mutter/clutter/clutter-actor.c
Emmanuele Bassi c759aeb6a7 Uniformly use floats in Actor properties
All the underlying implementation and the public entry points have
been switched to floats; the only missing bits are the Actor properties
that deal with positioning and sizing.

This usually means a major pain when dealing with GValues and varargs
functions. While GValue will warn you when dealing with the wrong
conversions, varags will simply die an horrible (and hard to debug)
death via segfault. Nothing much to do here, except warn people in the
release notes and hope for the best.
2009-06-01 14:57:18 +01:00

8873 lines
252 KiB
C

/*
* Clutter.
*
* An OpenGL based 'interactive canvas' library.
*
* Authored By Matthew Allum <mallum@openedhand.com>
*
* Copyright (C) 2006 OpenedHand
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/**
* SECTION:clutter-actor
* @short_description: Base abstract class for all visual stage actors.
*
* #ClutterActor is a base abstract class for all visual elements on the
* stage. Every object that must appear on the main #ClutterStage must also
* be a #ClutterActor, either by using one of the classes provided by
* Clutter, or by implementing a new #ClutterActor subclass.
*
* Every actor is a 2D surface positioned and optionally transformed
* in 3D space. The actor is positioned relative to top left corner of
* it parent with the childs origin being its anchor point (also top
* left by default).
*
* The actors 2D surface is contained inside its bounding box,
* described by the #ClutterActorBox structure:
*
* <figure id="actor-box">
* <title>Bounding box of an Actor</title>
* <graphic fileref="actor-box.png" format="PNG"/>
* </figure>
*
* The actor box represents the untransformed area occupied by an
* actor. Each visible actor that has been put on a #ClutterStage also
* has a transformed area, depending on the actual transformations
* applied to it by the developer (scale, rotation). Tranforms will
* also be applied to any child actors. Also applied to all actors by
* the #ClutterStage is a perspective transformation. API is provided
* for both tranformed and untransformed actor geometry information.
*
* The 'modelview' transform matrix for the actor is constructed from
* the actor settings by the following order of operations:
* <orderedlist>
* <listitem><para>Translation by actor x, y coords,</para></listitem>
* <listitem><para>Translation by actor depth (z),</para></listitem>
* <listitem><para>Scaling by scale_x, scale_y,</para></listitem>
* <listitem><para>Rotation around z axis,</para></listitem>
* <listitem><para>Rotation around y axis,</para></listitem>
* <listitem><para>Rotation around x axis,</para></listitem>
* <listitem><para>Negative translation by anchor point x,
* y,</para></listitem>
* <listitem><para>Rectangular Clip is applied (this is not an operation on
* the matrix as such, but it is done as part of the transform set
* up).</para></listitem>
* </orderedlist>
*
* An actor can either be explicitly sized and positioned, using the
* various size and position accessors, like clutter_actor_set_x() or
* clutter_actor_set_width(); or it can have a preferred width and
* height, which then allows a layout manager to implicitly size and
* position it by "allocating" an area for an actor. This allows for
* actors to be manipulate in both a fixed or static parent container
* (i.e. children of #ClutterGroup) and a more automatic or dynamic
* layout based parent container.
*
* When accessing the position and size of an actor, the simple accessors
* like clutter_actor_get_width() and clutter_actor_get_x() will return
* a value depending on whether the actor has been explicitly sized and
* positioned by the developer or implicitly by the layout manager.
*
* Depending on whether you are querying an actor or implementing a
* layout manager, you should either use the simple accessors or use the
* size negotiation API.
*
* Clutter actors are also able to receive input events and react to
* them. Events are handled in the following ways:
*
* <orderedlist>
* <listitem><para>Actors emit pointer events if set reactive, see
* clutter_actor_set_reactive()</para></listitem>
* <listitem><para>The stage is always reactive</para></listitem>
* <listitem><para>Events are handled by connecting signal handlers to
* the numerous event signal types.</para></listitem>
* <listitem><para>Event handlers must return %TRUE if they handled
* the event and wish to block the event emission chain, or %FALSE
* if the emission chain must continue</para></listitem>
* <listitem><para>Keyboard events are emitted if actor has focus, see
* clutter_stage_set_key_focus()</para></listitem>
* <listitem><para>Motion events (motion, enter, leave) are not emitted
* if clutter_set_motion_events_enabled() is called with %FALSE.
* See clutter_set_motion_events_enabled() documentation for more
* information.</para></listitem>
* <listitem><para>Once emitted, an event emission chain has two
* phases: capture and bubble. An emitted event starts in the capture
* phase (see ClutterActor::captured-event) beginning at the stage and
* traversing every child actor until the event source actor is reached.
* The emission then enters the bubble phase, traversing back up the
* chain via parents until it reaches the stage. Any event handler can
* abort this chain by returning %TRUE (meaning "event handled").
* </para></listitem>
* <listitem><para>Pointer events will 'pass through' non reactive
* overlapping actors.</para></listitem>
* </orderedlist>
*
* <figure id="event-flow">
* <title>Event flow in Clutter</title>
* <graphic fileref="event-flow.png" format="PNG"/>
* </figure>
*
* Every '?' box in the diagram above is an entry point for application
* code.
*
* For implementing a new custom actor class, please read <link
* linkend="clutter-subclassing-ClutterActor">the corresponding section</link>
* of the API reference.
*/
/**
* CLUTTER_ACTOR_IS_MAPPED:
* @a: a #ClutterActor
*
* Evaluates to %TRUE if the %CLUTTER_ACTOR_MAPPED flag is set.
*
* Means "the actor will be painted if the stage is mapped."
*
* %TRUE if the actor is visible; and all parents with possible exception
* of the stage are visible; and an ancestor of the actor is a toplevel.
*
* Clutter auto-maintains the mapped flag whenever actors are
* reparented or shown/hidden.
*
* Since: 0.2
*/
/**
* CLUTTER_ACTOR_IS_REALIZED:
* @a: a #ClutterActor
*
* Evaluates to %TRUE if the %CLUTTER_ACTOR_REALIZED flag is set.
*
* Whether GL resources such as textures are allocated;
* if an actor is mapped it must also be realized, but an actor
* can be realized and unmapped (this is so hiding an actor temporarily
* doesn't do an expensive unrealize/realize).
*
* To be realized an actor must be inside a stage, and all its parents
* must be realized. The stage is required so the actor knows the
* correct GL context and window system resources to use.
*
* Since: 0.2
*/
/**
* CLUTTER_ACTOR_IS_VISIBLE:
* @a: a #ClutterActor
*
* Evaluates to %TRUE if the actor has been shown, %FALSE if it's hidden.
* Equivalent to the ClutterActor::visible object property.
*
* Note that an actor is only painted onscreen if it's mapped, which
* means it's visible, and all its parents are visible, and one of the
* parents is a toplevel stage.
*
* Since: 0.2
*/
/**
* CLUTTER_ACTOR_IS_REACTIVE:
* @a: a #ClutterActor
*
* Evaluates to %TRUE if the %CLUTTER_ACTOR_REACTIVE flag is set.
*
* Only reactive actors will receive event-related signals.
*
* Since: 0.6
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "clutter-actor.h"
#include "clutter-container.h"
#include "clutter-main.h"
#include "clutter-enum-types.h"
#include "clutter-scriptable.h"
#include "clutter-script.h"
#include "clutter-marshal.h"
#include "clutter-private.h"
#include "clutter-debug.h"
#include "clutter-units.h"
#include "cogl/cogl.h"
typedef struct _ShaderData ShaderData;
typedef struct _AnchorCoord AnchorCoord;
#define CLUTTER_ACTOR_GET_PRIVATE(obj) \
(G_TYPE_INSTANCE_GET_PRIVATE ((obj), CLUTTER_TYPE_ACTOR, ClutterActorPrivate))
/* Internal helper struct to represent a point that can be stored in
either direct pixel coordinates or as a fraction of the actor's
size. It is used for the anchor point, scale center and rotation
centers. */
struct _AnchorCoord
{
gboolean is_fractional;
union
{
/* Used when is_fractional == TRUE */
struct
{
gdouble x;
gdouble y;
} fraction;
/* Use when is_fractional == FALSE */
ClutterVertex units;
} v;
};
/* Internal enum used to control mapped state update. This is a hint
* which indicates when to do something other than just enforce
* invariants.
*/
typedef enum {
MAP_STATE_CHECK, /* just enforce invariants. */
MAP_STATE_MAKE_UNREALIZED, /* force unrealize, ignoring invariants,
* used when about to unparent.
*/
MAP_STATE_MAKE_MAPPED, /* set mapped, error if invariants not met;
* used to set mapped on toplevels.
*/
MAP_STATE_MAKE_UNMAPPED /* set unmapped, even if parent is mapped,
* used just before unmapping parent.
*/
} MapStateChange;
struct _ClutterActorPrivate
{
/* fixed_x, fixed_y, and the allocation box are all in parent
* coordinates.
