTTER_NEARBYINT (new_height))
{
int real_width = CLUTTER_NEARBYINT (new_width);
int real_height = CLUTTER_NEARBYINT (new_height);
_clutter_stage_set_viewport (CLUTTER_STAGE (self),
0, 0,
real_width,
real_height);
/* Note: we don't assume that set_viewport will queue a full redraw
* since it may bail-out early if something preemptively set the
* viewport before the stage was really allocated its new size.
*/
queue_full_redraw (CLUTTER_STAGE (self));
}
}
typedef struct _Vector4
{
float x, y, z, w;
} Vector4;
static void
_cogl_util_get_eye_planes_for_screen_poly (float *polygon,
int n_vertices,
float *viewport,
const CoglMatrix *projection,
const CoglMatrix *inverse_project,
ClutterPlane *planes)
{
float Wc;
Vector4 *tmp_poly;
ClutterPlane *plane;
int i;
float b[3];
float c[3];
int count;
tmp_poly = g_alloca (sizeof (Vector4) * n_vertices * 2);
#define DEPTH -50
/* Determine W in clip-space (Wc) for a point (0, 0, DEPTH, 1)
*
* Note: the depth could be anything except 0.
*
* We will transform the polygon into clip coordinates using this
* depth and then into eye coordinates. Our clip planes will be
* defined by triangles that extend between points of the polygon at
* DEPTH and corresponding points of the same polygon at DEPTH * 2.
*
* NB: Wc defines the position of the clip planes in clip
* coordinates. Given a screen aligned cross section through the
* frustum; coordinates range from [-Wc,Wc] left to right on the
* x-axis and [Wc,-Wc] top to bottom on the y-axis.
*/
Wc = DEPTH * projection->wz + projection->ww;
#define CLIP_X(X) ((((float)X - viewport[0]) * (2.0 / viewport[2])) - 1) * Wc
#define CLIP_Y(Y) ((((float)Y - viewport[1]) * (2.0 / viewport[3])) - 1) * -Wc
for (i = 0; i < n_vertices; i++)
{
tmp_poly[i].x = CLIP_X (polygon[i * 2]);
tmp_poly[i].y = CLIP_Y (polygon[i * 2 + 1]);
tmp_poly[i].z = DEPTH;
tmp_poly[i].w = Wc;
}
Wc = DEPTH * 2 * projection->wz + projection->ww;
/* FIXME: technically we don't need to project all of the points
* twice, it would be enough project every other point since
* we can share points in this set to define the plane vectors. */
for (i = 0; i < n_vertices; i++)
{
tmp_poly[n_vertices + i].x = CLIP_X (polygon[i * 2]);
tmp_poly[n_vertices + i].y = CLIP_Y (polygon[i * 2 + 1]);
tmp_poly[n_vertices + i].z = DEPTH * 2;
tmp_poly[n_vertices + i].w = Wc;
}
#undef CLIP_X
#undef CLIP_Y
cogl_matrix_project_points (inverse_project,
4,
sizeof (Vector4),
tmp_poly,
sizeof (Vector4),
tmp_poly,
n_vertices * 2);
/* XXX: It's quite ugly that we end up with these casts between
* Vector4 types and CoglVector3s, it might be better if the
* cogl_vector APIs just took pointers to floats.
*/
count = n_vertices - 1;
for (i = 0; i < count; i++)
{
plane = &planes[i];
memcpy (plane->v0, tmp_poly + i, sizeof (float) * 3);
memcpy (b, tmp_poly + n_vertices + i, sizeof (float) * 3);
memcpy (c, tmp_poly + n_vertices + i + 1, sizeof (float) * 3);
cogl_vector3_subtract (b, b, plane->v0);
cogl_vector3_subtract (c, c, plane->v0);
cogl_vector3_cross_product (plane->n, b, c);
cogl_vector3_normalize (plane->n);
}
plane = &planes[n_vertices - 1];
memcpy (plane->v0, tmp_poly + 0, sizeof (float) * 3);
memcpy (b, tmp_poly + (2 * n_vertices - 1), sizeof (float) * 3);
memcpy (c, tmp_poly + n_vertices, sizeof (float) * 3);
cogl_vector3_subtract (b, b, plane->v0);
cogl_vector3_subtract (c, c, plane->v0);
cogl_vector3_cross_product (plane->n, b, c);
cogl_vector3_normalize (plane->n);
}
static void
_clutter_stage_update_active_framebuffer (ClutterStage *stage,
CoglFramebuffer *framebuffer)
{
ClutterStagePrivate *priv = stage->priv;
/* We track the CoglFramebuffer that corresponds to the stage itself
* so, for example, we can disable culling when rendering to an
* offscreen framebuffer.
*/
priv->active_framebuffer = framebuffer;
}
/* XXX: Instead of having a toplevel 2D clip region, it might be
* better to have a clip volume within the view frustum. This could
* allow us to avoid projecting actors into window coordinates to
* be able to cull them.
*/
static void
clutter_stage_do_paint_view (ClutterStage *stage,
ClutterStageView *view,
const cairo_rectangle_int_t *clip)
{
ClutterStagePrivate *priv = stage->priv;
CoglFramebuffer *framebuffer = clutter_stage_view_get_framebuffer (view);
cairo_rectangle_int_t view_layout;
float clip_poly[8];
float viewport[4];
cairo_rectangle_int_t geom;
/* Any mode of painting/picking invalidates the pick cache, unless we're
* in the middle of building it. So we reset the cached flag but don't
* completely clear the pick stack.
*/
priv->cached_pick_mode = CLUTTER_PICK_NONE;
_clutter_stage_window_get_geometry (priv->impl, &geom);
viewport[0] = priv->viewport[0];
viewport[1] = priv->viewport[1];
viewport[2] = priv->viewport[2];
viewport[3] = priv->viewport[3];
if (!clip)
{
clutter_stage_view_get_layout (view, &view_layout);
clip = &view_layout;
}
clip_poly[0] = MAX (clip->x, 0);
clip_poly[1] = MAX (clip->y, 0);
clip_poly[2] = MIN (clip->x + clip->width, geom.width);
clip_poly[3] = clip_poly[1];
clip_poly[4] = clip_poly[2];
clip_poly[5] = MIN (clip->y + clip->height, geom.height);
clip_poly[6] = clip_poly[0];
clip_poly[7] = clip_poly[5];
CLUTTER_NOTE (CLIPPING, "Setting stage clip too: "
"x=%f, y=%f, width=%f, height=%f",
clip_poly[0], clip_poly[1],
clip_poly[2] - clip_poly[0],
clip_poly[5] - clip_poly[1]);
_cogl_util_get_eye_planes_for_screen_poly (clip_poly,
4,
viewport,
&priv->projection,
&priv->inverse_projection,
priv->current_clip_planes);
_clutter_stage_paint_volume_stack_free_all (stage);
_clutter_stage_update_active_framebuffer (stage, framebuffer);
clutter_actor_paint (CLUTTER_ACTOR (stage));
}
/* This provides a common point of entry for painting the scenegraph
* for picking or painting...
*/
void
_clutter_stage_paint_view (ClutterStage *stage,
ClutterStageView *view,
const cairo_rectangle_int_t *clip)
{
ClutterStagePrivate *priv = stage->priv;
if (!priv->impl)
return;
COGL_TRACE_BEGIN_SCOPED (ClutterStagePaintView, "Paint (view)");
priv->view_clip = *clip;
if (g_signal_has_handler_pending (stage, stage_signals[PAINT_VIEW],
0, TRUE))
g_signal_emit (stage, stage_signals[PAINT_VIEW], 0, view);
else
CLUTTER_STAGE_GET_CLASS (stage)->paint_view (stage, view);
priv->view_clip = (cairo_rectangle_int_t) { 0 };
}
void
_clutter_stage_emit_after_paint (ClutterStage *stage)
{
g_signal_emit (stage, stage_signals[AFTER_PAINT], 0);
}
/* If we don't implement this here, we get the paint function
* from the deprecated clutter-group class, which doesn't
* respect the Z order as it uses our empty sort_depth_order.
*/
static void
clutter_stage_paint (ClutterActor *self)
{
ClutterActorIter iter;
ClutterActor *child;
clutter_actor_iter_init (&iter, self);
while (clutter_actor_iter_next (&iter, &child))
clutter_actor_paint (child);
}
static void
clutter_stage_pick (ClutterActor *self,
const ClutterColor *color)
{
ClutterActorIter iter;
ClutterActor *child;
/* Note: we don't chain up to our parent as we don't want any geometry
* emitted for the stage itself. The stage's pick id is effectively handled
* by the call to cogl_clear done in clutter-main.c:_clutter_do_pick_async()
*/
clutter_actor_iter_init (&iter, self);
while (clutter_actor_iter_next (&iter, &child))
clutter_actor_paint (child);
}
static gboolean
clutter_stage_get_paint_volume (ClutterActor *self,
ClutterPaintVolume *volume)
{
/* Returning False effectively means Clutter has to assume it covers
* everything... */
return FALSE;
}
static void
clutter_stage_realize (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
gboolean is_realized;
g_assert (priv->impl != NULL);
is_realized = _clutter_stage_window_realize (priv->impl);
if (!is_realized)
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
}
static void
clutter_stage_unrealize (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
/* and then unrealize the implementation */
g_assert (priv->impl != NULL);
_clutter_stage_window_unrealize (priv->impl);
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
}
static void
clutter_stage_show_all (ClutterActor *self)
{
ClutterActorIter iter;
ClutterActor *child;
/* we don't do a recursive show_all(), to maintain the old
* invariants from ClutterGroup
*/
clutter_actor_iter_init (&iter, self);
while (clutter_actor_iter_next (&iter, &child))
clutter_actor_show (child);
clutter_actor_show (self);
}
static void
clutter_stage_show (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
CLUTTER_ACTOR_CLASS (clutter_stage_parent_class)->show (self);
/* Possibly do an allocation run so that the stage will have the
right size before we map it */
_clutter_stage_maybe_relayout (self);
g_assert (priv->impl != NULL);
_clutter_stage_window_show (priv->impl, TRUE);
}
static void
clutter_stage_hide_all (ClutterActor *self)
{
ClutterActorIter iter;
ClutterActor *child;
clutter_actor_hide (self);
/* we don't do a recursive hide_all(), to maintain the old invariants
* from ClutterGroup
*/
clutter_actor_iter_init (&iter, self);
while (clutter_actor_iter_next (&iter, &child))
clutter_actor_hide (child);
}
static void
clutter_stage_hide (ClutterActor *self)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (self)->priv;
g_assert (priv->impl != NULL);
_clutter_stage_window_hide (priv->impl);
CLUTTER_ACTOR_CLASS (clutter_stage_parent_class)->hide (self);
}
static void
clutter_stage_emit_key_focus_event (ClutterStage *stage,
gboolean focus_in)
{
ClutterStagePrivate *priv = stage->priv;
if (priv->key_focused_actor == NULL)
return;
if (focus_in)
g_signal_emit_by_name (priv->key_focused_actor, "key-focus-in");
else
g_signal_emit_by_name (priv->key_focused_actor, "key-focus-out");
g_object_notify_by_pspec (G_OBJECT (stage), obj_props[PROP_KEY_FOCUS]);
}
static void
clutter_stage_real_activate (ClutterStage *stage)
{
clutter_stage_emit_key_focus_event (stage, TRUE);
}
static void
clutter_stage_real_deactivate (ClutterStage *stage)
{
clutter_stage_emit_key_focus_event (stage, FALSE);
}
void
_clutter_stage_queue_event (ClutterStage *stage,
ClutterEvent *event,
gboolean copy_event)
{
ClutterStagePrivate *priv;
gboolean first_event;
ClutterInputDevice *device;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
first_event = priv->event_queue->length == 0;
if (copy_event)
event = clutter_event_copy (event);
/* if needed, update the state of the input device of the event.
* we do it here to avoid calling the same code from every backend
* event processing function
*/
device = clutter_event_get_device (event);
if (device != NULL &&
event->type != CLUTTER_PROXIMITY_IN &&
event->type != CLUTTER_PROXIMITY_OUT)
{
ClutterModifierType event_state = clutter_event_get_state (event);
ClutterEventSequence *sequence = clutter_event_get_event_sequence (event);
guint32 event_time = clutter_event_get_time (event);
gfloat event_x, event_y;
clutter_event_get_coords (event, &event_x, &event_y);
_clutter_input_device_set_coords (device, sequence, event_x, event_y, stage);
_clutter_input_device_set_state (device, event_state);
_clutter_input_device_set_time (device, event_time);
}
if (first_event)
{
gboolean compressible = event->type == CLUTTER_MOTION ||
event->type == CLUTTER_TOUCH_UPDATE;
if (!compressible)
{
_clutter_process_event (event);
clutter_event_free (event);
return;
}
}
g_queue_push_tail (priv->event_queue, event);
if (first_event)
{
ClutterMasterClock *master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_start_running (master_clock);
_clutter_stage_schedule_update (stage);
}
}
gboolean
_clutter_stage_has_queued_events (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
priv = stage->priv;
return priv->event_queue->length > 0;
}
void
_clutter_stage_process_queued_events (ClutterStage *stage)
{
ClutterStagePrivate *priv;
GList *events, *l;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->event_queue->length == 0)
return;
/* In case the stage gets destroyed during event processing */
g_object_ref (stage);
/* Steal events before starting processing to avoid reentrancy
* issues */
events = priv->event_queue->head;
priv->event_queue->head = NULL;
priv->event_queue->tail = NULL;
priv->event_queue->length = 0;
for (l = events; l != NULL; l = l->next)
{
ClutterEvent *event;
ClutterEvent *next_event;
ClutterInputDevice *device;
ClutterInputDevice *next_device;
ClutterInputDeviceType device_type;
gboolean check_device = FALSE;
event = l->data;
next_event = l->next ? l->next->data : NULL;
device = clutter_event_get_device (event);
if (next_event != NULL)
next_device = clutter_event_get_device (next_event);
else
next_device = NULL;
if (device != NULL && next_device != NULL)
check_device = TRUE;
device_type = clutter_input_device_get_device_type (device);
/* Skip consecutive motion events coming from the same device,
* except those of tablet tools, since users of these events
* want no precision loss.