*/
gfloat fixed_x;
gfloat fixed_y;
/* request mode */
ClutterRequestMode request_mode;
/* our cached request width is for this height */
gfloat request_width_for_height;
gfloat request_min_width;
gfloat request_natural_width;
/* our cached request height is for this width */
gfloat request_height_for_width;
gfloat request_min_height;
gfloat request_natural_height;
ClutterActorBox allocation;
guint position_set : 1;
guint min_width_set : 1;
guint min_height_set : 1;
guint natural_width_set : 1;
guint natural_height_set : 1;
/* cached request is invalid (implies allocation is too) */
guint needs_width_request : 1;
/* cached request is invalid (implies allocation is too) */
guint needs_height_request : 1;
/* cached allocation is invalid (request has changed, probably) */
guint needs_allocation : 1;
guint queued_redraw : 1;
guint show_on_set_parent : 1;
guint has_clip : 1;
guint clip_to_allocation : 1;
guint enable_model_view_transform : 1;
guint enable_paint_unmapped : 1;
gfloat clip[4];
/* Rotation angles */
gdouble rxang;
gdouble ryang;
gdouble rzang;
/* Rotation center: X axis */
AnchorCoord rx_center;
/* Rotation center: Y axis */
AnchorCoord ry_center;
/* Rotation center: Z axis */
AnchorCoord rz_center;
/* Anchor point coordinates */
AnchorCoord anchor;
/* depth */
gfloat z;
guint8 opacity;
ClutterActor *parent_actor;
gchar *name;
guint32 id; /* Unique ID */
gdouble scale_x;
gdouble scale_y;
AnchorCoord scale_center;
ShaderData *shader_data;
PangoContext *pango_context;
ClutterActor *opacity_parent;
};
enum
{
PROP_0,
PROP_NAME,
/* X, Y, WIDTH, HEIGHT are "do what I mean" properties;
* when set they force a size request, when gotten they
* get the allocation if the allocation is valid, and the
* request otherwise
*/
PROP_X,
PROP_Y,
PROP_WIDTH,
PROP_HEIGHT,
/* Then the rest of these size-related properties are the "actual"
* underlying properties set or gotten by X, Y, WIDTH, HEIGHT
*/
PROP_FIXED_X,
PROP_FIXED_Y,
PROP_FIXED_POSITION_SET,
PROP_MIN_WIDTH,
PROP_MIN_WIDTH_SET,
PROP_MIN_HEIGHT,
PROP_MIN_HEIGHT_SET,
PROP_NATURAL_WIDTH,
PROP_NATURAL_WIDTH_SET,
PROP_NATURAL_HEIGHT,
PROP_NATURAL_HEIGHT_SET,
PROP_REQUEST_MODE,
/* Allocation properties are read-only */
PROP_ALLOCATION,
PROP_DEPTH,
PROP_CLIP,
PROP_HAS_CLIP,
PROP_CLIP_TO_ALLOCATION,
PROP_OPACITY,
PROP_VISIBLE,
PROP_MAPPED,
PROP_REALIZED,
PROP_REACTIVE,
PROP_SCALE_X,
PROP_SCALE_Y,
PROP_SCALE_CENTER_X,
PROP_SCALE_CENTER_Y,
PROP_SCALE_GRAVITY,
PROP_ROTATION_ANGLE_X,
PROP_ROTATION_ANGLE_Y,
PROP_ROTATION_ANGLE_Z,
PROP_ROTATION_CENTER_X,
PROP_ROTATION_CENTER_Y,
PROP_ROTATION_CENTER_Z,
/* This property only makes sense for the z rotation because the
others would depend on the actor having a size along the
z-axis */
PROP_ROTATION_CENTER_Z_GRAVITY,
PROP_ANCHOR_X,
PROP_ANCHOR_Y,
PROP_ANCHOR_GRAVITY,
PROP_SHOW_ON_SET_PARENT
};
enum
{
SHOW,
HIDE,
DESTROY,
PARENT_SET,
KEY_FOCUS_IN,
KEY_FOCUS_OUT,
PAINT,
PICK,
REALIZE,
UNREALIZE,
QUEUE_REDRAW,
EVENT,
CAPTURED_EVENT,
BUTTON_PRESS_EVENT,
BUTTON_RELEASE_EVENT,
SCROLL_EVENT,
KEY_PRESS_EVENT,
KEY_RELEASE_EVENT,
MOTION_EVENT,
ENTER_EVENT,
LEAVE_EVENT,
LAST_SIGNAL
};
static guint actor_signals[LAST_SIGNAL] = { 0, };
static void clutter_scriptable_iface_init (ClutterScriptableIface *iface);
static void _clutter_actor_apply_modelview_transform (ClutterActor *self);
static void clutter_actor_shader_pre_paint (ClutterActor *actor,
gboolean repeat);
static void clutter_actor_shader_post_paint (ClutterActor *actor);
static void destroy_shader_data (ClutterActor *self);
/* These setters are all static for now, maybe they should be in the
* public API, but they are perhaps obscure enough to leave only as
* properties
*/
static void clutter_actor_set_min_width (ClutterActor *self,
gfloat min_width);
static void clutter_actor_set_min_height (ClutterActor *self,
gfloat min_height);
static void clutter_actor_set_natural_width (ClutterActor *self,
gfloat natural_width);
static void clutter_actor_set_natural_height (ClutterActor *self,
gfloat natural_height);
static void clutter_actor_set_min_width_set (ClutterActor *self,
gboolean use_min_width);
static void clutter_actor_set_min_height_set (ClutterActor *self,
gboolean use_min_height);
static void clutter_actor_set_natural_width_set (ClutterActor *self,
gboolean use_natural_width);
static void clutter_actor_set_natural_height_set (ClutterActor *self,
gboolean use_natural_height);
static void clutter_actor_set_request_mode (ClutterActor *self,
ClutterRequestMode mode);
static void clutter_actor_update_map_state (ClutterActor *self,
MapStateChange change);
static void clutter_actor_unrealize_not_hiding (ClutterActor *self);
/* Helper routines for managing anchor coords */
static void clutter_anchor_coord_get_units (ClutterActor *self,
const AnchorCoord *coord,
gfloat *x,
gfloat *y,
gfloat *z);
static void clutter_anchor_coord_set_units (AnchorCoord *coord,
gfloat x,
gfloat y,
gfloat z);
static ClutterGravity clutter_anchor_coord_get_gravity (AnchorCoord *coord);
static void clutter_anchor_coord_set_gravity (AnchorCoord *coord,
ClutterGravity gravity);
static gboolean clutter_anchor_coord_is_zero (const AnchorCoord *coord);
/* Helper macro which translates by the anchor coord, applies the
given transformation and then translates back */
#define TRANSFORM_ABOUT_ANCHOR_COORD(actor,coord,transform) G_STMT_START { \
gfloat _tx, _ty, _tz; \
clutter_anchor_coord_get_units ((actor), (coord), &_tx, &_ty, &_tz); \
cogl_translate (_tx, _ty, _tz); \
{ transform; } \
cogl_translate (-_tx, -_ty, -_tz); } G_STMT_END
G_DEFINE_ABSTRACT_TYPE_WITH_CODE (ClutterActor,
clutter_actor,
G_TYPE_INITIALLY_UNOWNED,
G_IMPLEMENT_INTERFACE (CLUTTER_TYPE_SCRIPTABLE,
clutter_scriptable_iface_init));
#ifdef CLUTTER_ENABLE_DEBUG
/* XXX - this is for debugging only, remove once working (or leave
* in only in some debug mode). Should leave it for a little while
* until we're confident in the new map/realize/visible handling.
*/
static inline void
clutter_actor_verify_map_state (ClutterActor *self)
{
ClutterActorPrivate *priv = self->priv;
if (CLUTTER_ACTOR_IS_REALIZED (self))
{
/* all bets are off during reparent when we're potentially realized,
* but should not be according to invariants
*/
if (!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_REPARENT))
{
if (priv->parent_actor == NULL)
{
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
}
else
g_warning ("Realized non-toplevel actor should have a parent");
}
else if (!CLUTTER_ACTOR_IS_REALIZED (priv->parent_actor))
{
g_warning ("Realized actor %s[%p] has an unrealized parent %s[%p]",
G_OBJECT_TYPE_NAME (self), self,
G_OBJECT_TYPE_NAME (priv->parent_actor),
priv->parent_actor);
}
}
}
if (CLUTTER_ACTOR_IS_MAPPED (self))
{
if (!CLUTTER_ACTOR_IS_REALIZED (self))
g_warning ("Actor is mapped but not realized");
/* remaining bets are off during reparent when we're potentially
* mapped, but should not be according to invariants
*/
if (!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_REPARENT))
{
if (priv->parent_actor == NULL)
{
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
if (!CLUTTER_ACTOR_IS_VISIBLE (self) &&
!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_DESTRUCTION))
{
g_warning ("Toplevel actor is mapped but not visible");
}
}
else
{
g_warning ("Mapped actor %s %p should have a parent",
G_OBJECT_TYPE_NAME (self), self);
}
}
else
{
ClutterActor *parent = priv->parent_actor;
/* check for the enable_paint_unmapped flag on any of the
* parents; if the flag is enabled at any point of this
* branch of the scene graph then all the later checks
* become pointless
*/
while (parent != NULL)
{
if (parent->priv->enable_paint_unmapped)
return;
parent = parent->priv->parent_actor;
}
if (!CLUTTER_ACTOR_IS_VISIBLE (priv->parent_actor))
{
g_warning ("Actor should not be mapped if parent "
"is not visible");
}
if (!CLUTTER_ACTOR_IS_REALIZED (priv->parent_actor))
{
g_warning ("Actor should not be mapped if parent "
"is not realized");
}
if (!(CLUTTER_PRIVATE_FLAGS (priv->parent_actor) &
CLUTTER_ACTOR_IS_TOPLEVEL))
{
if (!CLUTTER_ACTOR_IS_MAPPED (priv->parent_actor))
g_warning ("Actor is mapped but its non-toplevel "
"parent is not mapped");
}
}
}
}
}
#endif /* CLUTTER_ENABLE_DEBUG */
static void
clutter_actor_set_mapped (ClutterActor *self,
gboolean mapped)
{
if (CLUTTER_ACTOR_IS_MAPPED (self) == mapped)
return;
if (mapped)
{
CLUTTER_ACTOR_GET_CLASS (self)->map (self);
g_assert (CLUTTER_ACTOR_IS_MAPPED (self));
}
else
{
CLUTTER_ACTOR_GET_CLASS (self)->unmap (self);
g_assert (!CLUTTER_ACTOR_IS_MAPPED (self));
}
}
/* this function updates the mapped and realized states according to
* invariants, in the appropriate order.
*/
static void
clutter_actor_update_map_state (ClutterActor *self,
MapStateChange change)
{
gboolean was_mapped;
gboolean was_realized;
was_mapped = CLUTTER_ACTOR_IS_MAPPED (self);
was_realized = CLUTTER_ACTOR_IS_REALIZED (self);
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
/* the mapped flag on top-level actors must be set by the
* per-backend implementation because it might be asynchronous.
*
* That is, the MAPPED flag on toplevels currently tracks the X
* server mapped-ness of the window, while the expected behavior
* (if used to GTK) may be to track WM_STATE!=WithdrawnState.
* This creates some weird complexity by breaking the invariant
* that if we're visible and all ancestors shown then we are
* also mapped - instead, we are mapped if all ancestors
* _possibly excepting_ the stage are mapped. The stage
* will map/unmap for example when it is minimized or
* moved to another workspace.
*
* So, the only invariant on the stage is that if visible it
* should be realized, and that it has to be visible to be
* mapped.
*/
if (CLUTTER_ACTOR_IS_VISIBLE (self))
clutter_actor_realize (self);
switch (change)
{
case MAP_STATE_CHECK:
break;
case MAP_STATE_MAKE_MAPPED:
g_assert (!was_mapped);
clutter_actor_set_mapped (self, TRUE);
break;
case MAP_STATE_MAKE_UNMAPPED:
g_assert (was_mapped);
clutter_actor_set_mapped (self, FALSE);
break;
case MAP_STATE_MAKE_UNREALIZED:
/* we only use MAKE_UNREALIZED in unparent,
* and unparenting a stage isn't possible.
* If someone wants to just unrealize a stage
* then clutter_actor_unrealize() doesn't
* go through this codepath.
*/
g_warning ("Trying to force unrealize stage is not allowed");
break;
}
if (CLUTTER_ACTOR_IS_MAPPED (self) &&
!CLUTTER_ACTOR_IS_VISIBLE (self) &&
!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_DESTRUCTION))
{
g_warning ("Clutter toplevel is not visible, but is "
"somehow still mapped");
}
}
else
{
ClutterActorPrivate *priv = self->priv;
ClutterActor *parent = priv->parent_actor;
gboolean should_be_mapped;
gboolean may_be_realized;
gboolean must_be_realized;
should_be_mapped = FALSE;
may_be_realized = TRUE;
must_be_realized = FALSE;
if (parent == NULL || change == MAP_STATE_MAKE_UNREALIZED)
{
may_be_realized = FALSE;
}
else
{
/* Maintain invariant that if parent is mapped, and we are
* visible, then we are mapped ... unless parent is a
* stage, in which case we map regardless of parent's map
* state but do require stage to be visible and realized.
*
* If parent is realized, that does not force us to be
* realized; but if parent is unrealized, that does force
* us to be unrealized.
*
* The reason we don't force children to realize with
* parents is _clutter_actor_rerealize(); if we require that
* a realized parent means children are realized, then to
* unrealize an actor we would have to unrealize its
* parents, which would end up meaning unrealizing and
* hiding the entire stage. So we allow unrealizing a
* child (as long as that child is not mapped) while that
* child still has a realized parent.
*
* Also, if we unrealize from leaf nodes to root, and
* realize from root to leaf, the invariants are never
* violated if we allow children to be unrealized
* while parents are realized.
*
* When unmapping, MAP_STATE_MAKE_UNMAPPED is specified
* to force us to unmap, even though parent is still
* mapped. This is because we're unmapping from leaf nodes
* up to root nodes.
*/
if (CLUTTER_ACTOR_IS_VISIBLE (self) &&
change != MAP_STATE_MAKE_UNMAPPED)
{
gboolean parent_is_visible_realized_toplevel;
parent_is_visible_realized_toplevel =
(((CLUTTER_PRIVATE_FLAGS (parent) &
CLUTTER_ACTOR_IS_TOPLEVEL) != 0) &&
CLUTTER_ACTOR_IS_VISIBLE (parent) &&
CLUTTER_ACTOR_IS_REALIZED (parent));
if (CLUTTER_ACTOR_IS_MAPPED (parent) ||
parent_is_visible_realized_toplevel)
{
must_be_realized = TRUE;
should_be_mapped = TRUE;
}
}
/* if the actor has been set to be painted even if unmapped
* then we should map it and check for realization as well;
* this is an override for the branch of the scene graph
* which begins with this node
*/
if (priv->enable_paint_unmapped)
{
if (priv->parent_actor == NULL)
g_warning ("Attempting to map an unparented actor");
should_be_mapped = TRUE;
must_be_realized = TRUE;
}
if (!CLUTTER_ACTOR_IS_REALIZED (parent))
may_be_realized = FALSE;
}
if (change == MAP_STATE_MAKE_MAPPED && !should_be_mapped)
{
g_warning ("Attempting to map a child that does not "
"meet the necessary invariants");
}
/* If in reparent, we temporarily suspend unmap and unrealize.
*
* We want to go in the order "realize, map" and "unmap, unrealize"
*/
/* Unmap */
if (!should_be_mapped &&
!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_REPARENT))
{
clutter_actor_set_mapped (self, FALSE);
}
/* Realize */
if (must_be_realized)
clutter_actor_realize (self);
/* if we must be realized then we may be, presumably */
g_assert (!(must_be_realized && !may_be_realized));
/* Unrealize */
if (!may_be_realized &&
!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_REPARENT))
clutter_actor_unrealize_not_hiding (self);
/* Map */
if (should_be_mapped)
{
if (!must_be_realized)
g_warning ("Somehow we think an actor should be mapped but "
"not realized, which isn't allowed");
/* realization is allowed to fail (though I don't know what
* an app is supposed to do about that - shouldn't it just
* be a g_error? anyway, we have to avoid mapping if this
* happens)
*/
if (CLUTTER_ACTOR_IS_REALIZED (self))
clutter_actor_set_mapped (self, TRUE);
}
}
#ifdef CLUTTER_ENABLE_DEBUG
/* check all invariants were kept */
clutter_actor_verify_map_state (self);
#endif
}
static void
clutter_actor_real_map (ClutterActor *self)
{
g_assert (!CLUTTER_ACTOR_IS_MAPPED (self));
CLUTTER_ACTOR_SET_FLAGS (self, CLUTTER_ACTOR_MAPPED);
/* notify on parent mapped before potentially mapping
* children, so apps see a top-down notification.
*/
g_object_notify (G_OBJECT (self), "mapped");
clutter_actor_queue_redraw (self);
if (CLUTTER_IS_CONTAINER (self))
clutter_container_foreach_with_internals (CLUTTER_CONTAINER (self),
CLUTTER_CALLBACK (clutter_actor_map),
NULL);
}
/**
* clutter_actor_map:
* @self: A #ClutterActor
*
* Sets the #CLUTTER_ACTOR_MAPPED flag on the actor and possibly maps
* and realizes its children if they are visible. Does nothing if the
* actor is not visible.
*
* Calling this is allowed in only one case: you are implementing the
* #ClutterActor::map virtual function in an actor and you need to map
* the children of that actor. It is not necessary to call this
* if you implement #ClutterContainer because the default implementation
* will automatically map children of containers.
*
* When overriding map, it is mandatory to chain up to the parent
* implementation.
*
* Since: 1.0
*/
void
clutter_actor_map (ClutterActor *self)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (CLUTTER_ACTOR_IS_MAPPED (self))
return;
if (!CLUTTER_ACTOR_IS_VISIBLE (self))
return;
clutter_actor_update_map_state (self, MAP_STATE_MAKE_MAPPED);
}
static void
clutter_actor_real_unmap (ClutterActor *self)
{
g_assert (CLUTTER_ACTOR_IS_MAPPED (self));
if (CLUTTER_IS_CONTAINER (self))
clutter_container_foreach_with_internals (CLUTTER_CONTAINER (self),
CLUTTER_CALLBACK (clutter_actor_unmap),
NULL);
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_MAPPED);
/* notify on parent mapped after potentially unmapping
* children, so apps see a bottom-up notification.
*/
g_object_notify (G_OBJECT (self), "mapped");
/* relinquish keyboard focus if we were unmapped while owning it */
if (!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL))
{
ClutterActor *stage;
stage = clutter_actor_get_stage (self);
if (stage &&
clutter_stage_get_key_focus (CLUTTER_STAGE (stage)) == self)
{
clutter_stage_set_key_focus (CLUTTER_STAGE (stage), NULL);
}
}
clutter_actor_queue_redraw (self);
}
/**
* clutter_actor_unmap:
* @self: A #ClutterActor
*
* Unsets the #CLUTTER_ACTOR_MAPPED flag on the actor and possibly
* unmaps its children if they were mapped.
*
* Calling this is allowed in only one case: you are implementing the
* #ClutterActor::unmap virtual function in an actor and you need to
* unmap the children of that actor. It is not necessary to call this
* if you implement #ClutterContainer because the default implementation
* will automatically unmap children of containers.
*
* When overriding unmap, it is mandatory to chain up to the parent
* implementation.
*
* Since: 1.0
*/
void
clutter_actor_unmap (ClutterActor *self)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (!CLUTTER_ACTOR_IS_MAPPED (self))
return;
clutter_actor_update_map_state (self, MAP_STATE_MAKE_UNMAPPED);
}
static void
clutter_actor_real_show (ClutterActor *self)
{
if (!CLUTTER_ACTOR_IS_VISIBLE (self))
{
CLUTTER_ACTOR_SET_FLAGS (self, CLUTTER_ACTOR_VISIBLE);
/* we notify on the "visible" flag in the clutter_actor_show()
* wrapper so the entire show signal emission completes first
* (?)
*/
clutter_actor_update_map_state (self, MAP_STATE_CHECK);
clutter_actor_queue_relayout (self);
}
}
/**
* clutter_actor_show:
* @self: A #ClutterActor
*
* Flags an actor to be displayed. An actor that isn't shown will not
* be rendered on the stage.
*
* Actors are visible by default.
*
* If this function is called on an actor without a parent, the
* #ClutterActor:show-on-set-parent will be set to %TRUE as a side
* effect.
*/
void
clutter_actor_show (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
#ifdef CLUTTER_ENABLE_DEBUG
clutter_actor_verify_map_state (self);
#endif
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
if (!priv->show_on_set_parent && !priv->parent_actor)
{
priv->show_on_set_parent = TRUE;
g_object_notify (G_OBJECT (self), "show-on-set-parent");
}
if (!CLUTTER_ACTOR_IS_VISIBLE (self))
{
g_signal_emit (self, actor_signals[SHOW], 0);
g_object_notify (G_OBJECT (self), "visible");
}
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_show_all:
* @self: a #ClutterActor
*
* Calls clutter_actor_show() on all children of an actor (if any).
*
* Since: 0.2
*/
void
clutter_actor_show_all (ClutterActor *self)
{
ClutterActorClass *klass;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
klass = CLUTTER_ACTOR_GET_CLASS (self);
if (klass->show_all)
klass->show_all (self);
}
void
clutter_actor_real_hide (ClutterActor *self)
{
if (CLUTTER_ACTOR_IS_VISIBLE (self))
{
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_VISIBLE);
/* we notify on the "visible" flag in the clutter_actor_hide()
* wrapper so the entire hide signal emission completes first
* (?)
*/
clutter_actor_update_map_state (self, MAP_STATE_CHECK);
clutter_actor_queue_relayout (self);
}
}
/**
* clutter_actor_hide:
* @self: A #ClutterActor
*
* Flags an actor to be hidden. A hidden actor will not be
* rendered on the stage.
*
* Actors are visible by default.
*
* If this function is called on an actor without a parent, the
* #ClutterActor:show-on-set-parent property will be set to %FALSE
* as a side-effect.
*/
void
clutter_actor_hide (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
#ifdef CLUTTER_ENABLE_DEBUG
clutter_actor_verify_map_state (self);
#endif
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
if (priv->show_on_set_parent && !priv->parent_actor)
{
priv->show_on_set_parent = FALSE;
g_object_notify (G_OBJECT (self), "show-on-set-parent");
}
if (CLUTTER_ACTOR_IS_VISIBLE (self))
{
g_signal_emit (self, actor_signals[HIDE], 0);
g_object_notify (G_OBJECT (self), "visible");
}
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_hide_all:
* @self: a #ClutterActor
*
* Calls clutter_actor_hide() on all child actors (if any).
*
* Since: 0.2
*/
void
clutter_actor_hide_all (ClutterActor *self)
{
ClutterActorClass *klass;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
klass = CLUTTER_ACTOR_GET_CLASS (self);
if (klass->hide_all)
klass->hide_all (self);
}
/**
* clutter_actor_realize:
* @self: A #ClutterActor
*
* Creates any underlying graphics resources needed by the actor to be
* displayed.
*
* Realization means the actor is now tied to a specific rendering context
* (that is, a specific toplevel stage).
*
* This function does nothing if the actor is already realized.
*
* Because a realized actor must have realized parent actors, calling
* clutter_actor_realize() will also realize all parents of the actor.
*
* This function does not realize child actors, except in the special
* case that realizing the stage, when the stage is visible, will
* suddenly map (and thus realize) the children of the stage.
**/
void
clutter_actor_realize (ClutterActor *self)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
#ifdef CLUTTER_ENABLE_DEBUG
clutter_actor_verify_map_state (self);
#endif
if (CLUTTER_ACTOR_IS_REALIZED (self))
return;
/* To be realized, our parent actors must be realized first.
* This will only succeed if we're inside a toplevel.
*/
if (self->priv->parent_actor != NULL)
clutter_actor_realize (self->priv->parent_actor);
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
/* toplevels can be realized at any time */
}
else
{
/* "Fail" the realization if parent is missing or unrealized;
* this should really be a g_warning() not some kind of runtime
* failure; how can an app possibly recover? Instead it's a bug
* in the app and the app should get an explanatory warning so
* someone can fix it. But for now it's too hard to fix this
* because e.g. ClutterTexture needs reworking.