*/
if (priv->throttle_motion_events && next_event != NULL &&
device_type != CLUTTER_TABLET_DEVICE &&
device_type != CLUTTER_PEN_DEVICE &&
device_type != CLUTTER_ERASER_DEVICE)
{
if (event->type == CLUTTER_MOTION &&
(next_event->type == CLUTTER_MOTION ||
next_event->type == CLUTTER_LEAVE) &&
(!check_device || (device == next_device)))
{
CLUTTER_NOTE (EVENT,
"Omitting motion event at %d, %d",
(int) event->motion.x,
(int) event->motion.y);
if (next_event->type == CLUTTER_MOTION)
{
ClutterDeviceManager *device_manager =
clutter_device_manager_get_default ();
_clutter_device_manager_compress_motion (device_manager,
next_event, event);
}
goto next_event;
}
else if (event->type == CLUTTER_TOUCH_UPDATE &&
next_event->type == CLUTTER_TOUCH_UPDATE &&
event->touch.sequence == next_event->touch.sequence &&
(!check_device || (device == next_device)))
{
CLUTTER_NOTE (EVENT,
"Omitting touch update event at %d, %d",
(int) event->touch.x,
(int) event->touch.y);
goto next_event;
}
}
_clutter_process_event (event);
next_event:
clutter_event_free (event);
}
g_list_free (events);
g_object_unref (stage);
}
/**
* _clutter_stage_needs_update:
* @stage: A #ClutterStage
*
* Determines if _clutter_stage_do_update() needs to be called.
*
* Return value: %TRUE if the stage need layout or painting
*/
gboolean
_clutter_stage_needs_update (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
priv = stage->priv;
return priv->relayout_pending || priv->redraw_pending;
}
void
_clutter_stage_maybe_relayout (ClutterActor *actor)
{
ClutterStage *stage = CLUTTER_STAGE (actor);
ClutterStagePrivate *priv = stage->priv;
gfloat natural_width, natural_height;
ClutterActorBox box = { 0, };
if (!priv->relayout_pending)
return;
/* avoid reentrancy */
if (!CLUTTER_ACTOR_IN_RELAYOUT (stage))
{
priv->relayout_pending = FALSE;
priv->stage_was_relayout = TRUE;
CLUTTER_NOTE (ACTOR, "Recomputing layout");
CLUTTER_SET_PRIVATE_FLAGS (stage, CLUTTER_IN_RELAYOUT);
natural_width = natural_height = 0;
clutter_actor_get_preferred_size (CLUTTER_ACTOR (stage),
NULL, NULL,
&natural_width, &natural_height);
box.x1 = 0;
box.y1 = 0;
box.x2 = natural_width;
box.y2 = natural_height;
CLUTTER_NOTE (ACTOR, "Allocating (0, 0 - %d, %d) for the stage",
(int) natural_width,
(int) natural_height);
clutter_actor_allocate (CLUTTER_ACTOR (stage),
&box, CLUTTER_ALLOCATION_NONE);
CLUTTER_UNSET_PRIVATE_FLAGS (stage, CLUTTER_IN_RELAYOUT);
}
}
static void
clutter_stage_do_redraw (ClutterStage *stage)
{
ClutterActor *actor = CLUTTER_ACTOR (stage);
ClutterStagePrivate *priv = stage->priv;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return;
if (priv->impl == NULL)
return;
CLUTTER_NOTE (PAINT, "Redraw started for stage '%s'[%p]",
_clutter_actor_get_debug_name (actor),
stage);
if (_clutter_context_get_show_fps ())
{
if (priv->fps_timer == NULL)
priv->fps_timer = g_timer_new ();
}
_clutter_stage_window_redraw (priv->impl);
if (_clutter_context_get_show_fps ())
{
priv->timer_n_frames += 1;
if (g_timer_elapsed (priv->fps_timer, NULL) >= 1.0)
{
g_print ("*** FPS for %s: %i ***\n",
_clutter_actor_get_debug_name (actor),
priv->timer_n_frames);
priv->timer_n_frames = 0;
g_timer_start (priv->fps_timer);
}
}
CLUTTER_NOTE (PAINT, "Redraw finished for stage '%s'[%p]",
_clutter_actor_get_debug_name (actor),
stage);
}
static GSList *
_clutter_stage_check_updated_pointers (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
ClutterDeviceManager *device_manager;
GSList *updating = NULL;
const GSList *devices;
cairo_rectangle_int_t clip;
ClutterPoint point;
gboolean has_clip;
has_clip = _clutter_stage_window_get_redraw_clip_bounds (priv->impl, &clip);
device_manager = clutter_device_manager_get_default ();
devices = clutter_device_manager_peek_devices (device_manager);
for (; devices != NULL; devices = devices->next)
{
ClutterInputDevice *dev = devices->data;
if (clutter_input_device_get_device_mode (dev) !=
CLUTTER_INPUT_MODE_MASTER)
continue;
switch (clutter_input_device_get_device_type (dev))
{
case CLUTTER_POINTER_DEVICE:
case CLUTTER_TABLET_DEVICE:
case CLUTTER_PEN_DEVICE:
case CLUTTER_ERASER_DEVICE:
case CLUTTER_CURSOR_DEVICE:
if (!clutter_input_device_get_coords (dev, NULL, &point))
continue;
if (!has_clip ||
(point.x >= clip.x && point.x < clip.x + clip.width &&
point.y >= clip.y && point.y < clip.y + clip.height))
updating = g_slist_prepend (updating, dev);
break;
default:
/* Any other devices don't need checking, either because they
* don't have x/y coordinates, or because they're implicitly
* grabbed on an actor by default as it's the case of
* touch(screens).
*/
break;
}
}
return updating;
}
/**
* _clutter_stage_do_update:
* @stage: A #ClutterStage
*
* Handles per-frame layout and repaint for the stage.
*
* Return value: %TRUE if the stage was updated
*/
gboolean
_clutter_stage_do_update (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
gboolean stage_was_relayout = priv->stage_was_relayout;
GSList *pointers = NULL;
priv->stage_was_relayout = FALSE;
/* if the stage is being destroyed, or if the destruction already
* happened and we don't have an StageWindow any more, then we
* should bail out
*/
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage) || priv->impl == NULL)
return FALSE;
if (!CLUTTER_ACTOR_IS_REALIZED (stage))
return FALSE;
COGL_TRACE_BEGIN_SCOPED (ClutterStageDoUpdate, "Update");
/* NB: We need to ensure we have an up to date layout *before* we
* check or clear the pending redraws flag since a relayout may
* queue a redraw.
*/
COGL_TRACE_BEGIN (ClutterStageRelayout, "Layout");
_clutter_stage_maybe_relayout (CLUTTER_ACTOR (stage));
COGL_TRACE_END (ClutterStageRelayout);
if (!priv->redraw_pending)
return FALSE;
if (stage_was_relayout)
pointers = _clutter_stage_check_updated_pointers (stage);
COGL_TRACE_BEGIN (ClutterStagePaint, "Paint");
clutter_stage_maybe_finish_queue_redraws (stage);
clutter_stage_do_redraw (stage);
COGL_TRACE_END (ClutterStagePaint);
/* reset the guard, so that new redraws are possible */
priv->redraw_pending = FALSE;
#ifdef CLUTTER_ENABLE_DEBUG
if (priv->redraw_count > 0)
{
CLUTTER_NOTE (SCHEDULER, "Queued %lu redraws during the last cycle",
priv->redraw_count);
priv->redraw_count = 0;
}
#endif /* CLUTTER_ENABLE_DEBUG */
COGL_TRACE_BEGIN (ClutterStagePick, "Pick");
while (pointers)
{
_clutter_input_device_update (pointers->data, NULL, TRUE);
pointers = g_slist_delete_link (pointers, pointers);
}
COGL_TRACE_END (ClutterStagePick);
return TRUE;
}
static void
clutter_stage_real_queue_relayout (ClutterActor *self)
{
ClutterStage *stage = CLUTTER_STAGE (self);
ClutterStagePrivate *priv = stage->priv;
ClutterActorClass *parent_class;
if (!priv->relayout_pending)
{
_clutter_stage_schedule_update (stage);
priv->relayout_pending = TRUE;
}
/* chain up */
parent_class = CLUTTER_ACTOR_CLASS (clutter_stage_parent_class);
parent_class->queue_relayout (self);
}
static gboolean
clutter_stage_real_queue_redraw (ClutterActor *actor,
ClutterActor *leaf,
ClutterPaintVolume *redraw_clip)
{
ClutterStage *stage = CLUTTER_STAGE (actor);
ClutterStageWindow *stage_window;
ClutterActorBox bounding_box;
ClutterActorBox intersection_box;
cairo_rectangle_int_t geom, stage_clip;
if (CLUTTER_ACTOR_IN_DESTRUCTION (actor))
return TRUE;
/* If the backend can't do anything with redraw clips (e.g. it already knows
* it needs to redraw everything anyway) then don't spend time transforming
* any clip volume into stage coordinates... */
stage_window = _clutter_stage_get_window (stage);
if (stage_window == NULL)
return TRUE;
if (_clutter_stage_window_ignoring_redraw_clips (stage_window))
return FALSE;
if (redraw_clip == NULL)
{
_clutter_stage_window_add_redraw_clip (stage_window, NULL);
return FALSE;
}
if (redraw_clip->is_empty)
return TRUE;
/* Convert the clip volume into stage coordinates and then into an
* axis aligned stage coordinates bounding box... */
_clutter_paint_volume_get_stage_paint_box (redraw_clip,
stage,
&bounding_box);
_clutter_stage_window_get_geometry (stage_window, &geom);
intersection_box.x1 = MAX (bounding_box.x1, 0);
intersection_box.y1 = MAX (bounding_box.y1, 0);
intersection_box.x2 = MIN (bounding_box.x2, geom.width);
intersection_box.y2 = MIN (bounding_box.y2, geom.height);
/* There is no need to track degenerate/empty redraw clips */
if (intersection_box.x2 <= intersection_box.x1 ||
intersection_box.y2 <= intersection_box.y1)
return TRUE;
/* when converting to integer coordinates make sure we round the edges of the
* clip rectangle outwards... */
stage_clip.x = intersection_box.x1;
stage_clip.y = intersection_box.y1;
stage_clip.width = intersection_box.x2 - stage_clip.x;
stage_clip.height = intersection_box.y2 - stage_clip.y;
_clutter_stage_window_add_redraw_clip (stage_window, &stage_clip);
return FALSE;
}
gboolean
_clutter_stage_has_full_redraw_queued (ClutterStage *stage)
{
ClutterStageWindow *stage_window = _clutter_stage_get_window (stage);
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage) || stage_window == NULL)
return FALSE;
if (stage->priv->redraw_pending &&
!_clutter_stage_window_has_redraw_clips (stage_window))
return TRUE;
else
return FALSE;
}
/**
* clutter_stage_get_redraw_clip_bounds:
* @stage: A #ClutterStage
* @clip: (out caller-allocates): Return location for the clip bounds
*
* Gets the bounds of the current redraw for @stage in stage pixel
* coordinates. E.g., if only a single actor has queued a redraw then
* Clutter may redraw the stage with a clip so that it doesn't have to
* paint every pixel in the stage. This function would then return the
* bounds of that clip. An application can use this information to
* avoid some extra work if it knows that some regions of the stage
* aren't going to be painted. This should only be called while the
* stage is being painted. If there is no current redraw clip then
* this function will set @clip to the full extents of the stage.
*
* Since: 1.8
*/
void
clutter_stage_get_redraw_clip_bounds (ClutterStage *stage,
cairo_rectangle_int_t *clip)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (clip != NULL);
priv = stage->priv;
if (!_clutter_stage_window_get_redraw_clip_bounds (priv->impl, clip))
{
/* Set clip to the full extents of the stage */
_clutter_stage_window_get_geometry (priv->impl, clip);
}
}
static ClutterActor *
_clutter_stage_do_pick_on_view (ClutterStage *stage,
gint x,
gint y,
ClutterPickMode mode,
ClutterStageView *view)
{
ClutterMainContext *context = _clutter_context_get_default ();
ClutterStagePrivate *priv = stage->priv;
CoglFramebuffer *fb = clutter_stage_view_get_framebuffer (view);
int i;
g_assert (context->pick_mode == CLUTTER_PICK_NONE);
if (mode != priv->cached_pick_mode)
{
_clutter_stage_clear_pick_stack (stage);
cogl_push_framebuffer (fb);
context->pick_mode = mode;
clutter_stage_do_paint_view (stage, view, NULL);
context->pick_mode = CLUTTER_PICK_NONE;
priv->cached_pick_mode = mode;
cogl_pop_framebuffer ();
add_pick_stack_weak_refs (stage);
}
/* Search all "painted" pickable actors from front to back. A linear search
* is required, and also performs fine since there is typically only
* on the order of dozens of actors in the list (on screen) at a time.