*/
if (self->priv->parent_actor == NULL ||
!CLUTTER_ACTOR_IS_REALIZED (self->priv->parent_actor))
return;
}
CLUTTER_NOTE (ACTOR, "Realizing actor '%s' [%p]",
self->priv->name ? self->priv->name
: G_OBJECT_TYPE_NAME (self),
self);
CLUTTER_ACTOR_SET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
g_object_notify (G_OBJECT (self), "realized");
g_signal_emit (self, actor_signals[REALIZE], 0);
/* Stage actor is allowed to unset the realized flag again in its
* default signal handler, though that is a pathological situation.
*/
/* If realization "failed" we'll have to update child state. */
clutter_actor_update_map_state (self, MAP_STATE_CHECK);
}
void
clutter_actor_real_unrealize (ClutterActor *self)
{
/* we must be unmapped (implying our children are also unmapped) */
g_assert (!CLUTTER_ACTOR_IS_MAPPED (self));
if (CLUTTER_IS_CONTAINER (self))
clutter_container_foreach_with_internals (CLUTTER_CONTAINER (self),
CLUTTER_CALLBACK (clutter_actor_unrealize_not_hiding),
NULL);
}
/**
* clutter_actor_unrealize:
* @self: A #ClutterActor
*
* Frees up any underlying graphics resources needed by the actor to
* be displayed.
*
* Unrealization means the actor is now independent of any specific
* rendering context (is not attached to a specific toplevel stage).
*
* Because mapped actors must be realized, actors may not be
* unrealized if they are mapped. This function hides the actor to be
* sure it isn't mapped, an application-visible side effect that you
* may not be expecting.
*
* This function should not really be in the public API, because
* there isn't a good reason to call it. ClutterActor will already
* unrealize things for you when it's important to do so.
*
* If you were using clutter_actor_unrealize() in a dispose
* implementation, then don't, just chain up to ClutterActor's
* dispose.
*
* If you were using clutter_actor_unrealize() to implement
* unrealizing children of your container, then don't, ClutterActor
* will already take care of that.
*
* If you were using clutter_actor_unrealize() to re-realize to
* create your resources in a different way, then use
* _clutter_actor_rerealize() (inside Clutter) or just call your
* code that recreates your resources directly (outside Clutter).
*/
void
clutter_actor_unrealize (ClutterActor *self)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (!CLUTTER_ACTOR_IS_MAPPED (self));
#ifdef CLUTTER_ENABLE_DEBUG
clutter_actor_verify_map_state (self);
#endif
clutter_actor_hide (self);
clutter_actor_unrealize_not_hiding (self);
}
/**
* clutter_actor_unrealize_not_hiding:
* @self: A #ClutterActor
*
* Frees up any underlying graphics resources needed by the actor to
* be displayed.
*
* Unrealization means the actor is now independent of any specific
* rendering context (is not attached to a specific toplevel stage).
*
* Because mapped actors must be realized, actors may not be
* unrealized if they are mapped. You must hide the actor or one of
* its parents before attempting to unrealize.
*
* This function is separate from clutter_actor_unrealize() because it
* does not automatically hide the actor.
* Actors need not be hidden to be unrealized, they just need to
* be unmapped. In fact we don't want to mess up the application's
* setting of the "visible" flag, so hiding is very undesirable.
*
* clutter_actor_unrealize() does a clutter_actor_hide() just for
* backward compatibility.
*/
static void
clutter_actor_unrealize_not_hiding (ClutterActor *self)
{
/* All callers of clutter_actor_unrealize_not_hiding() should have
* taken care of unmapping the actor first. This means
* all our children should also be unmapped.
*/
g_assert (!CLUTTER_ACTOR_IS_MAPPED (self));
if (!CLUTTER_ACTOR_IS_REALIZED (self))
return;
/* The default handler for the signal should recursively unrealize
* child actors. We want to unset the realized flag only _after_
* child actors are unrealized, to maintain invariants.
*/
g_signal_emit (self, actor_signals[UNREALIZE], 0);
CLUTTER_ACTOR_UNSET_FLAGS (self, CLUTTER_ACTOR_REALIZED);
g_object_notify (G_OBJECT (self), "realized");
}
/**
* _clutter_actor_rerealize:
* @self: A #ClutterActor
* @callback: Function to call while unrealized
* @data: data for callback
*
* If an actor is already unrealized, this just calls the callback.
*
* If it is realized, it unrealizes temporarily, calls the callback,
* and then re-realizes the actor.
*
* As a side effect, leaves all children of the actor unrealized if
* the actor was realized but not showing. This is because when we
* unrealize the actor temporarily we must unrealize its children
* (e.g. children of a stage can't be realized if stage window is
* gone). And we aren't clever enough to save the realization state of
* all children. In most cases this should not matter, because
* the children will automatically realize when they next become mapped.
*/
void
_clutter_actor_rerealize (ClutterActor *self,
ClutterCallback callback,
void *data)
{
gboolean was_mapped;
gboolean was_showing;
gboolean was_realized;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
#ifdef CLUTTER_ENABLE_DEBUG
clutter_actor_verify_map_state (self);
#endif
was_realized = CLUTTER_ACTOR_IS_REALIZED (self);
was_mapped = CLUTTER_ACTOR_IS_MAPPED (self);
was_showing = CLUTTER_ACTOR_IS_VISIBLE (self);
/* Must be unmapped to unrealize. Note we only have to hide this
* actor if it was mapped (if all parents were showing). If actor
* is merely visible (but not mapped), then that's fine, we can
* leave it visible.
*/
if (was_mapped)
clutter_actor_hide (self);
g_assert (!CLUTTER_ACTOR_IS_MAPPED (self));
/* unrealize self and all children */
clutter_actor_unrealize_not_hiding (self);
if (callback != NULL)
{
(* callback) (self, data);
}
if (was_showing)
clutter_actor_show (self); /* will realize only if mapping implies it */
else if (was_realized)
clutter_actor_realize (self); /* realize self and all parents */
}
static void
clutter_actor_real_pick (ClutterActor *self,
const ClutterColor *color)
{
/* the default implementation is just to paint a rectangle
* with the same size of the actor using the passed color
*/
if (clutter_actor_should_pick_paint (self))
{
ClutterActorBox box = { 0, };
float width, height;
clutter_actor_get_allocation_box (self, &box);
width = box.x2 - box.x1;
height = box.y2 - box.y1;
cogl_set_source_color4ub (color->red,
color->green,
color->blue,
color->alpha);
cogl_rectangle (0, 0, width, height);
}
}
/**
* clutter_actor_pick:
* @self: A #ClutterActor
* @color: A #ClutterColor
*
* Renders a silhouette of the actor using the supplied color. Used
* internally for mapping pointer events to actors.
*
* This function should never be called directly by applications.
*
* Subclasses overiding the ClutterActor::pick() method should call
* clutter_actor_should_pick_paint() to decide whether to render their
* silhouette. Containers should always recursively call pick for
* each child.
*
* This function will emit the #ClutterActor::pick signal.
*
* Since: 0.4
*/
void
clutter_actor_pick (ClutterActor *self,
const ClutterColor *color)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (color != NULL);
g_signal_emit (self, actor_signals[PICK], 0, color);
}
/**
* clutter_actor_should_pick_paint:
* @self: A #ClutterActor
*
* Should be called inside the implementation of the
* #ClutterActor::pick virtual function in order to check whether
* the actor should paint itself in pick mode or not.
*
* This function should never be called directly by applications.
*
* Return value: %TRUE if the actor should paint its silhouette,
* %FALSE otherwise
*/
gboolean
clutter_actor_should_pick_paint (ClutterActor *self)
{
ClutterMainContext *context;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
context = clutter_context_get_default ();
if (CLUTTER_ACTOR_IS_MAPPED (self) &&
(G_UNLIKELY (context->pick_mode == CLUTTER_PICK_ALL) ||
CLUTTER_ACTOR_IS_REACTIVE (self)))
return TRUE;
return FALSE;
}
static void
clutter_actor_real_get_preferred_width (ClutterActor *self,
gfloat for_height,
gfloat *min_width_p,
gfloat *natural_width_p)
{
/* Default implementation is always 0x0, usually an actor
* using this default is relying on someone to set the
* request manually
*/
CLUTTER_NOTE (LAYOUT, "Default preferred width: 0, 0");
if (min_width_p)
*min_width_p = 0;
if (natural_width_p)
*natural_width_p = 0;
}
static void
clutter_actor_real_get_preferred_height (ClutterActor *self,
gfloat for_width,
gfloat *min_height_p,
gfloat *natural_height_p)
{
/* Default implementation is always 0x0, usually an actor
* using this default is relying on someone to set the
* request manually
*/
CLUTTER_NOTE (LAYOUT, "Default preferred height: 0, 0");
if (min_height_p)
*min_height_p = 0;
if (natural_height_p)
*natural_height_p = 0;
}
static void
clutter_actor_store_old_geometry (ClutterActor *self,
ClutterActorBox *box)
{
*box = self->priv->allocation;
}
static inline void
clutter_actor_notify_if_geometry_changed (ClutterActor *self,
const ClutterActorBox *old)
{
ClutterActorPrivate *priv = self->priv;
GObject *obj = G_OBJECT (self);
g_object_freeze_notify (obj);
/* to avoid excessive requisition or allocation cycles we
* use the cached values.
*
* - if we don't have an allocation we assume that we need
* to notify anyway
* - if we don't have a width or a height request we notify
* width and height
* - if we have a valid allocation then we check the old
* bounding box with the current allocation and we notify
* the changes
*/
if (priv->needs_allocation)
{
g_object_notify (obj, "x");
g_object_notify (obj, "y");
g_object_notify (obj, "width");
g_object_notify (obj, "height");
}
else if (priv->needs_width_request || priv->needs_height_request)
{
g_object_notify (obj, "width");
g_object_notify (obj, "height");
}
else
{
gfloat xu, yu;
gfloat widthu, heightu;
xu = priv->allocation.x1;
yu = priv->allocation.y1;
widthu = priv->allocation.x2 - priv->allocation.x1;
heightu = priv->allocation.y2 - priv->allocation.y1;
if (xu != old->x1)
g_object_notify (obj, "x");
if (yu != old->y1)
g_object_notify (obj, "y");
if (widthu != (old->x2 - old->x1))
g_object_notify (obj, "width");
if (heightu != (old->y2 - old->y1))
g_object_notify (obj, "height");
}
g_object_thaw_notify (obj);
}
static void
clutter_actor_real_allocate (ClutterActor *self,
const ClutterActorBox *box,
gboolean absolute_origin_changed)
{
ClutterActorPrivate *priv = self->priv;
gboolean x1_changed, y1_changed, x2_changed, y2_changed;
ClutterActorBox old = { 0, };
clutter_actor_store_old_geometry (self, &old);
x1_changed = priv->allocation.x1 != box->x1;
y1_changed = priv->allocation.y1 != box->y1;
x2_changed = priv->allocation.x2 != box->x2;
y2_changed = priv->allocation.y2 != box->y2;
priv->allocation = *box;
priv->needs_allocation = FALSE;
g_object_freeze_notify (G_OBJECT (self));
if (x1_changed || y1_changed || x2_changed || y2_changed)
g_object_notify (G_OBJECT (self), "allocation");
clutter_actor_notify_if_geometry_changed (self, &old);
g_object_thaw_notify (G_OBJECT (self));
}
static void
clutter_actor_queue_redraw_with_origin (ClutterActor *self,
ClutterActor *origin)
{
/* short-circuit the trivial case */
if (!CLUTTER_ACTOR_IS_MAPPED(self))
return;
/* already queued since last paint() */
if (self->priv->queued_redraw)
return;
/* calls klass->queue_redraw in default handler */
g_signal_emit (self, actor_signals[QUEUE_REDRAW], 0, origin);
}
static void
clutter_actor_real_queue_redraw (ClutterActor *self,
ClutterActor *origin)
{
ClutterActor *parent;
/* short-circuit the trivial case */
if (!CLUTTER_ACTOR_IS_MAPPED (self))
return;
/* already queued since last paint() */
if (self->priv->queued_redraw)
return;
CLUTTER_NOTE (PAINT, "Redraw queued on '%s'",
clutter_actor_get_name (self) ? clutter_actor_get_name (self)
: G_OBJECT_TYPE_NAME (self));
self->priv->queued_redraw = TRUE;
/* notify parents, if they are all visible eventually we'll
* queue redraw on the stage, which queues the redraw idle.