*/
for (i = priv->pick_stack->len - 1; i >= 0; i--)
{
const PickRecord *rec = &g_array_index (priv->pick_stack, PickRecord, i);
if (rec->actor && pick_record_contains_pixel (stage, rec, x, y))
return rec->actor;
}
return CLUTTER_ACTOR (stage);
}
/**
* clutter_stage_get_view_at: (skip)
*/
ClutterStageView *
clutter_stage_get_view_at (ClutterStage *stage,
float x,
float y)
{
ClutterStagePrivate *priv = stage->priv;
GList *l;
for (l = _clutter_stage_window_get_views (priv->impl); l; l = l->next)
{
ClutterStageView *view = l->data;
cairo_rectangle_int_t view_layout;
clutter_stage_view_get_layout (view, &view_layout);
if (x >= view_layout.x &&
x < view_layout.x + view_layout.width &&
y >= view_layout.y &&
y < view_layout.y + view_layout.height)
return view;
}
return NULL;
}
ClutterActor *
_clutter_stage_do_pick (ClutterStage *stage,
gint x,
gint y,
ClutterPickMode mode)
{
ClutterActor *actor = CLUTTER_ACTOR (stage);
ClutterStagePrivate *priv = stage->priv;
float stage_width, stage_height;
ClutterStageView *view = NULL;
priv = stage->priv;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return actor;
if (G_UNLIKELY (clutter_pick_debug_flags & CLUTTER_DEBUG_NOP_PICKING))
return actor;
if (G_UNLIKELY (priv->impl == NULL))
return actor;
clutter_actor_get_size (CLUTTER_ACTOR (stage), &stage_width, &stage_height);
if (x < 0 || x >= stage_width || y < 0 || y >= stage_height)
return actor;
view = clutter_stage_get_view_at (stage, x, y);
if (view)
return _clutter_stage_do_pick_on_view (stage, x, y, mode, view);
return actor;
}
static gboolean
clutter_stage_real_delete_event (ClutterStage *stage,
ClutterEvent *event)
{
if (stage_is_default (stage))
clutter_main_quit ();
else
clutter_actor_destroy (CLUTTER_ACTOR (stage));
return CLUTTER_EVENT_STOP;
}
static void
clutter_stage_real_apply_transform (ClutterActor *stage,
CoglMatrix *matrix)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (stage)->priv;
/* FIXME: we probably shouldn't be explicitly reseting the matrix
* here... */
cogl_matrix_init_identity (matrix);
cogl_matrix_multiply (matrix, matrix, &priv->view);
}
static void
clutter_stage_constructed (GObject *gobject)
{
ClutterStage *self = CLUTTER_STAGE (gobject);
ClutterStageManager *stage_manager;
stage_manager = clutter_stage_manager_get_default ();
/* this will take care to sinking the floating reference */
_clutter_stage_manager_add_stage (stage_manager, self);
/* if this stage has been created on a backend that does not
* support multiple stages then it becomes the default stage
* as well; any other attempt at creating a ClutterStage will
* fail.
*/
if (!clutter_feature_available (CLUTTER_FEATURE_STAGE_MULTIPLE))
{
if (G_UNLIKELY (clutter_stage_manager_get_default_stage (stage_manager) != NULL))
{
g_error ("Unable to create another stage: the backend of "
"type '%s' does not support multiple stages. Use "
"clutter_stage_manager_get_default_stage() instead "
"to access the stage singleton.",
G_OBJECT_TYPE_NAME (clutter_get_default_backend ()));
}
_clutter_stage_manager_set_default_stage (stage_manager, self);
}
G_OBJECT_CLASS (clutter_stage_parent_class)->constructed (gobject);
}
static void
clutter_stage_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
ClutterStage *stage = CLUTTER_STAGE (object);
switch (prop_id)
{
case PROP_COLOR:
clutter_actor_set_background_color (CLUTTER_ACTOR (stage),
clutter_value_get_color (value));
break;
case PROP_CURSOR_VISIBLE:
if (g_value_get_boolean (value))
clutter_stage_show_cursor (stage);
else
clutter_stage_hide_cursor (stage);
break;
case PROP_PERSPECTIVE:
clutter_stage_set_perspective (stage, g_value_get_boxed (value));
break;
case PROP_TITLE:
clutter_stage_set_title (stage, g_value_get_string (value));
break;
case PROP_USE_FOG:
clutter_stage_set_use_fog (stage, g_value_get_boolean (value));
break;
case PROP_FOG:
clutter_stage_set_fog (stage, g_value_get_boxed (value));
break;
case PROP_USE_ALPHA:
clutter_stage_set_use_alpha (stage, g_value_get_boolean (value));
break;
case PROP_KEY_FOCUS:
clutter_stage_set_key_focus (stage, g_value_get_object (value));
break;
case PROP_NO_CLEAR_HINT:
clutter_stage_set_no_clear_hint (stage, g_value_get_boolean (value));
break;
case PROP_ACCEPT_FOCUS:
clutter_stage_set_accept_focus (stage, g_value_get_boolean (value));
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
clutter_stage_get_property (GObject *gobject,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
ClutterStagePrivate *priv = CLUTTER_STAGE (gobject)->priv;
switch (prop_id)
{
case PROP_COLOR:
{
ClutterColor bg_color;
clutter_actor_get_background_color (CLUTTER_ACTOR (gobject),
&bg_color);
clutter_value_set_color (value, &bg_color);
}
break;
case PROP_CURSOR_VISIBLE:
g_value_set_boolean (value, priv->is_cursor_visible);
break;
case PROP_PERSPECTIVE:
g_value_set_boxed (value, &priv->perspective);
break;
case PROP_TITLE:
g_value_set_string (value, priv->title);
break;
case PROP_USE_FOG:
g_value_set_boolean (value, priv->use_fog);
break;
case PROP_FOG:
g_value_set_boxed (value, &priv->fog);
break;
case PROP_USE_ALPHA:
g_value_set_boolean (value, priv->use_alpha);
break;
case PROP_KEY_FOCUS:
g_value_set_object (value, priv->key_focused_actor);
break;
case PROP_NO_CLEAR_HINT:
{
gboolean hint =
(priv->stage_hints & CLUTTER_STAGE_NO_CLEAR_ON_PAINT) != 0;
g_value_set_boolean (value, hint);
}
break;
case PROP_ACCEPT_FOCUS:
g_value_set_boolean (value, priv->accept_focus);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (gobject, prop_id, pspec);
break;
}
}
static void
clutter_stage_dispose (GObject *object)
{
ClutterStage *stage = CLUTTER_STAGE (object);
ClutterStagePrivate *priv = stage->priv;
ClutterStageManager *stage_manager;
clutter_actor_hide (CLUTTER_ACTOR (object));
_clutter_clear_events_queue_for_stage (stage);
if (priv->impl != NULL)
{
CLUTTER_NOTE (BACKEND, "Disposing of the stage implementation");
if (CLUTTER_ACTOR_IS_REALIZED (object))
_clutter_stage_window_unrealize (priv->impl);
g_object_unref (priv->impl);
priv->impl = NULL;
}
clutter_actor_destroy_all_children (CLUTTER_ACTOR (object));
g_list_free_full (priv->pending_queue_redraws,
(GDestroyNotify) free_queue_redraw_entry);
priv->pending_queue_redraws = NULL;
/* this will release the reference on the stage */
stage_manager = clutter_stage_manager_get_default ();
_clutter_stage_manager_remove_stage (stage_manager, stage);
G_OBJECT_CLASS (clutter_stage_parent_class)->dispose (object);
}
static void
clutter_stage_finalize (GObject *object)
{
ClutterStage *stage = CLUTTER_STAGE (object);
ClutterStagePrivate *priv = stage->priv;
g_queue_foreach (priv->event_queue, (GFunc) clutter_event_free, NULL);
g_queue_free (priv->event_queue);
g_free (priv->title);
g_array_free (priv->paint_volume_stack, TRUE);
_clutter_stage_clear_pick_stack (stage);
g_array_free (priv->pick_clip_stack, TRUE);
g_array_free (priv->pick_stack, TRUE);
if (priv->fps_timer != NULL)
g_timer_destroy (priv->fps_timer);
if (priv->paint_notify != NULL)
priv->paint_notify (priv->paint_data);
G_OBJECT_CLASS (clutter_stage_parent_class)->finalize (object);
}
static void
clutter_stage_real_paint_view (ClutterStage *stage,
ClutterStageView *view)
{
ClutterStagePrivate *priv = stage->priv;
const cairo_rectangle_int_t *clip = &priv->view_clip;
clutter_stage_do_paint_view (stage, view, clip);
}
static void
clutter_stage_class_init (ClutterStageClass *klass)
{
GObjectClass *gobject_class = G_OBJECT_CLASS (klass);
ClutterActorClass *actor_class = CLUTTER_ACTOR_CLASS (klass);
gobject_class->constructed = clutter_stage_constructed;
gobject_class->set_property = clutter_stage_set_property;
gobject_class->get_property = clutter_stage_get_property;
gobject_class->dispose = clutter_stage_dispose;
gobject_class->finalize = clutter_stage_finalize;
actor_class->allocate = clutter_stage_allocate;
actor_class->get_preferred_width = clutter_stage_get_preferred_width;
actor_class->get_preferred_height = clutter_stage_get_preferred_height;
actor_class->paint = clutter_stage_paint;
actor_class->pick = clutter_stage_pick;
actor_class->get_paint_volume = clutter_stage_get_paint_volume;
actor_class->realize = clutter_stage_realize;
actor_class->unrealize = clutter_stage_unrealize;
actor_class->show = clutter_stage_show;
actor_class->show_all = clutter_stage_show_all;
actor_class->hide = clutter_stage_hide;
actor_class->hide_all = clutter_stage_hide_all;
actor_class->queue_relayout = clutter_stage_real_queue_relayout;
actor_class->queue_redraw = clutter_stage_real_queue_redraw;
actor_class->apply_transform = clutter_stage_real_apply_transform;
klass->paint_view = clutter_stage_real_paint_view;
/**
* ClutterStage:cursor-visible:
*
* Whether the mouse pointer should be visible
*/
obj_props[PROP_CURSOR_VISIBLE] =
g_param_spec_boolean ("cursor-visible",
P_("Cursor Visible"),
P_("Whether the mouse pointer is visible on the main stage"),
TRUE,
CLUTTER_PARAM_READWRITE);
/**
* ClutterStage:color:
*
* The background color of the main stage.
*
* Deprecated: 1.10: Use the #ClutterActor:background-color property of
* #ClutterActor instead.
*/
obj_props[PROP_COLOR] =
clutter_param_spec_color ("color",
P_("Color"),
P_("The color of the stage"),
&default_stage_color,
CLUTTER_PARAM_READWRITE |
G_PARAM_DEPRECATED);
/**
* ClutterStage:perspective:
*
* The parameters used for the perspective projection from 3D
* coordinates to 2D
*
* Since: 0.8
*/
obj_props[PROP_PERSPECTIVE] =
g_param_spec_boxed ("perspective",
P_("Perspective"),
P_("Perspective projection parameters"),
CLUTTER_TYPE_PERSPECTIVE,
CLUTTER_PARAM_READWRITE);
/**
* ClutterStage:title:
*
* The stage's title - usually displayed in stage windows title decorations.
*
* Since: 0.4
*/
obj_props[PROP_TITLE] =
g_param_spec_string ("title",
P_("Title"),
P_("Stage Title"),
NULL,
CLUTTER_PARAM_READWRITE);
/**
* ClutterStage:use-fog:
*
* Whether the stage should use a linear GL "fog" in creating the
* depth-cueing effect, to enhance the perception of depth by fading
* actors farther from the viewpoint.
*
* Since: 0.6
*
* Deprecated: 1.10: This property does not do anything.
*/
obj_props[PROP_USE_FOG] =
g_param_spec_boolean ("use-fog",
P_("Use Fog"),
P_("Whether to enable depth cueing"),
FALSE,
CLUTTER_PARAM_READWRITE | G_PARAM_DEPRECATED);
/**
* ClutterStage:fog:
*
* The settings for the GL "fog", used only if #ClutterStage:use-fog
* is set to %TRUE
*
* Since: 1.0
*
* Deprecated: 1.10: This property does not do anything.
*/
obj_props[PROP_FOG] =
g_param_spec_boxed ("fog",
P_("Fog"),
P_("Settings for the depth cueing"),
CLUTTER_TYPE_FOG,
CLUTTER_PARAM_READWRITE | G_PARAM_DEPRECATED);
/**
* ClutterStage:use-alpha:
*
* Whether the #ClutterStage should honour the alpha component of the
* #ClutterStage:color property when painting. If Clutter is run under
* a compositing manager this will result in the stage being blended
* with the underlying window(s)
*
* Since: 1.2
*/
obj_props[PROP_USE_ALPHA] =
g_param_spec_boolean ("use-alpha",
P_("Use Alpha"),
P_("Whether to honour the alpha component of the stage color"),
FALSE,
CLUTTER_PARAM_READWRITE);
/**
* ClutterStage:key-focus:
*
* The #ClutterActor that will receive key events from the underlying
* windowing system.
*
* If %NULL, the #ClutterStage will receive the events.
*
* Since: 1.2
*/
obj_props[PROP_KEY_FOCUS] =
g_param_spec_object ("key-focus",
P_("Key Focus"),
P_("The currently key focused actor"),
CLUTTER_TYPE_ACTOR,
CLUTTER_PARAM_READWRITE);
/**
* ClutterStage:no-clear-hint:
*
* Whether or not the #ClutterStage should clear its contents
* before each paint cycle.
*
* See clutter_stage_set_no_clear_hint() for further information.
*
* Since: 1.4
*/
obj_props[PROP_NO_CLEAR_HINT] =
g_param_spec_boolean ("no-clear-hint",
P_("No Clear Hint"),
P_("Whether the stage should clear its contents"),
FALSE,
CLUTTER_PARAM_READWRITE);
/**
* ClutterStage:accept-focus:
*
* Whether the #ClutterStage should accept key focus when shown.
*
* Since: 1.6
*/
obj_props[PROP_ACCEPT_FOCUS] =
g_param_spec_boolean ("accept-focus",
P_("Accept Focus"),
P_("Whether the stage should accept focus on show"),
TRUE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_properties (gobject_class, PROP_LAST, obj_props);
/**
* ClutterStage::activate:
* @stage: the stage which was activated
*
* The ::activate signal is emitted when the stage receives key focus
* from the underlying window system.
*
* Since: 0.6
*/
stage_signals[ACTIVATE] =
g_signal_new (I_("activate"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, activate),
NULL, NULL, NULL,
G_TYPE_NONE, 0);
/**
* ClutterStage::deactivate:
* @stage: the stage which was deactivated
*
* The ::deactivate signal is emitted when the stage loses key focus
* from the underlying window system.
*
* Since: 0.6
*/
stage_signals[DEACTIVATE] =
g_signal_new (I_("deactivate"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, deactivate),
NULL, NULL, NULL,
G_TYPE_NONE, 0);
/**
* ClutterStage::delete-event:
* @stage: the stage that received the event
* @event: a #ClutterEvent of type %CLUTTER_DELETE
*
* The ::delete-event signal is emitted when the user closes a
* #ClutterStage window using the window controls.
*
* Clutter by default will call clutter_main_quit() if @stage is
* the default stage, and clutter_actor_destroy() for any other
* stage.
*
* It is possible to override the default behaviour by connecting
* a new handler and returning %TRUE there.
*
* This signal is emitted only on Clutter backends that
* embed #ClutterStage in native windows. It is not emitted for
* backends that use a static frame buffer.
*
* Since: 1.2
*/
stage_signals[DELETE_EVENT] =
g_signal_new (I_("delete-event"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, delete_event),
_clutter_boolean_handled_accumulator, NULL,
_clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterStage::after-paint:
* @stage: the stage that received the event
*
* The ::after-paint signal is emitted after the stage is painted,
* but before the results are displayed on the screen.
*
* Since: 1.20
*/
stage_signals[AFTER_PAINT] =
g_signal_new (I_("after-paint"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
0, /* no corresponding vfunc */
NULL, NULL, NULL,
G_TYPE_NONE, 0);
/**
* ClutterStage::paint-view:
* @stage: the stage that received the event
* @view: a #ClutterStageView
*
* The ::paint-view signal is emitted before a #ClutterStageView is being
* painted.
*
* The view is painted in the default handler. Hence, if you want to perform
* some action after the view is painted, like reading the contents of the
* framebuffer, use g_signal_connect_after() or pass %G_CONNECT_AFTER.
*/
stage_signals[PAINT_VIEW] =
g_signal_new (I_("paint-view"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterStageClass, paint_view),
NULL, NULL, NULL,
G_TYPE_NONE, 1,
CLUTTER_TYPE_STAGE_VIEW);
/**
* ClutterStage::presented: (skip)
* @stage: the stage that received the event
* @frame_event: a #CoglFrameEvent
* @frame_info: a #ClutterFrameInfo
*
* Signals that the #ClutterStage was presented on the screen to the user.
*/
stage_signals[PRESENTED] =
g_signal_new (I_("presented"),
G_TYPE_FROM_CLASS (gobject_class),
G_SIGNAL_RUN_LAST,
0, NULL, NULL,
_clutter_marshal_VOID__INT_POINTER,
G_TYPE_NONE, 2,
G_TYPE_INT, G_TYPE_POINTER);
klass->activate = clutter_stage_real_activate;
klass->deactivate = clutter_stage_real_deactivate;
klass->delete_event = clutter_stage_real_delete_event;
}
static void
clutter_stage_notify_min_size (ClutterStage *self)
{
self->priv->min_size_changed = TRUE;
}
static void
clutter_stage_init (ClutterStage *self)
{
cairo_rectangle_int_t geom = { 0, };
ClutterStagePrivate *priv;
ClutterStageWindow *impl;
ClutterBackend *backend;
GError *error;
/* a stage is a top-level object */
CLUTTER_SET_PRIVATE_FLAGS (self, CLUTTER_IS_TOPLEVEL);
self->priv = priv = clutter_stage_get_instance_private (self);
CLUTTER_NOTE (BACKEND, "Creating stage from the default backend");
backend = clutter_get_default_backend ();
error = NULL;
impl = _clutter_backend_create_stage (backend, self, &error);
if (G_LIKELY (impl != NULL))
{
_clutter_stage_set_window (self, impl);
_clutter_stage_window_get_geometry (priv->impl, &geom);
}
else
{
if (error != NULL)
{
g_critical ("Unable to create a new stage implementation: %s",
error->message);
g_error_free (error);
}
else
g_critical ("Unable to create a new stage implementation.");
}
priv->event_queue = g_queue_new ();
priv->is_cursor_visible = TRUE;
priv->use_fog = FALSE;
priv->throttle_motion_events = TRUE;
priv->min_size_changed = FALSE;
priv->sync_delay = -1;
priv->motion_events_enabled = TRUE;
clutter_actor_set_background_color (CLUTTER_ACTOR (self),
&default_stage_color);
/* FIXME - remove for 2.0 */
priv->fog.z_near = 1.0;
priv->fog.z_far = 2.0;
priv->relayout_pending = TRUE;
clutter_actor_set_reactive (CLUTTER_ACTOR (self), TRUE);
clutter_stage_set_title (self, g_get_prgname ());
clutter_stage_set_key_focus (self, NULL);
g_signal_connect (self, "notify::min-width",
G_CALLBACK (clutter_stage_notify_min_size), NULL);
g_signal_connect (self, "notify::min-height",
G_CALLBACK (clutter_stage_notify_min_size), NULL);
_clutter_stage_set_viewport (self,
0, 0,
geom.width,
geom.height);
priv->paint_volume_stack =
g_array_new (FALSE, FALSE, sizeof (ClutterPaintVolume));
priv->pick_stack = g_array_new (FALSE, FALSE, sizeof (PickRecord));
priv->pick_clip_stack = g_array_new (FALSE, FALSE, sizeof (PickClipRecord));
priv->pick_clip_stack_top = -1;
priv->cached_pick_mode = CLUTTER_PICK_NONE;
}
/**
* clutter_stage_get_default:
*
* Retrieves a #ClutterStage singleton.
*
* This function is not as useful as it sounds, and will most likely
* by deprecated in the future. Application code should only create
* a #ClutterStage instance using clutter_stage_new(), and manage the
* lifetime of the stage manually.
*
* The default stage singleton has a platform-specific behaviour: on
* platforms without the %CLUTTER_FEATURE_STAGE_MULTIPLE feature flag
* set, the first #ClutterStage instance will also be set to be the
* default stage instance, and this function will always return a
* pointer to it.
*
* On platforms with the %CLUTTER_FEATURE_STAGE_MULTIPLE feature flag
* set, the default stage will be created by the first call to this
* function, and every following call will return the same pointer to
* it.
*
* Return value: (transfer none) (type Clutter.Stage): the main
* #ClutterStage. You should never destroy or unref the returned
* actor.
*
* Deprecated: 1.10: Use clutter_stage_new() instead.
*/
ClutterActor *
clutter_stage_get_default (void)
{
ClutterStageManager *stage_manager = clutter_stage_manager_get_default ();
ClutterStage *stage;
stage = clutter_stage_manager_get_default_stage (stage_manager);
if (G_UNLIKELY (stage == NULL))
{
/* This will take care of automatically adding the stage to the
* stage manager and setting it as the default. Its floating
* reference will be claimed by the stage manager.
*/
stage = g_object_new (CLUTTER_TYPE_STAGE, NULL);
_clutter_stage_manager_set_default_stage (stage_manager, stage);
/* the default stage is realized by default */
clutter_actor_realize (CLUTTER_ACTOR (stage));
}
return CLUTTER_ACTOR (stage);
}
/**
* clutter_stage_set_color:
* @stage: A #ClutterStage
* @color: A #ClutterColor
*
* Sets the stage color.
*
* Deprecated: 1.10: Use clutter_actor_set_background_color() instead.
*/
void
clutter_stage_set_color (ClutterStage *stage,
const ClutterColor *color)
{
clutter_actor_set_background_color (CLUTTER_ACTOR (stage), color);
g_object_notify_by_pspec (G_OBJECT (stage), obj_props[PROP_COLOR]);
}
/**
* clutter_stage_get_color:
* @stage: A #ClutterStage
* @color: (out caller-allocates): return location for a #ClutterColor
*
* Retrieves the stage color.
*
* Deprecated: 1.10: Use clutter_actor_get_background_color() instead.
*/
void
clutter_stage_get_color (ClutterStage *stage,
ClutterColor *color)
{
clutter_actor_get_background_color (CLUTTER_ACTOR (stage), color);
}
static void
clutter_stage_set_perspective_internal (ClutterStage *stage,
ClutterPerspective *perspective)
{
ClutterStagePrivate *priv = stage->priv;
if (priv->perspective.fovy == perspective->fovy &&
priv->perspective.aspect == perspective->aspect &&
priv->perspective.z_near == perspective->z_near &&
priv->perspective.z_far == perspective->z_far)
return;
priv->perspective = *perspective;
cogl_matrix_init_identity (&priv->projection);
cogl_matrix_perspective (&priv->projection,
priv->perspective.fovy,
priv->perspective.aspect,
priv->perspective.z_near,
priv->perspective.z_far);
cogl_matrix_get_inverse (&priv->projection,
&priv->inverse_projection);
_clutter_stage_dirty_projection (stage);
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
}
/**
* clutter_stage_set_perspective:
* @stage: A #ClutterStage
* @perspective: A #ClutterPerspective
*
* Sets the stage perspective. Using this function is not recommended
* because it will disable Clutter's attempts to generate an
* appropriate perspective based on the size of the stage.
*/
void
clutter_stage_set_perspective (ClutterStage *stage,
ClutterPerspective *perspective)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (perspective != NULL);
g_return_if_fail (perspective->z_far - perspective->z_near != 0);
priv = stage->priv;
/* If the application ever calls this function then we'll stop
automatically updating the perspective when the stage changes
size */
priv->has_custom_perspective = TRUE;
clutter_stage_set_perspective_internal (stage, perspective);
clutter_stage_update_view_perspective (stage);
}
/**
* clutter_stage_get_perspective:
* @stage: A #ClutterStage
* @perspective: (out caller-allocates) (allow-none): return location for a
* #ClutterPerspective
*
* Retrieves the stage perspective.
*/
void
clutter_stage_get_perspective (ClutterStage *stage,
ClutterPerspective *perspective)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (perspective != NULL);
*perspective = stage->priv->perspective;
}
/*
* clutter_stage_get_projection_matrix:
* @stage: A #ClutterStage
* @projection: return location for a #CoglMatrix representing the
* perspective projection applied to actors on the given
* @stage.
*
* Retrieves the @stage's projection matrix. This is derived from the
* current perspective set using clutter_stage_set_perspective().
*
* Since: 1.6
*/
void
_clutter_stage_get_projection_matrix (ClutterStage *stage,
CoglMatrix *projection)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (projection != NULL);
*projection = stage->priv->projection;
}
/* This simply provides a simple mechanism for us to ensure that
* the projection matrix gets re-asserted before painting.
*
* This is used when switching between multiple stages */
void
_clutter_stage_dirty_projection (ClutterStage *stage)
{
ClutterStagePrivate *priv;
GList *l;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
for (l = _clutter_stage_window_get_views (priv->impl); l; l = l->next)
{
ClutterStageView *view = l->data;
clutter_stage_view_set_dirty_projection (view, TRUE);
}
}
/*
* clutter_stage_set_viewport:
* @stage: A #ClutterStage
* @x: The X postition to render the stage at, in window coordinates
* @y: The Y position to render the stage at, in window coordinates
* @width: The width to render the stage at, in window coordinates
* @height: The height to render the stage at, in window coordinates
*
* Sets the stage viewport. The viewport defines a final scale and
* translation of your rendered stage and actors. This lets you render
* your stage into a subregion of the stage window or you could use it to
* pan a subregion of the stage if your stage window is smaller then
* the stage. (XXX: currently this isn't possible)
*
* Unlike a scale and translation done using the modelview matrix this
* is done after everything has had perspective projection applied, so
* for example if you were to pan across a subregion of the stage using
* the viewport then you would not see a change in perspective for the
* actors on the stage.
*
* Normally the stage viewport will automatically track the size of the
* stage window with no offset so the stage will fill your window. This
* behaviour can be changed with the "viewport-mimics-window" property
* which will automatically be set to FALSE if you use this API. If
* you want to revert to the original behaviour then you should set
* this property back to %TRUE using
* clutter_stage_set_viewport_mimics_window().
* (XXX: If we were to make this API public then we might want to do
* add that property.)
*
* Note: currently this interface only support integer precision
* offsets and sizes for viewports but the interface takes floats because
* OpenGL 4.0 has introduced floating point viewports which we might
* want to expose via this API eventually.
*
* Since: 1.6
*/
void
_clutter_stage_set_viewport (ClutterStage *stage,
float x,
float y,
float width,
float height)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (x == priv->viewport[0] &&
y == priv->viewport[1] &&
width == priv->viewport[2] &&
height == priv->viewport[3])
return;
priv->viewport[0] = x;
priv->viewport[1] = y;
priv->viewport[2] = width;
priv->viewport[3] = height;
clutter_stage_update_view_perspective (stage);
_clutter_stage_dirty_viewport (stage);
queue_full_redraw (stage);
}
/* This simply provides a simple mechanism for us to ensure that
* the viewport gets re-asserted before next painting.
*
* This is used when switching between multiple stages */
void
_clutter_stage_dirty_viewport (ClutterStage *stage)
{
ClutterStagePrivate *priv;
GList *l;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
for (l = _clutter_stage_window_get_views (priv->impl); l; l = l->next)
{
ClutterStageView *view = l->data;
clutter_stage_view_set_dirty_viewport (view, TRUE);
}
}
/*
* clutter_stage_get_viewport:
* @stage: A #ClutterStage
* @x: A location for the X position where the stage is rendered,
* in window coordinates.
* @y: A location for the Y position where the stage is rendered,
* in window coordinates.
* @width: A location for the width the stage is rendered at,
* in window coordinates.
* @height: A location for the height the stage is rendered at,
* in window coordinates.
*
* Returns the viewport offset and size set using
* clutter_stage_set_viewport() or if the "viewport-mimics-window" property
* is TRUE then @x and @y will be set to 0 and @width and @height will equal
* the width if the stage window.
*
* Since: 1.6
*/
void
_clutter_stage_get_viewport (ClutterStage *stage,
float *x,
float *y,
float *width,
float *height)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
*x = priv->viewport[0];
*y = priv->viewport[1];
*width = priv->viewport[2];
*height = priv->viewport[3];
}
/**
* clutter_stage_show_cursor:
* @stage: a #ClutterStage
*
* Shows the cursor on the stage window
*/
void
clutter_stage_show_cursor (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (!priv->is_cursor_visible)
{
ClutterStageWindow *impl = CLUTTER_STAGE_WINDOW (priv->impl);
ClutterStageWindowInterface *iface;
iface = CLUTTER_STAGE_WINDOW_GET_IFACE (impl);
if (iface->set_cursor_visible)
{
priv->is_cursor_visible = TRUE;
iface->set_cursor_visible (impl, TRUE);
g_object_notify_by_pspec (G_OBJECT (stage),
obj_props[PROP_CURSOR_VISIBLE]);
}
}
}
/**
* clutter_stage_hide_cursor:
* @stage: a #ClutterStage
*
* Makes the cursor invisible on the stage window
*
* Since: 0.4
*/
void
clutter_stage_hide_cursor (ClutterStage *stage)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->is_cursor_visible)
{
ClutterStageWindow *impl = CLUTTER_STAGE_WINDOW (priv->impl);
ClutterStageWindowInterface *iface;
iface = CLUTTER_STAGE_WINDOW_GET_IFACE (impl);
if (iface->set_cursor_visible)
{
priv->is_cursor_visible = FALSE;
iface->set_cursor_visible (impl, FALSE);
g_object_notify_by_pspec (G_OBJECT (stage),
obj_props[PROP_CURSOR_VISIBLE]);
}
}
}
/**
* clutter_stage_read_pixels:
* @stage: A #ClutterStage
* @x: x coordinate of the first pixel that is read from stage
* @y: y coordinate of the first pixel that is read from stage
* @width: Width dimention of pixels to be read, or -1 for the
* entire stage width
* @height: Height dimention of pixels to be read, or -1 for the
* entire stage height
*
* Makes a screenshot of the stage in RGBA 8bit data, returns a
* linear buffer with @width * 4 as rowstride.