*/
parent = clutter_actor_get_parent (self);
if (parent != NULL)
{
/* this will go up recursively */
clutter_actor_queue_redraw_with_origin (parent, origin);
}
}
/* like ClutterVertex, but with a w component */
typedef struct {
gfloat x;
gfloat y;
gfloat z;
gfloat w;
} full_vertex_t;
/* copies a fixed vertex into a ClutterVertex */
static inline void
full_vertex_to_units (const full_vertex_t *f,
ClutterVertex *u)
{
u->x = f->x;
u->y = f->y;
u->z = f->z;
}
/* Transforms a vertex using the passed matrix; vertex is
* an in-out parameter
*/
static void
mtx_transform (const CoglMatrix *matrix,
full_vertex_t *vertex)
{
cogl_matrix_transform_point (matrix,
&vertex->x,
&vertex->y,
&vertex->z,
&vertex->w);
}
/* Help macros to scale from OpenGL <-1,1> coordinates system to our
* X-window based <0,window-size> coordinates
*/
#define MTX_GL_SCALE_X(x,w,v1,v2) ((((((x) / (w)) + 1.0) / 2) * (v1)) + (v2))
#define MTX_GL_SCALE_Y(y,w,v1,v2) ((v1) - (((((y) / (w)) + 1.0) / 2) * (v1)) + (v2))
#define MTX_GL_SCALE_Z(z,w,v1,v2) (MTX_GL_SCALE_X ((z), (w), (v1), (v2)))
/* transforms a 4-tuple of coordinates using @matrix and
* places the result into a fixed @vertex
*/
static inline void
full_vertex_transform (const CoglMatrix *matrix,
gfloat x,
gfloat y,
gfloat z,
gfloat w,
full_vertex_t *vertex)
{
full_vertex_t tmp = { 0, };
tmp.x = x;
tmp.y = y;
tmp.z = z;
tmp.w = w;
mtx_transform (matrix, &tmp);
*vertex = tmp;
}
/* scales a fixed @vertex using @matrix and @viewport, and
* transforms the result into a ClutterVertex, filling @vertex_p
*/
static inline void
full_vertex_scale (const CoglMatrix *matrix,
const full_vertex_t *vertex,
const gfloat viewport[],
ClutterVertex *vertex_p)
{
gfloat v_x, v_y, v_width, v_height;
full_vertex_t tmp = { 0, };
tmp = *vertex;
mtx_transform (matrix, &tmp);
v_x = viewport[0];
v_y = viewport[1];
v_width = viewport[2];
v_height = viewport[3];
tmp.x = MTX_GL_SCALE_X (tmp.x, tmp.w, v_width, v_x);
tmp.y = MTX_GL_SCALE_Y (tmp.y, tmp.w, v_height, v_y);
tmp.z = MTX_GL_SCALE_Z (tmp.z, tmp.w, v_width, v_x);
tmp.w = 0;
full_vertex_to_units (&tmp, vertex_p);
}
/* Applies the transforms associated with this actor and its ancestors,
* retrieves the resulting OpenGL modelview matrix, and uses the matrix
* to transform the supplied point
*
* The point coordinates are in-out parameters
*/
static void
clutter_actor_transform_point_relative (ClutterActor *actor,
ClutterActor *ancestor,
gfloat *x,
gfloat *y,
gfloat *z,
gfloat *w)
{
full_vertex_t vertex = { 0, };
CoglMatrix matrix;
vertex.x = (x != NULL) ? *x : 0;
vertex.y = (y != NULL) ? *y : 0;
vertex.z = (z != NULL) ? *z : 0;
vertex.w = (w != NULL) ? *w : 0;
cogl_push_matrix();
_clutter_actor_apply_modelview_transform_recursive (actor, ancestor);
cogl_get_modelview_matrix (&matrix);
mtx_transform (&matrix, &vertex);
cogl_pop_matrix();
if (x)
*x = vertex.x;
if (y)
*y = vertex.y;
if (z)
*z = vertex.z;
if (w)
*w = vertex.w;
}
/* Applies the transforms associated with this actor and its ancestors,
* retrieves the resulting OpenGL modelview matrix, and uses the matrix
* to transform the supplied point
*/
static void
clutter_actor_transform_point (ClutterActor *actor,
gfloat *x,
gfloat *y,
gfloat *z,
gfloat *w)
{
full_vertex_t vertex = { 0, };
CoglMatrix matrix;
vertex.x = (x != NULL) ? *x : 0;
vertex.y = (y != NULL) ? *y : 0;
vertex.z = (z != NULL) ? *z : 0;
vertex.w = (w != NULL) ? *w : 0;
cogl_push_matrix();
_clutter_actor_apply_modelview_transform_recursive (actor, NULL);
cogl_get_modelview_matrix (&matrix);
mtx_transform (&matrix, &vertex);
cogl_pop_matrix();
if (x)
*x = vertex.x;
if (y)
*y = vertex.y;
if (z)
*z = vertex.z;
if (w)
*w = vertex.w;
}
/**
* clutter_actor_apply_relative_transform_to_point:
* @self: A #ClutterActor
* @ancestor: A #ClutterActor ancestor, or %NULL to use the
* default #ClutterStage
* @point: A point as #ClutterVertex
* @vertex: The translated #ClutterVertex
*
* Transforms @point in coordinates relative to the actor into
* ancestor-relative coordinates using the relevant transform
* stack (i.e. scale, rotation, etc).
*
* If @ancestor is %NULL the ancestor will be the #ClutterStage. In
* this case, the coordinates returned will be the coordinates on
* the stage before the projection is applied. This is different from
* the behaviour of clutter_actor_apply_transform_to_point().
*
* Since: 0.6
*/
void
clutter_actor_apply_relative_transform_to_point (ClutterActor *self,
ClutterActor *ancestor,
const ClutterVertex *point,
ClutterVertex *vertex)
{
gfloat x, y, z, w;
full_vertex_t tmp;
gfloat v[4];
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (ancestor == NULL || CLUTTER_IS_ACTOR (ancestor));
g_return_if_fail (point != NULL);
g_return_if_fail (vertex != NULL);
x = vertex->x;
y = vertex->y;
z = vertex->z;
w = 1.0;
/* First we tranform the point using the OpenGL modelview matrix */
clutter_actor_transform_point_relative (self, ancestor, &x, &y, &z, &w);
cogl_get_viewport (v);
/* The w[3] parameter should always be 1.0 here, so we ignore it; otherwise
* we would have to divide the original verts with it.
*/
tmp.x = (x + 0.5) * v[2];
tmp.y = (0.5 - y) * v[3];
tmp.z = (z + 0.5) * v[2];
tmp.w = 0;
full_vertex_to_units (&tmp, vertex);
}
/**
* clutter_actor_apply_transform_to_point:
* @self: A #ClutterActor
* @point: A point as #ClutterVertex
* @vertex: The translated #ClutterVertex
*
* Transforms @point in coordinates relative to the actor
* into screen-relative coordinates with the current actor
* transformation (i.e. scale, rotation, etc)
*
* Since: 0.4
**/
void
clutter_actor_apply_transform_to_point (ClutterActor *self,
const ClutterVertex *point,
ClutterVertex *vertex)
{
full_vertex_t tmp = { 0, };
gfloat x, y, z, w;
CoglMatrix matrix_p;
gfloat v[4];
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (point != NULL);
g_return_if_fail (vertex != NULL);
x = point->x;
y = point->y;
z = point->z;
w = 1.0;
/* First we tranform the point using the OpenGL modelview matrix */
clutter_actor_transform_point (self, &x, &y, &z, &w);
tmp.x = x;
tmp.y = y;
tmp.z = z;
tmp.w = w;
cogl_get_projection_matrix (&matrix_p);
cogl_get_viewport (v);
/* Now, transform it again with the projection matrix */
mtx_transform (&matrix_p, &tmp);
/* Finaly translate from OpenGL coords to window coords */
vertex->x = MTX_GL_SCALE_X (tmp.x, tmp.w, v[2], v[0]);
vertex->y = MTX_GL_SCALE_Y (tmp.y, tmp.w, v[3], v[1]);
vertex->z = MTX_GL_SCALE_Z (tmp.z, tmp.w, v[2], v[0]);
}
/* Recursively tranform supplied vertices with the tranform for the current
* actor and up to the ancestor (like clutter_actor_transform_point() but
* for all the vertices in one go).
*/
static void
clutter_actor_transform_vertices_relative (ClutterActor *self,
ClutterActor *ancestor,
full_vertex_t vertices[])
{
ClutterActorPrivate *priv = self->priv;
gfloat width, height;
CoglMatrix mtx;
width = priv->allocation.x2 - priv->allocation.x1;
height = priv->allocation.y2 - priv->allocation.y1;
cogl_push_matrix();
_clutter_actor_apply_modelview_transform_recursive (self, ancestor);
cogl_get_modelview_matrix (&mtx);
full_vertex_transform (&mtx, 0, 0, 0, 1.0, &vertices[0]);
full_vertex_transform (&mtx, width, 0, 0, 1.0, &vertices[1]);
full_vertex_transform (&mtx, 0, height, 0, 1.0, &vertices[2]);
full_vertex_transform (&mtx, width, height, 0, 1.0, &vertices[3]);
cogl_pop_matrix();
}
/* Recursively tranform supplied box with the tranform for the current
* actor and all its ancestors (like clutter_actor_transform_point()
* but for all the vertices in one go) and project it into screen
* coordinates
*/
static void
clutter_actor_transform_and_project_box (ClutterActor *self,
const ClutterActorBox *box,
ClutterVertex verts[4])
{
ClutterActor *stage;
CoglMatrix mtx;
CoglMatrix mtx_p;
gfloat v[4];
gfloat width, height;
full_vertex_t vertices[4];
width = box->x2 - box->x1;
height = box->y2 - box->y1;
/* We essentially have to dupe some code from clutter_redraw() here
* to make sure GL Matrices etc are initialised if we're called and we
* havn't yet rendered anything.
*
* Simply duping code for now in wait for Cogl cleanup that can hopefully
* address this in a nicer way.
*/
stage = clutter_actor_get_stage (self);
/* FIXME: if were not yet added to a stage, its probably unsafe to
* return default - ideally the func should fail
*/
if (stage == NULL)
stage = clutter_stage_get_default ();
clutter_stage_ensure_current (CLUTTER_STAGE (stage));
_clutter_stage_maybe_setup_viewport (CLUTTER_STAGE (stage));
cogl_push_matrix();
_clutter_actor_apply_modelview_transform_recursive (self, NULL);
cogl_get_modelview_matrix (&mtx);
full_vertex_transform (&mtx, 0, 0, 0, 1.0, &vertices[0]);
full_vertex_transform (&mtx, width, 0, 0, 1.0, &vertices[1]);
full_vertex_transform (&mtx, 0, height, 0, 1.0, &vertices[2]);
full_vertex_transform (&mtx, width, height, 0, 1.0, &vertices[3]);
cogl_pop_matrix();
cogl_get_projection_matrix (&mtx_p);
cogl_get_viewport (v);
full_vertex_scale (&mtx_p, &vertices[0], v, &verts[0]);
full_vertex_scale (&mtx_p, &vertices[1], v, &verts[1]);
full_vertex_scale (&mtx_p, &vertices[2], v, &verts[2]);
full_vertex_scale (&mtx_p, &vertices[3], v, &verts[3]);
}
/**
* clutter_actor_get_allocation_vertices:
* @self: A #ClutterActor
* @ancestor: A #ClutterActor to calculate the vertices against, or %NULL
* to use the default #ClutterStage
* @verts: (out) (array): return location for an array of 4 #ClutterVertex in which
* to store the result.
*
* Calculates the transformed coordinates of the four corners of the
* actor in the plane of @ancestor. The returned vertices relate to
* the #ClutterActorBox coordinates as follows:
* <itemizedlist>
* <listitem><para>@verts[0] contains (x1, y1)</para></listitem>
* <listitem><para>@verts[1] contains (x2, y1)</para></listitem>
* <listitem><para>@verts[2] contains (x1, y2)</para></listitem>
* <listitem><para>@verts[3] contains (x2, y2)</para></listitem>
* </itemizedlist>
*
* If @ancestor is %NULL the ancestor will be the #ClutterStage. In
* this case, the coordinates returned will be the coordinates on
* the stage before the projection is applied. This is different from
* the behaviour of clutter_actor_get_abs_allocation_vertices().
*
* Since: 0.6
*/
void
clutter_actor_get_allocation_vertices (ClutterActor *self,
ClutterActor *ancestor,
ClutterVertex verts[4])
{
ClutterActorPrivate *priv;
ClutterActor *stage;
gfloat v[4];
full_vertex_t vertices[4];
full_vertex_t tmp = { 0, };
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (ancestor == NULL || CLUTTER_IS_ACTOR (ancestor));
priv = self->priv;
/* We essentially have to dupe some code from clutter_redraw() here
* to make sure GL Matrices etc are initialised if we're called and we
* havn't yet rendered anything.
*
* Simply duping code for now in wait for Cogl cleanup that can hopefully
* address this in a nicer way.
*/
stage = clutter_actor_get_stage (self);
/* FIXME: if were not yet added to a stage, its probably unsafe to
* return default - idealy the func should fail
*/
if (stage == NULL)
stage = clutter_stage_get_default ();
clutter_stage_ensure_current (CLUTTER_STAGE (stage));
_clutter_stage_maybe_setup_viewport (CLUTTER_STAGE (stage));
/* if the actor needs to be allocated we force a relayout, so that
* clutter_actor_transform_vertices_relative() will have valid values
* to use in the transformations
*/
if (priv->needs_allocation)
_clutter_stage_maybe_relayout (stage);
clutter_actor_transform_vertices_relative (self, ancestor, vertices);
cogl_get_viewport (v);
/* The w[3] parameter should always be 1.0 here, so we ignore it;
* otherwise we would have to divide the original verts with it.
*/
tmp.x = ((vertices[0].x + 0.5) * v[2]);
tmp.y = ((0.5 - vertices[0].y) * v[3]);
tmp.z = ((vertices[0].z + 0.5) * v[2]);
full_vertex_to_units (&tmp, &verts[0]);
tmp.x = ((vertices[1].x + 0.5) * v[2]);
tmp.y = ((0.5 - vertices[1].y) * v[3]);
tmp.z = ((vertices[1].z + 0.5) * v[2]);
full_vertex_to_units (&tmp, &verts[1]);
tmp.x = ((vertices[2].x + 0.5) * v[2]);
tmp.y = ((0.5 - vertices[2].y) * v[3]);
tmp.z = ((vertices[2].z + 0.5) * v[2]);
full_vertex_to_units (&tmp, &verts[2]);
tmp.x = ((vertices[3].x + 0.5) * v[2]);
tmp.y = ((0.5 - vertices[3].y) * v[3]);
tmp.z = ((vertices[3].z + 0.5) * v[2]);
full_vertex_to_units (&tmp, &verts[3]);
}
/**
* clutter_actor_get_abs_allocation_vertices:
* @self: A #ClutterActor
* @verts: Pointer to a location of an array of 4 #ClutterVertex where to
* store the result.
*
* Calculates the transformed screen coordinates of the four corners of
* the actor; the returned vertices relate to the #ClutterActorBox
* coordinates as follows:
* <itemizedlist>
* <listitem><para>v[0] contains (x1, y1)</para></listitem>
* <listitem><para>v[1] contains (x2, y1)</para></listitem>
* <listitem><para>v[2] contains (x1, y2)</para></listitem>
* <listitem><para>v[3] contains (x2, y2)</para></listitem>
* </itemizedlist>
*
* Since: 0.4
*/
void
clutter_actor_get_abs_allocation_vertices (ClutterActor *self,
ClutterVertex verts[4])
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
/* if the actor needs to be allocated we force a relayout, so that
* the actor allocation box will be valid for
* clutter_actor_transform_and_project_box()
*/
if (priv->needs_allocation)
{
ClutterActor *stage = clutter_actor_get_stage (self);
/* FIXME: if were not yet added to a stage, its probably unsafe to
* return default - idealy the func should fail
*/
if (stage == NULL)
stage = clutter_stage_get_default ();
_clutter_stage_maybe_relayout (stage);
}
clutter_actor_transform_and_project_box (self,
&self->priv->allocation,
verts);
}
/* Applies the transforms associated with this actor to the
* OpenGL modelview matrix.
*
* This function does not push/pop matrix; it is the responsibility
* of the caller to do so as appropriate
*/
static void
_clutter_actor_apply_modelview_transform (ClutterActor *self)
{
ClutterActorPrivate *priv = self->priv;
gboolean is_stage = CLUTTER_IS_STAGE (self);
if (!is_stage)
cogl_translate (priv->allocation.x1,
priv->allocation.y1,
0);
if (priv->z)
cogl_translate (0, 0, priv->z);
/*
* because the rotation involves translations, we must scale before
* applying the rotations (if we apply the scale after the rotations,
* the translations included in the rotation are not scaled and so the
* entire object will move on the screen as a result of rotating it).
*/
if (priv->scale_x != 1.0 || priv->scale_y != 1.0)
{
TRANSFORM_ABOUT_ANCHOR_COORD (self,
&priv->scale_center,
cogl_scale (priv->scale_x,
priv->scale_y,
1.0));
}
if (priv->rzang)
TRANSFORM_ABOUT_ANCHOR_COORD (self,
&priv->rz_center,
cogl_rotate (priv->rzang, 0, 0, 1.0));
if (priv->ryang)
TRANSFORM_ABOUT_ANCHOR_COORD (self,
&priv->ry_center,
cogl_rotate (priv->ryang, 0, 1.0, 0));
if (priv->rxang)
TRANSFORM_ABOUT_ANCHOR_COORD (self,
&priv->rx_center,
cogl_rotate (priv->rxang, 1.0, 0, 0));
if (!is_stage && !clutter_anchor_coord_is_zero (&priv->anchor))
{
gfloat x, y, z;
clutter_anchor_coord_get_units (self, &priv->anchor, &x, &y, &z);
cogl_translate (-x, -y, -z);
}
}
/* Recursively applies the transforms associated with this actor and
* its ancestors to the OpenGL modelview matrix. Use NULL if you want this
* to go all the way down to the stage.
*
* This function does not push/pop matrix; it is the responsibility
* of the caller to do so as appropriate
*/
void
_clutter_actor_apply_modelview_transform_recursive (ClutterActor *self,
ClutterActor *ancestor)
{
ClutterActor *parent, *stage;
parent = clutter_actor_get_parent (self);
/*
* If we reached the ancestor, quit
* NB: NULL ancestor means the stage, and this will not trigger
* (as it should not)
*/
if (self == ancestor)
return;
stage = clutter_actor_get_stage (self);
/* FIXME: if were not yet added to a stage, its probably unsafe to
* return default - idealy the func should fail
*/
if (stage == NULL)
stage = clutter_stage_get_default ();
if (parent)
_clutter_actor_apply_modelview_transform_recursive (parent, ancestor);
else if (self != stage)
_clutter_actor_apply_modelview_transform (stage);
_clutter_actor_apply_modelview_transform (self);
}
/**
* clutter_actor_paint:
* @self: A #ClutterActor
*
* Renders the actor to display.
*
* This function should not be called directly by applications.
* Call clutter_actor_queue_redraw() to queue paints, instead.
*
* This function will emit the #ClutterActor::paint signal.
*/
void
clutter_actor_paint (ClutterActor *self)
{
ClutterActorPrivate *priv;
ClutterMainContext *context;
gboolean clip_set = FALSE;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
context = clutter_context_get_default ();
/* It's an important optimization that we consider painting of
* actors with 0 opacity to be a NOP... */
if (G_LIKELY (context->pick_mode == CLUTTER_PICK_NONE) &&
priv->opacity == 0)
{
priv->queued_redraw = FALSE;
return;
}
/* if we aren't paintable (not in a toplevel with all
* parents paintable) then do nothing.
*/
if (!CLUTTER_ACTOR_IS_MAPPED (self))
return;
/* mark that we are in the paint process */
CLUTTER_SET_PRIVATE_FLAGS (self, CLUTTER_ACTOR_IN_PAINT);
cogl_push_matrix();
if (priv->enable_model_view_transform)
_clutter_actor_apply_modelview_transform (self);
if (priv->has_clip)
{
cogl_clip_push (priv->clip[0],
priv->clip[1],
priv->clip[2],
priv->clip[3]);
clip_set = TRUE;
}
else if (priv->clip_to_allocation)
{
gfloat width, height;
width = priv->allocation.x2 - priv->allocation.x1;
height = priv->allocation.y2 - priv->allocation.y1;
cogl_clip_push (0, 0, width, height);
clip_set = TRUE;
}
if (G_UNLIKELY (context->pick_mode != CLUTTER_PICK_NONE))
{
ClutterColor col = { 0, };
_clutter_id_to_color (clutter_actor_get_gid (self), &col);
/* Actor will then paint silhouette of itself in supplied
* color. See clutter_stage_get_actor_at_pos() for where
* picking is enabled.