*
* The alpha data contained in the returned buffer is driver-dependent,
* and not guaranteed to hold any sensible value.
*
* Return value: (transfer full) (array): a pointer to newly allocated memory with the buffer
* or %NULL if the read failed. Use g_free() on the returned data
* to release the resources it has allocated.
*/
guchar *
clutter_stage_read_pixels (ClutterStage *stage,
gint x,
gint y,
gint width,
gint height)
{
ClutterStagePrivate *priv;
ClutterActorBox box;
GList *l;
ClutterStageView *view;
cairo_region_t *clip;
cairo_rectangle_int_t clip_rect;
CoglFramebuffer *framebuffer;
float view_scale;
float pixel_width;
float pixel_height;
uint8_t *pixels;
COGL_TRACE_BEGIN_SCOPED (ClutterStageReadPixels, "Read Pixels");
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
priv = stage->priv;
clutter_actor_get_allocation_box (CLUTTER_ACTOR (stage), &box);
if (width < 0)
width = ceilf (box.x2 - box.x1);
if (height < 0)
height = ceilf (box.y2 - box.y1);
l = _clutter_stage_window_get_views (priv->impl);
if (!l)
return NULL;
/* XXX: We only read the first view. Needs different API for multi view screen
* capture. */
view = l->data;
clutter_stage_view_get_layout (view, &clip_rect);
clip = cairo_region_create_rectangle (&clip_rect);
cairo_region_intersect_rectangle (clip,
&(cairo_rectangle_int_t) {
.x = x,
.y = y,
.width = width,
.height = height,
});
cairo_region_get_extents (clip, &clip_rect);
cairo_region_destroy (clip);
if (clip_rect.width == 0 || clip_rect.height == 0)
return NULL;
framebuffer = clutter_stage_view_get_framebuffer (view);
cogl_push_framebuffer (framebuffer);
clutter_stage_do_paint_view (stage, view, &clip_rect);
view_scale = clutter_stage_view_get_scale (view);
pixel_width = roundf (clip_rect.width * view_scale);
pixel_height = roundf (clip_rect.height * view_scale);
pixels = g_malloc0 (pixel_width * pixel_height * 4);
cogl_framebuffer_read_pixels (framebuffer,
clip_rect.x * view_scale,
clip_rect.y * view_scale,
pixel_width, pixel_height,
COGL_PIXEL_FORMAT_RGBA_8888,
pixels);
cogl_pop_framebuffer ();
return pixels;
}
/**
* clutter_stage_get_actor_at_pos:
* @stage: a #ClutterStage
* @pick_mode: how the scene graph should be painted
* @x: X coordinate to check
* @y: Y coordinate to check
*
* Checks the scene at the coordinates @x and @y and returns a pointer
* to the #ClutterActor at those coordinates. The result is the actor which
* would be at the specified location on the next redraw, and is not
* necessarily that which was there on the previous redraw. This allows the
* function to perform chronologically correctly after any queued changes to
* the scene, and even if nothing has been drawn.
*
* By using @pick_mode it is possible to control which actors will be
* painted and thus available.
*
* Return value: (transfer none): the actor at the specified coordinates,
* if any
*/
ClutterActor *
clutter_stage_get_actor_at_pos (ClutterStage *stage,
ClutterPickMode pick_mode,
gint x,
gint y)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
return _clutter_stage_do_pick (stage, x, y, pick_mode);
}
/**
* clutter_stage_event:
* @stage: a #ClutterStage
* @event: a #ClutterEvent
*
* This function is used to emit an event on the main stage.
*
* You should rarely need to use this function, except for
* synthetised events.
*
* Return value: the return value from the signal emission
*
* Since: 0.4
*/
gboolean
clutter_stage_event (ClutterStage *stage,
ClutterEvent *event)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
g_return_val_if_fail (event != NULL, FALSE);
if (event->type == CLUTTER_DELETE)
{
gboolean retval = FALSE;
g_signal_emit_by_name (stage, "event", event, &retval);
if (!retval)
g_signal_emit_by_name (stage, "delete-event", event, &retval);
return retval;
}
if (event->type != CLUTTER_STAGE_STATE)
return FALSE;
/* emit raw event */
if (clutter_actor_event (CLUTTER_ACTOR (stage), event, FALSE))
return TRUE;
if (event->stage_state.changed_mask & CLUTTER_STAGE_STATE_ACTIVATED)
{
if (event->stage_state.new_state & CLUTTER_STAGE_STATE_ACTIVATED)
g_signal_emit (stage, stage_signals[ACTIVATE], 0);
else
g_signal_emit (stage, stage_signals[DEACTIVATE], 0);
}
return TRUE;
}
/**
* clutter_stage_set_title:
* @stage: A #ClutterStage
* @title: A utf8 string for the stage windows title.
*
* Sets the stage title.
*
* Since: 0.4
**/
void
clutter_stage_set_title (ClutterStage *stage,
const gchar *title)
{
ClutterStagePrivate *priv;
ClutterStageWindow *impl;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
g_free (priv->title);
priv->title = g_strdup (title);
impl = CLUTTER_STAGE_WINDOW (priv->impl);
if (CLUTTER_STAGE_WINDOW_GET_IFACE(impl)->set_title != NULL)
CLUTTER_STAGE_WINDOW_GET_IFACE (impl)->set_title (impl, priv->title);
g_object_notify_by_pspec (G_OBJECT (stage), obj_props[PROP_TITLE]);
}
/**
* clutter_stage_get_title:
* @stage: A #ClutterStage
*
* Gets the stage title.
*
* Return value: pointer to the title string for the stage. The
* returned string is owned by the actor and should not
* be modified or freed.
*
* Since: 0.4
**/
const gchar *
clutter_stage_get_title (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
return stage->priv->title;
}
static void
on_key_focus_destroy (ClutterActor *actor,
ClutterStage *stage)
{
/* unset the key focus */
clutter_stage_set_key_focus (stage, NULL);
}
/**
* clutter_stage_set_key_focus:
* @stage: the #ClutterStage
* @actor: (allow-none): the actor to set key focus to, or %NULL
*
* Sets the key focus on @actor. An actor with key focus will receive
* all the key events. If @actor is %NULL, the stage will receive
* focus.
*
* Since: 0.6
*/
void
clutter_stage_set_key_focus (ClutterStage *stage,
ClutterActor *actor)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (actor == NULL || CLUTTER_IS_ACTOR (actor));
priv = stage->priv;
/* normalize the key focus. NULL == stage */
if (actor == CLUTTER_ACTOR (stage))
actor = NULL;
/* avoid emitting signals and notifications if we're setting the same
* actor as the key focus
*/
if (priv->key_focused_actor == actor)
return;
if (priv->key_focused_actor != NULL)
{
ClutterActor *old_focused_actor;
old_focused_actor = priv->key_focused_actor;
/* set key_focused_actor to NULL before emitting the signal or someone
* might hide the previously focused actor in the signal handler and we'd
* get re-entrant call and get glib critical from g_object_weak_unref
*/
g_signal_handlers_disconnect_by_func (priv->key_focused_actor,
G_CALLBACK (on_key_focus_destroy),
stage);
priv->key_focused_actor = NULL;
g_signal_emit_by_name (old_focused_actor, "key-focus-out");
}
else
g_signal_emit_by_name (stage, "key-focus-out");
/* Note, if someone changes key focus in focus-out signal handler we'd be
* overriding the latter call below moving the focus where it was originally
* intended. The order of events would be:
* 1st focus-out, 2nd focus-out (on stage), 2nd focus-in, 1st focus-in
*/
if (actor != NULL)
{
priv->key_focused_actor = actor;
g_signal_connect (actor,
"destroy", G_CALLBACK (on_key_focus_destroy),
stage);
g_signal_emit_by_name (priv->key_focused_actor, "key-focus-in");
}
else
g_signal_emit_by_name (stage, "key-focus-in");
g_object_notify_by_pspec (G_OBJECT (stage), obj_props[PROP_KEY_FOCUS]);
}
/**
* clutter_stage_get_key_focus:
* @stage: the #ClutterStage
*
* Retrieves the actor that is currently under key focus.
*
* Return value: (transfer none): the actor with key focus, or the stage
*
* Since: 0.6
*/
ClutterActor *
clutter_stage_get_key_focus (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
if (stage->priv->key_focused_actor)
return stage->priv->key_focused_actor;
return CLUTTER_ACTOR (stage);
}
/**
* clutter_stage_get_use_fog:
* @stage: the #ClutterStage
*
* Gets whether the depth cueing effect is enabled on @stage.
*
* Return value: %TRUE if the depth cueing effect is enabled
*
* Since: 0.6
*
* Deprecated: 1.10: This function will always return %FALSE
*/
gboolean
clutter_stage_get_use_fog (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->use_fog;
}
/**
* clutter_stage_set_use_fog:
* @stage: the #ClutterStage
* @fog: %TRUE for enabling the depth cueing effect
*
* Sets whether the depth cueing effect on the stage should be enabled
* or not.
*
* Depth cueing is a 3D effect that makes actors farther away from the
* viewing point less opaque, by fading them with the stage color.
* The parameters of the GL fog used can be changed using the
* clutter_stage_set_fog() function.
*
* Since: 0.6
*
* Deprecated: 1.10: Calling this function produces no visible effect
*/
void
clutter_stage_set_use_fog (ClutterStage *stage,
gboolean fog)
{
}
/**
* clutter_stage_set_fog:
* @stage: the #ClutterStage
* @fog: a #ClutterFog structure
*
* Sets the fog (also known as "depth cueing") settings for the @stage.
*
* A #ClutterStage will only use a linear fog progression, which
* depends solely on the distance from the viewer. The cogl_set_fog()
* function in COGL exposes more of the underlying implementation,
* and allows changing the for progression function. It can be directly
* used by disabling the #ClutterStage:use-fog property and connecting
* a signal handler to the #ClutterActor::paint signal on the @stage,
* like:
*
* |[
* clutter_stage_set_use_fog (stage, FALSE);
* g_signal_connect (stage, "paint", G_CALLBACK (on_stage_paint), NULL);
* ]|
*
* The paint signal handler will call cogl_set_fog() with the
* desired settings:
*
* |[
* static void
* on_stage_paint (ClutterActor *actor)
* {
* ClutterColor stage_color = { 0, };
* CoglColor fog_color = { 0, };
*
* // set the fog color to the stage background color
* clutter_stage_get_color (CLUTTER_STAGE (actor), &stage_color);
* cogl_color_init_from_4ub (&fog_color,
* stage_color.red,
* stage_color.green,
* stage_color.blue,
* stage_color.alpha);
*
* // enable fog //
* cogl_set_fog (&fog_color,
* COGL_FOG_MODE_EXPONENTIAL, // mode
* 0.5, // density
* 5.0, 30.0); // z_near and z_far
* }
* ]|
*
* The fogging functions only work correctly when the visible actors use
* unmultiplied alpha colors. By default Cogl will premultiply textures and
* cogl_set_source_color() will premultiply colors, so unless you explicitly
* load your textures requesting an unmultiplied internal format and use
* cogl_material_set_color() you can only use fogging with fully opaque actors.
* Support for premultiplied colors will improve in the future when we can
* depend on fragment shaders.
*
* Since: 0.6
*
* Deprecated: 1.10: Fog settings are ignored.
*/
void
clutter_stage_set_fog (ClutterStage *stage,
ClutterFog *fog)
{
}
/**
* clutter_stage_get_fog:
* @stage: the #ClutterStage
* @fog: (out): return location for a #ClutterFog structure
*
* Retrieves the current depth cueing settings from the stage.
*
* Since: 0.6
*
* Deprecated: 1.10: This function will always return the default
* values of #ClutterFog
*/
void
clutter_stage_get_fog (ClutterStage *stage,
ClutterFog *fog)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (fog != NULL);
*fog = stage->priv->fog;
}
/*** Perspective boxed type ******/
static gpointer
clutter_perspective_copy (gpointer data)
{
if (G_LIKELY (data))
return g_slice_dup (ClutterPerspective, data);
return NULL;
}
static void
clutter_perspective_free (gpointer data)
{
if (G_LIKELY (data))
g_slice_free (ClutterPerspective, data);
}
G_DEFINE_BOXED_TYPE (ClutterPerspective, clutter_perspective,
clutter_perspective_copy,
clutter_perspective_free);
static gpointer
clutter_fog_copy (gpointer data)
{
if (G_LIKELY (data))
return g_slice_dup (ClutterFog, data);
return NULL;
}
static void
clutter_fog_free (gpointer data)
{
if (G_LIKELY (data))
g_slice_free (ClutterFog, data);
}
G_DEFINE_BOXED_TYPE (ClutterFog, clutter_fog, clutter_fog_copy, clutter_fog_free);
/**
* clutter_stage_new:
*
* Creates a new, non-default stage. A non-default stage is a new
* top-level actor which can be used as another container. It works
* exactly like the default stage, but while clutter_stage_get_default()
* will always return the same instance, you will have to keep a pointer
* to any #ClutterStage returned by clutter_stage_new().
*
* The ability to support multiple stages depends on the current
* backend. Use clutter_feature_available() and
* %CLUTTER_FEATURE_STAGE_MULTIPLE to check at runtime whether a
* backend supports multiple stages.
*
* Return value: a new stage, or %NULL if the default backend does
* not support multiple stages. Use clutter_actor_destroy() to
* programmatically close the returned stage.
*
* Since: 0.8
*/
ClutterActor *
clutter_stage_new (void)
{
return g_object_new (CLUTTER_TYPE_STAGE, NULL);
}
/**
* clutter_stage_ensure_current:
* @stage: the #ClutterStage
*
* This function essentially makes sure the right GL context is
* current for the passed stage. It is not intended to
* be used by applications.
*
* Since: 0.8
* Deprecated: mutter: This function does not do anything.
*/
void
clutter_stage_ensure_current (ClutterStage *stage)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
}
/**
* clutter_stage_ensure_viewport:
* @stage: a #ClutterStage
*
* Ensures that the GL viewport is updated with the current
* stage window size.
*
* This function will queue a redraw of @stage.
*
* This function should not be called by applications; it is used
* when embedding a #ClutterStage into a toolkit with another
* windowing system, like GTK+.
*
* Since: 1.0
*/
void
clutter_stage_ensure_viewport (ClutterStage *stage)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
_clutter_stage_dirty_viewport (stage);
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
}
# define _DEG_TO_RAD(d) ((d) * ((float) G_PI / 180.0f))
/* This calculates a distance into the view frustum to position the
* stage so there is a decent amount of space to position geometry
* between the stage and the near clipping plane.
*
* Some awkward issues with this problem are:
* - It's not possible to have a gap as large as the stage size with
* a fov > 53° which is basically always the case since the default
* fov is 60°.
* - This can be deduced if you consider that this requires a
* triangle as wide as it is deep to fit in the frustum in front
* of the z_near plane. That triangle will always have an angle
* of 53.13° at the point sitting on the z_near plane, but if the
* frustum has a wider fov angle the left/right clipping planes
* can never converge with the two corners of our triangle no
* matter what size the triangle has.
* - With a fov > 53° there is a trade off between maximizing the gap
* size relative to the stage size but not loosing depth precision.
* - Perhaps ideally we wouldn't just consider the fov on the y-axis
* that is usually used to define a perspective, we would consider
* the fov of the axis with the largest stage size so the gap would
* accommodate that size best.
*
* After going around in circles a few times with how to handle these
* issues, we decided in the end to go for the simplest solution to
* start with instead of an elaborate function that handles arbitrary
* fov angles that we currently have no use-case for.
*
* The solution assumes a fovy of 60° and for that case gives a gap
* that's 85% of the stage height. We can consider more elaborate
* functions if necessary later.
*
* One guide we had to steer the gap size we support is the
* interactive test, test-texture-quality which expects to animate an
* actor to +400 on the z axis with a stage size of 640x480. A gap
* that's 85% of the stage height gives a gap of 408 in that case.
*/
static float
calculate_z_translation (float z_near)
{
/* This solution uses fairly basic trigonometry, but is seems worth
* clarifying the particular geometry we are looking at in-case
* anyone wants to develop this further later. Not sure how well an
* ascii diagram is going to work :-)
*
* |--- stage_height ---|
* | stage line |
* ╲━━━━━━━━━━━━━━━━━━━━━╱------------
* ╲. (2) │ . | |
* C ╲ . │ . gap| |
* =0.5°╲ . a │ . | |
* b╲(1). D│ . | |
* ╲ B.│. near plane | |
* A= ╲━━━━━━━━━╱------------- |
* 120° ╲ c │ | z_2d
* ╲ │ z_near |
* left ╲ │ | |
* clip 60°fovy | |
* plane ----------------------
* |
* |
* origin line
*
* The area of interest is the triangle labeled (1) at the top left
* marked with the ... line (a) from where the origin line crosses
* the near plane to the top left where the stage line cross the
* left clip plane.
*
* The sides of the triangle are a, b and c and the corresponding
* angles opposite those sides are A, B and C.
*
* The angle of C is what trades off the gap size we have relative
* to the stage size vs the depth precision we have.
*
* As mentioned above we arove at the angle for C is by working
* backwards from how much space we want for test-texture-quality.
* With a stage_height of 480 we want a gap > 400, ideally we also
* wanted a somewhat round number as a percentage of the height for
* documentation purposes. ~87% or a gap of ~416 is the limit
* because that's where we approach a C angle of 0° and effectively
* loose all depth precision.
*
* So for our test app with a stage_height of 480 if we aim for a
* gap of 408 (85% of 480) we can get the angle D as
* atan (stage_height/2/408) = 30.5°.
*
* That gives us the angle for B as 90° - 30.5° = 59.5°
*
* We can already determine that A has an angle of (fovy/2 + 90°) =
* 120°
*
* Therefore C = 180 - A - B = 0.5°
*
* The length of c = z_near * tan (30°)
*
* Now we can use the rule a/SinA = c/SinC to calculate the
* length of a. After some rearranging that gives us:
*
* a c
* ---------- = ----------
* sin (120°) sin (0.5°)
*
* c * sin (120°)
* a = --------------
* sin (0.5°)
*
* And with that we can determine z_2d = cos (D) * a =
* cos (30.5°) * a + z_near:
*
* c * sin (120°) * cos (30.5°)
* z_2d = --------------------------- + z_near
* sin (0.5°)
*/
/* We expect the compiler should boil this down to z_near * CONSTANT
* already, but just in case we use precomputed constants
*/
#if 0
# define A tanf (_DEG_TO_RAD (30.f))
# define B sinf (_DEG_TO_RAD (120.f))
# define C cosf (_DEG_TO_RAD (30.5f))
# define D sinf (_DEG_TO_RAD (.5f))
#else
# define A 0.57735025882720947265625f
# define B 0.866025388240814208984375f
# define C 0.86162912845611572265625f
# define D 0.00872653536498546600341796875f
#endif
return z_near
* A * B * C
/ D
+ z_near;
}
static void
clutter_stage_update_view_perspective (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
ClutterPerspective perspective;
float z_2d;
perspective = priv->perspective;
/* Ideally we want to regenerate the perspective matrix whenever
* the size changes but if the user has provided a custom matrix
* then we don't want to override it */
if (!priv->has_custom_perspective)
{
perspective.fovy = 60.0; /* 60 Degrees */
perspective.z_near = 0.1;
perspective.aspect = priv->viewport[2] / priv->viewport[3];
z_2d = calculate_z_translation (perspective.z_near);
/* NB: z_2d is only enough room for 85% of the stage_height between
* the stage and the z_near plane. For behind the stage plane we
* want a more consistent gap of 10 times the stage_height before
* hitting the far plane so we calculate that relative to the final
* height of the stage plane at the z_2d_distance we got... */
perspective.z_far = z_2d +
tanf (_DEG_TO_RAD (perspective.fovy / 2.0f)) * z_2d * 20.0f;
clutter_stage_set_perspective_internal (stage, &perspective);
}
else
{
z_2d = calculate_z_translation (perspective.z_near);
}
cogl_matrix_init_identity (&priv->view);
cogl_matrix_view_2d_in_perspective (&priv->view,
perspective.fovy,
perspective.aspect,
perspective.z_near,
z_2d,
priv->viewport[2],
priv->viewport[3]);
}
void
_clutter_stage_maybe_setup_viewport (ClutterStage *stage,
ClutterStageView *view)
{
ClutterStagePrivate *priv = stage->priv;
CoglFramebuffer *fb = clutter_stage_view_get_framebuffer (view);
if (clutter_stage_view_is_dirty_viewport (view))
{
cairo_rectangle_int_t view_layout;
float fb_scale;
float viewport_offset_x;
float viewport_offset_y;
float viewport_x;
float viewport_y;
float viewport_width;
float viewport_height;
CLUTTER_NOTE (PAINT,
"Setting up the viewport { w:%f, h:%f }",
priv->viewport[2],
priv->viewport[3]);
fb_scale = clutter_stage_view_get_scale (view);
clutter_stage_view_get_layout (view, &view_layout);
viewport_offset_x = view_layout.x * fb_scale;
viewport_offset_y = view_layout.y * fb_scale;
viewport_x = roundf (priv->viewport[0] * fb_scale - viewport_offset_x);
viewport_y = roundf (priv->viewport[1] * fb_scale - viewport_offset_y);
viewport_width = roundf (priv->viewport[2] * fb_scale);
viewport_height = roundf (priv->viewport[3] * fb_scale);
cogl_framebuffer_set_viewport (fb,
viewport_x, viewport_y,
viewport_width, viewport_height);
clutter_stage_view_set_dirty_viewport (view, FALSE);
}
if (clutter_stage_view_is_dirty_projection (view))
{
cogl_framebuffer_set_projection_matrix (fb, &priv->projection);
clutter_stage_view_set_dirty_projection (view, FALSE);
}
}
#undef _DEG_TO_RAD
/**
* clutter_stage_ensure_redraw:
* @stage: a #ClutterStage
*
* Ensures that @stage is redrawn
*
* This function should not be called by applications: it is
* used when embedding a #ClutterStage into a toolkit with
* another windowing system, like GTK+.
*
* Since: 1.0
*/
void
clutter_stage_ensure_redraw (ClutterStage *stage)
{
ClutterMasterClock *master_clock;
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (!priv->relayout_pending && !priv->redraw_pending)
_clutter_stage_schedule_update (stage);
priv->relayout_pending = TRUE;
priv->redraw_pending = TRUE;
master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_start_running (master_clock);
}
/**
* clutter_stage_is_redraw_queued: (skip)
*/
gboolean
clutter_stage_is_redraw_queued (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
return priv->redraw_pending;
}
/**
* clutter_stage_queue_redraw:
* @stage: the #ClutterStage
*
* Queues a redraw for the passed stage.
*
* Applications should call clutter_actor_queue_redraw() and not
* this function.
*
* Since: 0.8
*
* Deprecated: 1.10: Use clutter_actor_queue_redraw() instead.
*/
void
clutter_stage_queue_redraw (ClutterStage *stage)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
}
/**
* clutter_stage_is_default:
* @stage: a #ClutterStage
*
* Checks if @stage is the default stage, or an instance created using
* clutter_stage_new() but internally using the same implementation.
*
* Return value: %TRUE if the passed stage is the default one
*
* Since: 0.8
*
* Deprecated: 1.10: Track the stage pointer inside your application
* code, or use clutter_actor_get_stage() to retrieve the stage for
* a given actor.
*/
gboolean
clutter_stage_is_default (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage_is_default (stage);
}
void
_clutter_stage_set_window (ClutterStage *stage,
ClutterStageWindow *stage_window)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail (CLUTTER_IS_STAGE_WINDOW (stage_window));
if (stage->priv->impl != NULL)
g_object_unref (stage->priv->impl);
stage->priv->impl = stage_window;
}
ClutterStageWindow *
_clutter_stage_get_window (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), NULL);
return CLUTTER_STAGE_WINDOW (stage->priv->impl);
}
ClutterStageWindow *
_clutter_stage_get_default_window (void)
{
ClutterStageManager *manager = clutter_stage_manager_get_default ();
ClutterStage *stage;
stage = clutter_stage_manager_get_default_stage (manager);
if (stage == NULL)
return NULL;
return _clutter_stage_get_window (stage);
}
/**
* clutter_stage_set_throttle_motion_events:
* @stage: a #ClutterStage
* @throttle: %TRUE to throttle motion events
*
* Sets whether motion events received between redraws should
* be throttled or not. If motion events are throttled, those
* events received by the windowing system between redraws will
* be compressed so that only the last event will be propagated
* to the @stage and its actors.
*
* This function should only be used if you want to have all
* the motion events delivered to your application code.
*
* Since: 1.0
*/
void
clutter_stage_set_throttle_motion_events (ClutterStage *stage,
gboolean throttle)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->throttle_motion_events != throttle)
priv->throttle_motion_events = throttle;
}
/**
* clutter_stage_get_throttle_motion_events:
* @stage: a #ClutterStage
*
* Retrieves the value set with clutter_stage_set_throttle_motion_events()
*
* Return value: %TRUE if the motion events are being throttled,
* and %FALSE otherwise
*
* Since: 1.0
*/
gboolean
clutter_stage_get_throttle_motion_events (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->throttle_motion_events;
}
/**
* clutter_stage_set_use_alpha:
* @stage: a #ClutterStage
* @use_alpha: whether the stage should honour the opacity or the
* alpha channel of the stage color
*
* Sets whether the @stage should honour the #ClutterActor:opacity and
* the alpha channel of the #ClutterStage:color
*
* Since: 1.2
*/
void
clutter_stage_set_use_alpha (ClutterStage *stage,
gboolean use_alpha)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
if (priv->use_alpha != use_alpha)
{
priv->use_alpha = use_alpha;
clutter_actor_queue_redraw (CLUTTER_ACTOR (stage));
g_object_notify_by_pspec (G_OBJECT (stage), obj_props[PROP_USE_ALPHA]);
}
}
/**
* clutter_stage_get_use_alpha:
* @stage: a #ClutterStage
*
* Retrieves the value set using clutter_stage_set_use_alpha()
*
* Return value: %TRUE if the stage should honour the opacity and the
* alpha channel of the stage color
*
* Since: 1.2
*/
gboolean
clutter_stage_get_use_alpha (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->use_alpha;
}
/**
* clutter_stage_set_minimum_size:
* @stage: a #ClutterStage
* @width: width, in pixels
* @height: height, in pixels
*
* Sets the minimum size for a stage window, if the default backend
* uses #ClutterStage inside a window
*
* This is a convenience function, and it is equivalent to setting the
* #ClutterActor:min-width and #ClutterActor:min-height on @stage
*
* If the current size of @stage is smaller than the minimum size, the
* @stage will be resized to the new @width and @height
*
* Since: 1.2
*/
void
clutter_stage_set_minimum_size (ClutterStage *stage,
guint width,
guint height)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_return_if_fail ((width > 0) && (height > 0));
g_object_set (G_OBJECT (stage),
"min-width", (gfloat) width,
"min-height", (gfloat )height,
NULL);
}
/**
* clutter_stage_get_minimum_size:
* @stage: a #ClutterStage
* @width: (out): return location for the minimum width, in pixels,
* or %NULL
* @height: (out): return location for the minimum height, in pixels,
* or %NULL
*
* Retrieves the minimum size for a stage window as set using
* clutter_stage_set_minimum_size().