*/
g_signal_emit (self, actor_signals[PICK], 0, &col);
}
else
{
clutter_actor_shader_pre_paint (self, FALSE);
self->priv->queued_redraw = FALSE;
g_signal_emit (self, actor_signals[PAINT], 0);
clutter_actor_shader_post_paint (self);
}
if (clip_set)
cogl_clip_pop();
cogl_pop_matrix();
/* paint sequence complete */
CLUTTER_UNSET_PRIVATE_FLAGS (self, CLUTTER_ACTOR_IN_PAINT);
}
/* internal helper function set the rotation angle without affecting
the center point
*/
static void
clutter_actor_set_rotation_internal (ClutterActor *self,
ClutterRotateAxis axis,
gdouble angle)
{
ClutterActorPrivate *priv = self->priv;
g_object_ref (self);
g_object_freeze_notify (G_OBJECT (self));
switch (axis)
{
case CLUTTER_X_AXIS:
priv->rxang = angle;
g_object_notify (G_OBJECT (self), "rotation-angle-x");
break;
case CLUTTER_Y_AXIS:
priv->ryang = angle;
g_object_notify (G_OBJECT (self), "rotation-angle-y");
break;
case CLUTTER_Z_AXIS:
priv->rzang = angle;
g_object_notify (G_OBJECT (self), "rotation-angle-z");
break;
}
g_object_thaw_notify (G_OBJECT (self));
g_object_unref (self);
if (CLUTTER_ACTOR_IS_VISIBLE (self))
clutter_actor_queue_redraw (self);
}
static void
clutter_actor_set_property (GObject *object,
guint prop_id,
const GValue *value,
GParamSpec *pspec)
{
ClutterActor *actor = CLUTTER_ACTOR (object);
ClutterActorPrivate *priv = actor->priv;
switch (prop_id)
{
case PROP_X:
clutter_actor_set_x (actor, g_value_get_float (value));
break;
case PROP_Y:
clutter_actor_set_y (actor, g_value_get_float (value));
break;
case PROP_WIDTH:
clutter_actor_set_width (actor, g_value_get_float (value));
break;
case PROP_HEIGHT:
clutter_actor_set_height (actor, g_value_get_float (value));
break;
case PROP_FIXED_X:
clutter_actor_set_x (actor, g_value_get_float (value));
break;
case PROP_FIXED_Y:
clutter_actor_set_y (actor, g_value_get_float (value));
break;
case PROP_FIXED_POSITION_SET:
clutter_actor_set_fixed_position_set (actor, g_value_get_boolean (value));
break;
case PROP_MIN_WIDTH:
clutter_actor_set_min_width (actor, g_value_get_float (value));
break;
case PROP_MIN_HEIGHT:
clutter_actor_set_min_height (actor, g_value_get_float (value));
break;
case PROP_NATURAL_WIDTH:
clutter_actor_set_natural_width (actor, g_value_get_float (value));
break;
case PROP_NATURAL_HEIGHT:
clutter_actor_set_natural_height (actor, g_value_get_float (value));
break;
case PROP_MIN_WIDTH_SET:
clutter_actor_set_min_width_set (actor, g_value_get_boolean (value));
break;
case PROP_MIN_HEIGHT_SET:
clutter_actor_set_min_height_set (actor, g_value_get_boolean (value));
break;
case PROP_NATURAL_WIDTH_SET:
clutter_actor_set_natural_width_set (actor, g_value_get_boolean (value));
break;
case PROP_NATURAL_HEIGHT_SET:
clutter_actor_set_natural_height_set (actor, g_value_get_boolean (value));
break;
case PROP_REQUEST_MODE:
clutter_actor_set_request_mode (actor, g_value_get_enum (value));
break;
case PROP_DEPTH:
clutter_actor_set_depth (actor, g_value_get_float (value));
break;
case PROP_OPACITY:
clutter_actor_set_opacity (actor, g_value_get_uchar (value));
break;
case PROP_NAME:
clutter_actor_set_name (actor, g_value_get_string (value));
break;
case PROP_VISIBLE:
if (g_value_get_boolean (value) == TRUE)
clutter_actor_show (actor);
else
clutter_actor_hide (actor);
break;
case PROP_SCALE_X:
clutter_actor_set_scale (actor,
g_value_get_double (value),
priv->scale_y);
break;
case PROP_SCALE_Y:
clutter_actor_set_scale (actor,
priv->scale_x,
g_value_get_double (value));
break;
case PROP_SCALE_CENTER_X:
{
gfloat center_x = g_value_get_float (value);
gfloat center_y;
clutter_anchor_coord_get_units (actor, &priv->scale_center,
NULL,
&center_y,
NULL);
clutter_actor_set_scale_full (actor,
priv->scale_x,
priv->scale_y,
center_x,
center_y);
}
break;
case PROP_SCALE_CENTER_Y:
{
gfloat center_y = g_value_get_float (value);
gfloat center_x;
clutter_anchor_coord_get_units (actor, &priv->scale_center,
&center_x,
NULL,
NULL);
clutter_actor_set_scale_full (actor,
priv->scale_x,
priv->scale_y,
center_x,
center_y);
}
break;
case PROP_SCALE_GRAVITY:
clutter_actor_set_scale_with_gravity (actor,
priv->scale_x,
priv->scale_y,
g_value_get_enum (value));
break;
case PROP_CLIP:
{
const ClutterGeometry *geom = g_value_get_boxed (value);
clutter_actor_set_clip (actor,
geom->x, geom->y,
geom->width, geom->height);
}
break;
case PROP_CLIP_TO_ALLOCATION:
if (priv->clip_to_allocation != g_value_get_boolean (value))
{
priv->clip_to_allocation = g_value_get_boolean (value);
clutter_actor_queue_redraw (actor);
}
break;
case PROP_REACTIVE:
clutter_actor_set_reactive (actor, g_value_get_boolean (value));
break;
case PROP_ROTATION_ANGLE_X:
clutter_actor_set_rotation_internal (actor,
CLUTTER_X_AXIS,
g_value_get_double (value));
break;
case PROP_ROTATION_ANGLE_Y:
clutter_actor_set_rotation_internal (actor,
CLUTTER_Y_AXIS,
g_value_get_double (value));
break;
case PROP_ROTATION_ANGLE_Z:
clutter_actor_set_rotation_internal (actor,
CLUTTER_Z_AXIS,
g_value_get_double (value));
break;
case PROP_ROTATION_CENTER_X:
{
const ClutterVertex *center;
if ((center = g_value_get_boxed (value)))
clutter_actor_set_rotation (actor,
CLUTTER_X_AXIS,
priv->rxang,
center->x,
center->y,
center->z);
}
break;
case PROP_ROTATION_CENTER_Y:
{
const ClutterVertex *center;
if ((center = g_value_get_boxed (value)))
clutter_actor_set_rotation (actor,
CLUTTER_Y_AXIS,
priv->ryang,
center->x,
center->y,
center->z);
}
break;
case PROP_ROTATION_CENTER_Z:
{
const ClutterVertex *center;
if ((center = g_value_get_boxed (value)))
clutter_actor_set_rotation (actor,
CLUTTER_Z_AXIS,
priv->rzang,
center->x,
center->y,
center->z);
}
break;
case PROP_ROTATION_CENTER_Z_GRAVITY:
clutter_actor_set_z_rotation_from_gravity (actor, priv->rzang,
g_value_get_enum (value));
break;
case PROP_ANCHOR_X:
{
gfloat anchor_x = g_value_get_float (value);
gfloat anchor_y;
clutter_anchor_coord_get_units (actor, &priv->anchor,
NULL,
&anchor_y,
NULL);
clutter_actor_set_anchor_point (actor, anchor_x, anchor_y);
}
break;
case PROP_ANCHOR_Y:
{
gfloat anchor_y = g_value_get_int (value);
gfloat anchor_x;
clutter_anchor_coord_get_units (actor, &priv->anchor,
&anchor_x,
NULL,
NULL);
clutter_actor_set_anchor_point (actor, anchor_x, anchor_y);
}
break;
case PROP_ANCHOR_GRAVITY:
clutter_actor_set_anchor_point_from_gravity (actor,
g_value_get_enum (value));
break;
case PROP_SHOW_ON_SET_PARENT:
priv->show_on_set_parent = g_value_get_boolean (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
clutter_actor_get_property (GObject *object,
guint prop_id,
GValue *value,
GParamSpec *pspec)
{
ClutterActor *actor = CLUTTER_ACTOR (object);
ClutterActorPrivate *priv = actor->priv;
switch (prop_id)
{
case PROP_X:
g_value_set_float (value, clutter_actor_get_x (actor));
break;
case PROP_Y:
g_value_set_float (value, clutter_actor_get_y (actor));
break;
case PROP_WIDTH:
g_value_set_float (value, clutter_actor_get_width (actor));
break;
case PROP_HEIGHT:
g_value_set_float (value, clutter_actor_get_height (actor));
break;
case PROP_FIXED_X:
g_value_set_float (value, priv->fixed_x);
break;
case PROP_FIXED_Y:
g_value_set_float (value, priv->fixed_y);
break;
case PROP_FIXED_POSITION_SET:
g_value_set_boolean (value, priv->position_set);
break;
case PROP_MIN_WIDTH:
g_value_set_float (value, priv->request_min_width);
break;
case PROP_MIN_HEIGHT:
g_value_set_float (value, priv->request_min_height);
break;
case PROP_NATURAL_WIDTH:
g_value_set_float (value, priv->request_natural_width);
break;
case PROP_NATURAL_HEIGHT:
g_value_set_float (value, priv->request_natural_height);
break;
case PROP_MIN_WIDTH_SET:
g_value_set_boolean (value, priv->min_width_set);
break;
case PROP_MIN_HEIGHT_SET:
g_value_set_boolean (value, priv->min_height_set);
break;
case PROP_NATURAL_WIDTH_SET:
g_value_set_boolean (value, priv->natural_width_set);
break;
case PROP_NATURAL_HEIGHT_SET:
g_value_set_boolean (value, priv->natural_height_set);
break;
case PROP_REQUEST_MODE:
g_value_set_enum (value, priv->request_mode);
break;
case PROP_ALLOCATION:
g_value_set_boxed (value, &priv->allocation);
break;
case PROP_DEPTH:
g_value_set_float (value, clutter_actor_get_depth (actor));
break;
case PROP_OPACITY:
g_value_set_uchar (value, priv->opacity);
break;
case PROP_NAME:
g_value_set_string (value, priv->name);
break;
case PROP_VISIBLE:
g_value_set_boolean (value, CLUTTER_ACTOR_IS_VISIBLE (actor));
break;
case PROP_MAPPED:
g_value_set_boolean (value, CLUTTER_ACTOR_IS_MAPPED (actor));
break;
case PROP_REALIZED:
g_value_set_boolean (value, CLUTTER_ACTOR_IS_REALIZED (actor));
break;
case PROP_HAS_CLIP:
g_value_set_boolean (value, priv->has_clip);
break;
case PROP_CLIP:
{
ClutterGeometry clip = { 0, };
clip.x = priv->clip[0];
clip.y = priv->clip[1];
clip.width = priv->clip[2];
clip.height = priv->clip[3];
g_value_set_boxed (value, &clip);
}
break;
case PROP_CLIP_TO_ALLOCATION:
g_value_set_boolean (value, priv->clip_to_allocation);
break;
case PROP_SCALE_X:
g_value_set_double (value, priv->scale_x);
break;
case PROP_SCALE_Y:
g_value_set_double (value, priv->scale_y);
break;
case PROP_SCALE_CENTER_X:
{
gfloat center;
clutter_actor_get_scale_center (actor, &center, NULL);
g_value_set_float (value, center);
}
break;
case PROP_SCALE_CENTER_Y:
{
gfloat center;
clutter_actor_get_scale_center (actor, NULL, &center);
g_value_set_float (value, center);
}
break;
case PROP_SCALE_GRAVITY:
g_value_set_enum (value, clutter_actor_get_scale_gravity (actor));
break;
case PROP_REACTIVE:
g_value_set_boolean (value, clutter_actor_get_reactive (actor));
break;
case PROP_ROTATION_ANGLE_X:
g_value_set_double (value, priv->rxang);
break;