*
* The returned size may not correspond to the actual minimum size and
* it is specific to the #ClutterStage implementation inside the
* Clutter backend
*
* Since: 1.2
*/
void
clutter_stage_get_minimum_size (ClutterStage *stage,
guint *width_p,
guint *height_p)
{
gfloat width, height;
gboolean width_set, height_set;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
g_object_get (G_OBJECT (stage),
"min-width", &width,
"min-width-set", &width_set,
"min-height", &height,
"min-height-set", &height_set,
NULL);
/* if not width or height have been set, then the Stage
* minimum size is defined to be 1x1
*/
if (!width_set)
width = 1;
if (!height_set)
height = 1;
if (width_p)
*width_p = (guint) width;
if (height_p)
*height_p = (guint) height;
}
/**
* _clutter_stage_schedule_update:
* @window: a #ClutterStage actor
*
* Schedules a redraw of the #ClutterStage at the next optimal timestamp.
*/
void
_clutter_stage_schedule_update (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return;
stage_window = _clutter_stage_get_window (stage);
if (stage_window == NULL)
return;
return _clutter_stage_window_schedule_update (stage_window,
stage->priv->sync_delay);
}
/**
* _clutter_stage_get_update_time:
* @stage: a #ClutterStage actor
*
* Returns the earliest time in which the stage is ready to update. The update
* time is set when _clutter_stage_schedule_update() is called. This can then
* be used by e.g. the #ClutterMasterClock to know when the stage needs to be
* redrawn.
*
* Returns: -1 if no redraw is needed; 0 if the backend doesn't know, or the
* timestamp (in microseconds) otherwise.
*/
gint64
_clutter_stage_get_update_time (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
if (CLUTTER_ACTOR_IN_DESTRUCTION (stage))
return 0;
stage_window = _clutter_stage_get_window (stage);
if (stage_window == NULL)
return 0;
return _clutter_stage_window_get_update_time (stage_window);
}
/**
* _clutter_stage_clear_update_time:
* @stage: a #ClutterStage actor
*
* Resets the update time. Call this after a redraw, so that the update time
* can again be updated.
*/
void
_clutter_stage_clear_update_time (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
stage_window = _clutter_stage_get_window (stage);
if (stage_window)
_clutter_stage_window_clear_update_time (stage_window);
}
/**
* clutter_stage_set_no_clear_hint:
* @stage: a #ClutterStage
* @no_clear: %TRUE if the @stage should not clear itself on every
* repaint cycle
*
* Sets whether the @stage should clear itself at the beginning
* of each paint cycle or not.
*
* Clearing the #ClutterStage can be a costly operation, especially
* if the stage is always covered - for instance, in a full-screen
* video player or in a game with a background texture.
*
* This setting is a hint; Clutter might discard this hint
* depending on its internal state.
*
* If parts of the stage are visible and you disable clearing you
* might end up with visual artifacts while painting the contents of
* the stage.
*
* Since: 1.4
*/
void
clutter_stage_set_no_clear_hint (ClutterStage *stage,
gboolean no_clear)
{
ClutterStagePrivate *priv;
ClutterStageHint new_hints;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
new_hints = priv->stage_hints;
if (no_clear)
new_hints |= CLUTTER_STAGE_NO_CLEAR_ON_PAINT;
else
new_hints &= ~CLUTTER_STAGE_NO_CLEAR_ON_PAINT;
if (priv->stage_hints == new_hints)
return;
priv->stage_hints = new_hints;
g_object_notify_by_pspec (G_OBJECT (stage), obj_props[PROP_NO_CLEAR_HINT]);
}
/**
* clutter_stage_get_no_clear_hint:
* @stage: a #ClutterStage
*
* Retrieves the hint set with clutter_stage_set_no_clear_hint()
*
* Return value: %TRUE if the stage should not clear itself on every paint
* cycle, and %FALSE otherwise
*
* Since: 1.4
*/
gboolean
clutter_stage_get_no_clear_hint (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return (stage->priv->stage_hints & CLUTTER_STAGE_NO_CLEAR_ON_PAINT) != 0;
}
ClutterPaintVolume *
_clutter_stage_paint_volume_stack_allocate (ClutterStage *stage)
{
GArray *paint_volume_stack = stage->priv->paint_volume_stack;
g_array_set_size (paint_volume_stack,
paint_volume_stack->len+1);
return &g_array_index (paint_volume_stack,
ClutterPaintVolume,
paint_volume_stack->len - 1);
}
void
_clutter_stage_paint_volume_stack_free_all (ClutterStage *stage)
{
GArray *paint_volume_stack = stage->priv->paint_volume_stack;
int i;
for (i = 0; i < paint_volume_stack->len; i++)
{
ClutterPaintVolume *pv =
&g_array_index (paint_volume_stack, ClutterPaintVolume, i);
clutter_paint_volume_free (pv);
}
g_array_set_size (paint_volume_stack, 0);
}
/* The is an out-of-band paramater available while painting that
* can be used to cull actors. */
const ClutterPlane *
_clutter_stage_get_clip (ClutterStage *stage)
{
return stage->priv->current_clip_planes;
}
/* When an actor queues a redraw we add it to a list on the stage that
* gets processed once all updates to the stage have been finished.
*
* This deferred approach to processing queue_redraw requests means
* that we can avoid redundant transformations of clip volumes if
* something later triggers a full stage redraw anyway. It also means
* we can be more sure that all the referenced actors will have valid
* allocations improving the chance that we can determine the actors
* paint volume so we can clip the redraw request even if the user
* didn't explicitly do so.
*/
ClutterStageQueueRedrawEntry *
_clutter_stage_queue_actor_redraw (ClutterStage *stage,
ClutterStageQueueRedrawEntry *entry,
ClutterActor *actor,
const ClutterPaintVolume *clip)
{
ClutterStagePrivate *priv = stage->priv;
CLUTTER_NOTE (CLIPPING, "stage_queue_actor_redraw (actor=%s, clip=%p): ",
_clutter_actor_get_debug_name (actor), clip);
/* Queuing a redraw or clip change invalidates the pick cache, unless we're
* in the middle of building it. So we reset the cached flag but don't
* completely clear the pick stack...
*/
priv->cached_pick_mode = CLUTTER_PICK_NONE;
if (!priv->redraw_pending)
{
ClutterMasterClock *master_clock;
CLUTTER_NOTE (PAINT, "First redraw request");
_clutter_stage_schedule_update (stage);
priv->redraw_pending = TRUE;
master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_start_running (master_clock);
}
#ifdef CLUTTER_ENABLE_DEBUG
else
{
CLUTTER_NOTE (PAINT, "Redraw request number %lu",
priv->redraw_count + 1);
priv->redraw_count += 1;
}
#endif /* CLUTTER_ENABLE_DEBUG */
if (entry)
{
/* Ignore all requests to queue a redraw for an actor if a full
* (non-clipped) redraw of the actor has already been queued. */
if (!entry->has_clip)
{
CLUTTER_NOTE (CLIPPING, "Bail from stage_queue_actor_redraw (%s): "
"Unclipped redraw of actor already queued",
_clutter_actor_get_debug_name (actor));
return entry;
}
/* If queuing a clipped redraw and a clipped redraw has
* previously been queued for this actor then combine the latest
* clip together with the existing clip */
if (clip)
clutter_paint_volume_union (&entry->clip, clip);
else
{
clutter_paint_volume_free (&entry->clip);
entry->has_clip = FALSE;
}
return entry;
}
else
{
entry = g_slice_new (ClutterStageQueueRedrawEntry);
entry->actor = g_object_ref (actor);
if (clip)
{
entry->has_clip = TRUE;
_clutter_paint_volume_init_static (&entry->clip, actor);
_clutter_paint_volume_set_from_volume (&entry->clip, clip);
}
else
entry->has_clip = FALSE;
stage->priv->pending_queue_redraws =
g_list_prepend (stage->priv->pending_queue_redraws, entry);
return entry;
}
}
static void
free_queue_redraw_entry (ClutterStageQueueRedrawEntry *entry)
{
if (entry->actor)
g_object_unref (entry->actor);
if (entry->has_clip)
clutter_paint_volume_free (&entry->clip);
g_slice_free (ClutterStageQueueRedrawEntry, entry);
}
void
_clutter_stage_queue_redraw_entry_invalidate (ClutterStageQueueRedrawEntry *entry)
{
if (entry == NULL)
return;
if (entry->actor != NULL)
{
g_object_unref (entry->actor);
entry->actor = NULL;
}
if (entry->has_clip)
{
clutter_paint_volume_free (&entry->clip);
entry->has_clip = FALSE;
}
}
static void
clutter_stage_maybe_finish_queue_redraws (ClutterStage *stage)
{
/* Note: we have to repeat until the pending_queue_redraws list is
* empty because actors are allowed to queue redraws in response to
* the queue-redraw signal. For example Clone actors or
* texture_new_from_actor actors will have to queue a redraw if
* their source queues a redraw.
*/
while (stage->priv->pending_queue_redraws)
{
GList *l;
/* XXX: we need to allow stage->priv->pending_queue_redraws to
* be updated while we process the current entries in the list
* so we steal the list pointer and then reset it to an empty
* list before processing... */
GList *stolen_list = stage->priv->pending_queue_redraws;
stage->priv->pending_queue_redraws = NULL;
for (l = stolen_list; l; l = l->next)
{
ClutterStageQueueRedrawEntry *entry = l->data;
ClutterPaintVolume *clip;
/* NB: Entries may be invalidated if the actor gets destroyed */
if (G_LIKELY (entry->actor != NULL))
{
clip = entry->has_clip ? &entry->clip : NULL;
_clutter_actor_finish_queue_redraw (entry->actor, clip);
}
free_queue_redraw_entry (entry);
}
g_list_free (stolen_list);
}
}
/**
* clutter_stage_set_accept_focus:
* @stage: a #ClutterStage
* @accept_focus: %TRUE to accept focus on show
*
* Sets whether the @stage should accept the key focus when shown.
*
* This function should be called before showing @stage using
* clutter_actor_show().
*
* Since: 1.6
*/
void
clutter_stage_set_accept_focus (ClutterStage *stage,
gboolean accept_focus)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
accept_focus = !!accept_focus;
priv = stage->priv;
if (priv->accept_focus != accept_focus)
{
_clutter_stage_window_set_accept_focus (priv->impl, accept_focus);
g_object_notify_by_pspec (G_OBJECT (stage), obj_props[PROP_ACCEPT_FOCUS]);
}
}
/**
* clutter_stage_get_accept_focus:
* @stage: a #ClutterStage
*
* Retrieves the value set with clutter_stage_set_accept_focus().
*
* Return value: %TRUE if the #ClutterStage should accept focus, and %FALSE
* otherwise
*
* Since: 1.6
*/
gboolean
clutter_stage_get_accept_focus (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), TRUE);
return stage->priv->accept_focus;
}
/**
* clutter_stage_set_motion_events_enabled:
* @stage: a #ClutterStage
* @enabled: %TRUE to enable the motion events delivery, and %FALSE
* otherwise
*
* Sets whether per-actor motion events (and relative crossing
* events) should be disabled or not.
*
* The default is %TRUE.
*
* If @enable is %FALSE the following signals will not be emitted
* by the actors children of @stage:
*
* - #ClutterActor::motion-event
* - #ClutterActor::enter-event
* - #ClutterActor::leave-event
*
* The events will still be delivered to the #ClutterStage.
*
* The main side effect of this function is that disabling the motion
* events will disable picking to detect the #ClutterActor underneath
* the pointer for each motion event. This is useful, for instance,
* when dragging a #ClutterActor across the @stage: the actor underneath
* the pointer is not going to change, so it's meaningless to perform
* a pick.
*
* Since: 1.8
*/
void
clutter_stage_set_motion_events_enabled (ClutterStage *stage,
gboolean enabled)
{
ClutterStagePrivate *priv;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
priv = stage->priv;
enabled = !!enabled;
if (priv->motion_events_enabled != enabled)
priv->motion_events_enabled = enabled;
}
/**
* clutter_stage_get_motion_events_enabled:
* @stage: a #ClutterStage
*
* Retrieves the value set using clutter_stage_set_motion_events_enabled().
*
* Return value: %TRUE if the per-actor motion event delivery is enabled
* and %FALSE otherwise
*
* Since: 1.8
*/
gboolean
clutter_stage_get_motion_events_enabled (ClutterStage *stage)
{
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
return stage->priv->motion_events_enabled;
}
/* NB: The presumption shouldn't be that a stage can't be comprised
* of multiple internal framebuffers, so instead of simply naming
* this function _clutter_stage_get_framebuffer(), the "active"
* infix is intended to clarify that it gets the framebuffer that
* is currently in use/being painted.
*/
CoglFramebuffer *
_clutter_stage_get_active_framebuffer (ClutterStage *stage)
{
return stage->priv->active_framebuffer;
}
void
_clutter_stage_add_pointer_drag_actor (ClutterStage *stage,
ClutterInputDevice *device,
ClutterActor *actor)
{
GHashTable *drag_actors;
drag_actors = g_object_get_data (G_OBJECT (stage),
"__clutter_stage_pointer_drag_actors");
if (drag_actors == NULL)
{
drag_actors = g_hash_table_new (NULL, NULL);
g_object_set_data_full (G_OBJECT (stage),
"__clutter_stage_pointer_drag_actors",
drag_actors,
(GDestroyNotify) g_hash_table_destroy);
}
g_hash_table_replace (drag_actors, device, actor);
}
ClutterActor *
_clutter_stage_get_pointer_drag_actor (ClutterStage *stage,
ClutterInputDevice *device)
{
GHashTable *drag_actors;
drag_actors = g_object_get_data (G_OBJECT (stage),
"__clutter_stage_pointer_drag_actors");
if (drag_actors == NULL)
return NULL;
return g_hash_table_lookup (drag_actors, device);
}
void
_clutter_stage_remove_pointer_drag_actor (ClutterStage *stage,
ClutterInputDevice *device)
{
GHashTable *drag_actors;
drag_actors = g_object_get_data (G_OBJECT (stage),
"__clutter_stage_pointer_drag_actors");
if (drag_actors == NULL)
return;
g_hash_table_remove (drag_actors, device);
if (g_hash_table_size (drag_actors) == 0)
g_object_set_data (G_OBJECT (stage),
"__clutter_stage_pointer_drag_actors",
NULL);
}
void
_clutter_stage_add_touch_drag_actor (ClutterStage *stage,
ClutterEventSequence *sequence,
ClutterActor *actor)
{
GHashTable *drag_actors;
drag_actors = g_object_get_data (G_OBJECT (stage),
"__clutter_stage_touch_drag_actors");
if (drag_actors == NULL)
{
drag_actors = g_hash_table_new (NULL, NULL);
g_object_set_data_full (G_OBJECT (stage),
"__clutter_stage_touch_drag_actors",
drag_actors,
(GDestroyNotify) g_hash_table_destroy);
}
g_hash_table_replace (drag_actors, sequence, actor);
}
ClutterActor *
_clutter_stage_get_touch_drag_actor (ClutterStage *stage,
ClutterEventSequence *sequence)
{
GHashTable *drag_actors;
drag_actors = g_object_get_data (G_OBJECT (stage),
"__clutter_stage_touch_drag_actors");
if (drag_actors == NULL)
return NULL;
return g_hash_table_lookup (drag_actors, sequence);
}
void
_clutter_stage_remove_touch_drag_actor (ClutterStage *stage,
ClutterEventSequence *sequence)
{
GHashTable *drag_actors;
drag_actors = g_object_get_data (G_OBJECT (stage),
"__clutter_stage_touch_drag_actors");
if (drag_actors == NULL)
return;
g_hash_table_remove (drag_actors, sequence);
if (g_hash_table_size (drag_actors) == 0)
g_object_set_data (G_OBJECT (stage),
"__clutter_stage_touch_drag_actors",
NULL);
}
/*< private >
* _clutter_stage_get_state:
* @stage: a #ClutterStage
*
* Retrieves the current #ClutterStageState flags associated to the @stage.
*
* Return value: a bitwise OR of #ClutterStageState flags
*/
ClutterStageState
_clutter_stage_get_state (ClutterStage *stage)
{
return stage->priv->current_state;
}
/*< private >
* _clutter_stage_is_activated:
* @stage: a #ClutterStage
*
* Checks whether the @stage state includes %CLUTTER_STAGE_STATE_ACTIVATED.
*
* Return value: %TRUE if the @stage is active
*/
gboolean
_clutter_stage_is_activated (ClutterStage *stage)
{
return (stage->priv->current_state & CLUTTER_STAGE_STATE_ACTIVATED) != 0;
}
/*< private >
* _clutter_stage_update_state:
* @stage: a #ClutterStage
* @unset_flags: flags to unset
* @set_flags: flags to set
*
* Updates the state of @stage, by unsetting the @unset_flags and setting
* the @set_flags.
*
* If the stage state has been changed, this function will queue a
* #ClutterEvent of type %CLUTTER_STAGE_STATE.
*
* Return value: %TRUE if the state was updated, and %FALSE otherwise
*/
gboolean
_clutter_stage_update_state (ClutterStage *stage,
ClutterStageState unset_flags,
ClutterStageState set_flags)
{
ClutterStageState new_state;
ClutterEvent event;
new_state = stage->priv->current_state;
new_state |= set_flags;
new_state &= ~unset_flags;
if (new_state == stage->priv->current_state)
return FALSE;
memset (&event, 0, sizeof (event));
event.type = CLUTTER_STAGE_STATE;
clutter_event_set_stage (&event, stage);
event.stage_state.new_state = new_state;
event.stage_state.changed_mask = new_state ^ stage->priv->current_state;
stage->priv->current_state = new_state;
clutter_stage_event (stage, &event);
return TRUE;
}
/**
* clutter_stage_set_sync_delay:
* @stage: a #ClutterStage
* @sync_delay: number of milliseconds after frame presentation to wait
* before painting the next frame. If less than zero, restores the
* default behavior where redraw is throttled to the refresh rate but
* not synchronized to it.
*
* This function enables an alternate behavior where Clutter draws at
* a fixed point in time after the frame presentation time (also known
* as the VBlank time). This is most useful when the application
* wants to show incoming data with predictable latency. (The primary
* example of this would be a window system compositor.) By synchronizing
* to provide new data before Clutter redraws, an external source of
* updates (in the compositor, an application) can get a reliable latency.
*
* The appropriate value of @sync_delay depends on the complexity of
* drawing the stage's scene graph - in general a value of between 0
* and 8 ms (up to one-half of a typical 60hz frame rate) is appropriate.
* using a larger value will reduce latency but risks skipping a frame if
* drawing the stage takes too long.
*
* Since: 1.14
* Stability: unstable
*/
void
clutter_stage_set_sync_delay (ClutterStage *stage,
gint sync_delay)
{
g_return_if_fail (CLUTTER_IS_STAGE (stage));
stage->priv->sync_delay = sync_delay;
}
/**
* clutter_stage_skip_sync_delay:
* @stage: a #ClutterStage
*
* Causes the next frame for the stage to be drawn as quickly as
* possible, ignoring any delay that clutter_stage_set_sync_delay()
* would normally cause.
*
* Since: 1.14
* Stability: unstable
*/
void
clutter_stage_skip_sync_delay (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
stage_window = _clutter_stage_get_window (stage);
if (stage_window)
_clutter_stage_window_schedule_update (stage_window, -1);
}
int64_t
clutter_stage_get_frame_counter (ClutterStage *stage)
{
ClutterStageWindow *stage_window;
stage_window = _clutter_stage_get_window (stage);
return _clutter_stage_window_get_frame_counter (stage_window);
}
void
_clutter_stage_presented (ClutterStage *stage,
CoglFrameEvent frame_event,
ClutterFrameInfo *frame_info)
{
g_signal_emit (stage, stage_signals[PRESENTED], 0,
(int) frame_event, frame_info);
}
static void
capture_view (ClutterStage *stage,
gboolean paint,
ClutterStageView *view,
ClutterCapture *capture)
{
cairo_surface_t *image;
uint8_t *data;
int stride;
cairo_rectangle_int_t *rect;
float view_scale;
float texture_width;
float texture_height;
rect = &capture->rect;
view_scale = clutter_stage_view_get_scale (view);
texture_width = roundf (rect->width * view_scale);
texture_height = roundf (rect->height * view_scale);
image = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
texture_width, texture_height);
cairo_surface_set_device_scale (image, view_scale, view_scale);
data = cairo_image_surface_get_data (image);
stride = cairo_image_surface_get_stride (image);
capture_view_into (stage, paint, view, rect, data, stride);
capture->image = image;
cairo_surface_mark_dirty (capture->image);
}
gboolean
clutter_stage_capture (ClutterStage *stage,
gboolean paint,
cairo_rectangle_int_t *rect,
ClutterCapture **out_captures,
int *out_n_captures)
{
ClutterStagePrivate *priv = stage->priv;
GList *views = _clutter_stage_window_get_views (priv->impl);
GList *l;
ClutterCapture *captures;
int n_captures;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
captures = g_new0 (ClutterCapture, g_list_length (views));
n_captures = 0;
for (l = views; l; l = l->next)
{
ClutterStageView *view = l->data;
ClutterCapture *capture;
cairo_rectangle_int_t view_layout;
cairo_region_t *region;
clutter_stage_view_get_layout (view, &view_layout);
region = cairo_region_create_rectangle (&view_layout);
cairo_region_intersect_rectangle (region, rect);
capture = &captures[n_captures];
cairo_region_get_extents (region, &capture->rect);
cairo_region_destroy (region);
if (capture->rect.width == 0 || capture->rect.height == 0)
continue;
capture_view (stage, paint, view, capture);
n_captures++;
}
if (n_captures == 0)
g_clear_pointer (&captures, g_free);
*out_captures = captures;
*out_n_captures = n_captures;
return n_captures > 0;
}
gboolean
clutter_stage_get_capture_final_size (ClutterStage *stage,
cairo_rectangle_int_t *rect,
int *out_width,
int *out_height,
float *out_scale)
{
float max_scale;
g_return_val_if_fail (CLUTTER_IS_STAGE (stage), FALSE);
if (rect)
{
ClutterRect capture_rect;
_clutter_util_rect_from_rectangle (rect, &capture_rect);
if (!_clutter_stage_get_max_view_scale_factor_for_rect (stage,
&capture_rect,
&max_scale))
return FALSE;
if (out_width)
*out_width = (gint) roundf (rect->width * max_scale);
if (out_height)
*out_height = (gint) roundf (rect->height * max_scale);
}
else
{
ClutterActorBox alloc;
float stage_width, stage_height;
clutter_actor_get_allocation_box (CLUTTER_ACTOR (stage), &alloc);
clutter_actor_box_get_size (&alloc, &stage_width, &stage_height);
if (!_clutter_actor_get_real_resource_scale (CLUTTER_ACTOR (stage),
&max_scale))
return FALSE;
if (out_width)
*out_width = (gint) roundf (stage_width * max_scale);
if (out_height)
*out_height = (gint) roundf (stage_height * max_scale);
}
if (out_scale)
*out_scale = max_scale;
return TRUE;
}
static void
capture_view_into (ClutterStage *stage,
gboolean paint,
ClutterStageView *view,
cairo_rectangle_int_t *rect,
uint8_t *data,
int stride)
{
CoglFramebuffer *framebuffer;
ClutterBackend *backend;
CoglContext *context;
CoglBitmap *bitmap;
cairo_rectangle_int_t view_layout;
float view_scale;
float texture_width;
float texture_height;
g_return_if_fail (CLUTTER_IS_STAGE (stage));
framebuffer = clutter_stage_view_get_framebuffer (view);
if (paint)
{
cogl_push_framebuffer (framebuffer);
_clutter_stage_maybe_setup_viewport (stage, view);
clutter_stage_do_paint_view (stage, view, rect);
}
view_scale = clutter_stage_view_get_scale (view);
texture_width = roundf (rect->width * view_scale);
texture_height = roundf (rect->height * view_scale);
backend = clutter_get_default_backend ();
context = clutter_backend_get_cogl_context (backend);
bitmap = cogl_bitmap_new_for_data (context,
texture_width, texture_height,
CLUTTER_CAIRO_FORMAT_ARGB32,
stride,
data);
clutter_stage_view_get_layout (view, &view_layout);
cogl_framebuffer_read_pixels_into_bitmap (framebuffer,
roundf ((rect->x - view_layout.x) * view_scale),
roundf ((rect->y - view_layout.y) * view_scale),
COGL_READ_PIXELS_COLOR_BUFFER,
bitmap);
if (paint)
cogl_pop_framebuffer ();
cogl_object_unref (bitmap);
}
static ClutterStageView *
get_view_at_rect (ClutterStage *stage,
cairo_rectangle_int_t *rect)
{
ClutterStagePrivate *priv = stage->priv;
GList *views = _clutter_stage_window_get_views (priv->impl);
GList *l;
for (l = views; l; l = l->next)
{
ClutterStageView *view = l->data;
cairo_rectangle_int_t view_layout;
cairo_region_t *region;
cairo_rectangle_int_t view_capture_rect;
clutter_stage_view_get_layout (view, &view_layout);
region = cairo_region_create_rectangle (&view_layout);
cairo_region_intersect_rectangle (region, rect);
cairo_region_get_extents (region, &view_capture_rect);
cairo_region_destroy (region);
if (view_capture_rect.width == 0 || view_capture_rect.height == 0)
continue;
g_assert (view_capture_rect.width == rect->width &&
view_capture_rect.height == rect->height);
return view;
}
return NULL;
}
void
clutter_stage_capture_into (ClutterStage *stage,
gboolean paint,
cairo_rectangle_int_t *rect,
uint8_t *data)
{
ClutterStageView *view;
int bpp = 4;
view = get_view_at_rect (stage, rect);
capture_view_into (stage, paint, view, rect, data, rect->width * bpp);
}
/**
* clutter_stage_freeze_updates:
*
* Freezing updates makes Clutter stop processing events,
* redrawing, and advancing timelines, by pausing the master clock. This is
* necessary when implementing a display server, to ensure that Clutter doesn't
* keep trying to page flip when DRM master has been dropped, e.g. when VT
* switched away.
*
* The master clock starts out running, so if you are VT switched away on
* startup, you need to call this immediately.
*
* To thaw updates, use clutter_stage_thaw_updates().
*/
void
clutter_stage_freeze_updates (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
priv->update_freeze_count++;
if (priv->update_freeze_count == 1)
{
ClutterMasterClock *master_clock;
master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_set_paused (master_clock, TRUE);
}
}
/**
* clutter_stage_thaw_updates:
*
* Resumes a master clock that has previously been frozen with
* clutter_stage_freeze_updates(), and start pumping the master clock
* again at the next iteration. Note that if you're switching back to your
* own VT, you should probably also queue a stage redraw with
* clutter_stage_ensure_redraw().
*/
void
clutter_stage_thaw_updates (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
g_assert (priv->update_freeze_count > 0);
priv->update_freeze_count--;
if (priv->update_freeze_count == 0)
{
ClutterMasterClock *master_clock;
master_clock = _clutter_master_clock_get_default ();
_clutter_master_clock_set_paused (master_clock, FALSE);
}
}
GList *
_clutter_stage_peek_stage_views (ClutterStage *stage)
{
ClutterStagePrivate *priv = stage->priv;
return _clutter_stage_window_get_views (priv->impl);
}
void
clutter_stage_update_resource_scales (ClutterStage *stage)
{
_clutter_actor_queue_update_resource_scale_recursive (CLUTTER_ACTOR (stage));
}
gboolean
_clutter_stage_get_max_view_scale_factor_for_rect (ClutterStage *stage,
ClutterRect *rect,
float *view_scale)
{
ClutterStagePrivate *priv = stage->priv;
float scale = 0.0f;
GList *l;
for (l = _clutter_stage_window_get_views (priv->impl); l; l = l->next)
{
ClutterStageView *view = l->data;
cairo_rectangle_int_t view_layout;
ClutterRect view_rect;
clutter_stage_view_get_layout (view, &view_layout);
_clutter_util_rect_from_rectangle (&view_layout, &view_rect);
if (clutter_rect_intersection (&view_rect, rect, NULL))
scale = MAX (clutter_stage_view_get_scale (view), scale);
}
if (scale == 0.0)
return FALSE;
*view_scale = scale;
return TRUE;
}