case PROP_ROTATION_ANGLE_Y:
g_value_set_double (value, priv->ryang);
break;
case PROP_ROTATION_ANGLE_Z:
g_value_set_double (value, priv->rzang);
break;
case PROP_ROTATION_CENTER_X:
{
ClutterVertex center;
clutter_actor_get_rotation (actor, CLUTTER_X_AXIS,
&center.x,
&center.y,
&center.z);
g_value_set_boxed (value, &center);
}
break;
case PROP_ROTATION_CENTER_Y:
{
ClutterVertex center;
clutter_actor_get_rotation (actor, CLUTTER_Y_AXIS,
&center.x,
&center.y,
&center.z);
g_value_set_boxed (value, &center);
}
break;
case PROP_ROTATION_CENTER_Z:
{
ClutterVertex center;
clutter_actor_get_rotation (actor, CLUTTER_Z_AXIS,
&center.x,
&center.y,
&center.z);
g_value_set_boxed (value, &center);
}
break;
case PROP_ROTATION_CENTER_Z_GRAVITY:
g_value_set_enum (value, clutter_actor_get_z_rotation_gravity (actor));
break;
case PROP_ANCHOR_X:
{
gfloat anchor_x;
clutter_anchor_coord_get_units (actor, &priv->anchor,
&anchor_x,
NULL,
NULL);
g_value_set_float (value, anchor_x);
}
break;
case PROP_ANCHOR_Y:
{
gfloat anchor_y;
clutter_anchor_coord_get_units (actor, &priv->anchor,
NULL,
&anchor_y,
NULL);
g_value_set_float (value, anchor_y);
}
break;
case PROP_ANCHOR_GRAVITY:
g_value_set_enum (value, clutter_actor_get_anchor_point_gravity (actor));
break;
case PROP_SHOW_ON_SET_PARENT:
g_value_set_boolean (value, priv->show_on_set_parent);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, prop_id, pspec);
break;
}
}
static void
clutter_actor_dispose (GObject *object)
{
ClutterActor *self = CLUTTER_ACTOR (object);
ClutterActorPrivate *priv = self->priv;
CLUTTER_NOTE (MISC, "Disposing of object (id=%d) of type '%s' (ref_count:%d)",
self->priv->id,
g_type_name (G_OBJECT_TYPE (self)),
object->ref_count);
/* avoid recursing when called from clutter_actor_destroy() */
if (priv->parent_actor)
{
ClutterActor *parent = priv->parent_actor;
if (CLUTTER_IS_CONTAINER (parent))
clutter_container_remove_actor (CLUTTER_CONTAINER (parent), self);
else
priv->parent_actor = NULL;
}
/* parent should be gone */
g_assert (priv->parent_actor == NULL);
if (!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL))
{
/* can't be mapped or realized with no parent */
g_assert (!CLUTTER_ACTOR_IS_MAPPED (self));
g_assert (!CLUTTER_ACTOR_IS_REALIZED (self));
}
destroy_shader_data (self);
if (priv->pango_context)
{
g_object_unref (priv->pango_context);
priv->pango_context = NULL;
}
g_signal_emit (self, actor_signals[DESTROY], 0);
G_OBJECT_CLASS (clutter_actor_parent_class)->dispose (object);
}
static void
clutter_actor_finalize (GObject *object)
{
ClutterActor *actor = CLUTTER_ACTOR (object);
CLUTTER_NOTE (MISC, "Finalize object (id=%d) of type '%s'",
actor->priv->id,
g_type_name (G_OBJECT_TYPE (actor)));
g_free (actor->priv->name);
clutter_id_pool_remove (CLUTTER_CONTEXT()->id_pool, actor->priv->id);
G_OBJECT_CLASS (clutter_actor_parent_class)->finalize (object);
}
static void
clutter_actor_class_init (ClutterActorClass *klass)
{
GObjectClass *object_class = G_OBJECT_CLASS (klass);
GParamSpec *pspec;
object_class->set_property = clutter_actor_set_property;
object_class->get_property = clutter_actor_get_property;
object_class->dispose = clutter_actor_dispose;
object_class->finalize = clutter_actor_finalize;
g_type_class_add_private (klass, sizeof (ClutterActorPrivate));
/**
* ClutterActor:x:
*
* X coordinate of the actor in pixels. If written, forces a fixed
* position for the actor. If read, returns the fixed position if any,
* otherwise the allocation if available, otherwise 0.
*/
pspec = g_param_spec_float ("x",
"X coordinate",
"X coordinate of the actor",
-G_MAXFLOAT, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_X, pspec);
/**
* ClutterActor:y:
*
* Y coordinate of the actor in pixels. If written, forces a fixed
* position for the actor. If read, returns the fixed position if
* any, otherwise the allocation if available, otherwise 0.
*/
pspec = g_param_spec_float ("y",
"Y coordinate",
"Y coordinate of the actor",
-G_MAXFLOAT, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_Y, pspec);
/**
* ClutterActor:width:
*
* Width of the actor (in pixels). If written, forces the minimum and
* natural size request of the actor to the given width. If read, returns
* the allocated width if available, otherwise the width request.
*/
pspec = g_param_spec_float ("width",
"Width",
"Width of the actor",
0.0, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_WIDTH, pspec);
/**
* ClutterActor:height:
*
* Height of the actor (in pixels). If written, forces the minimum and
* natural size request of the actor to the given height. If read, returns
* the allocated height if available, otherwise the height request.
*/
pspec = g_param_spec_float ("height",
"Height",
"Height of the actor",
0.0, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_HEIGHT, pspec);
/**
* ClutterActor:fixed-x:
*
* The fixed X position of the actor in pixels.
*
* Writing this property sets #ClutterActor:fixed-position-set
* property as well, as a side effect
*
* Since: 0.8
*/
pspec = g_param_spec_float ("fixed-x",
"Fixed X",
"Forced X position of the actor",
-G_MAXFLOAT, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_FIXED_X, pspec);
/**
* ClutterActor:fixed-y:
*
* The fixed Y position of the actor in pixels.
*
* Writing this property sets the #ClutterActor:fixed-position-set
* property as well, as a side effect
*
* Since: 0.8
*/
pspec = g_param_spec_float ("fixed-y",
"Fixed Y",
"Forced Y position of the actor",
-G_MAXFLOAT, G_MAXFLOAT,
0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_FIXED_Y, pspec);
/**
* ClutterActor:fixed-position-set:
*
* This flag controls whether the #ClutterActor:fixed-x and
* #ClutterActor:fixed-y properties are used
*
* Since: 0.8
*/
pspec = g_param_spec_boolean ("fixed-position-set",
"Fixed position set",
"Whether to use fixed positioning "
"for the actor",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_FIXED_POSITION_SET,
pspec);
/**
* ClutterActor:min-width:
*
* A forced minimum width request for the actor, in pixels
*
* Writing this property sets the #ClutterActor:min-width-set property
* as well, as a side effect.
*
*This property overrides the usual width request of the actor.
*
* Since: 0.8
*/
pspec = g_param_spec_float ("min-width",
"Min Width",
"Forced minimum width request for the actor",
0.0, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_MIN_WIDTH, pspec);
/**
* ClutterActor:min-height:
*
* A forced minimum height request for the actor, in pixels
*
* Writing this property sets the #ClutterActor:min-height-set property
* as well, as a side effect. This property overrides the usual height
* request of the actor.
*
* Since: 0.8
*/
pspec = g_param_spec_float ("min-height",
"Min Height",
"Forced minimum height request for the actor",
0.0, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_MIN_HEIGHT, pspec);
/**
* ClutterActor:natural-width:
*
* A forced natural width request for the actor, in pixels
*
* Writing this property sets the #ClutterActor:natural-width-set
* property as well, as a side effect. This property overrides the
* usual width request of the actor
*
* Since: 0.8
*/
pspec = g_param_spec_float ("natural-width",
"Natural Width",
"Forced natural width request for the actor",
0.0, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_NATURAL_WIDTH, pspec);
/**
* ClutterActor:natural-height:
*
* A forced natural height request for the actor, in pixels
*
* Writing this property sets the #ClutterActor:natural-height-set
* property as well, as a side effect. This property overrides the
* usual height request of the actor
*
* Since: 0.8
*/
pspec = g_param_spec_float ("natural-height",
"Natural Height",
"Forced natural height request for the actor",
0.0, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_NATURAL_HEIGHT, pspec);
/**
* ClutterActor:min-width-set:
*
* This flag controls whether the #ClutterActor:min-width property
* is used
*
* Since: 0.8
*/
pspec = g_param_spec_boolean ("min-width-set",
"Minimum width set",
"Whether to use the min-width property",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_MIN_WIDTH_SET, pspec);
/**
* ClutterActor:min-height-set:
*
* This flag controls whether the #ClutterActor:min-height property
* is used
*
* Since: 0.8
*/
pspec = g_param_spec_boolean ("min-height-set",
"Minimum height set",
"Whether to use the min-height property",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_MIN_HEIGHT_SET, pspec);
/**
* ClutterActor:natural-width-set:
*
* This flag controls whether the #ClutterActor:natural-width property
* is used
*
* Since: 0.8
*/
pspec = g_param_spec_boolean ("natural-width-set",
"Natural width set",
"Whether to use the natural-width property",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_NATURAL_WIDTH_SET,
pspec);
/**
* ClutterActor:natural-height-set:
*
* This flag controls whether the #ClutterActor:natural-height property
* is used
*
* Since: 0.8
*/
pspec = g_param_spec_boolean ("natural-height-set",
"Natural height set",
"Whether to use the natural-height property",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_NATURAL_HEIGHT_SET,
pspec);
/**
* ClutterActor:allocation:
*
* The allocation for the actor, in pixels
*
* This is property is read-only, but you might monitor it to know when an
* actor moves or resizes
*
* Since: 0.8
*/
pspec = g_param_spec_boxed ("allocation",
"Allocation",
"The actor's allocation",
CLUTTER_TYPE_ACTOR_BOX,
CLUTTER_PARAM_READABLE);
g_object_class_install_property (object_class, PROP_ALLOCATION, pspec);
/**
* ClutterActor:request-mode:
*
* Request mode for the #ClutterActor. The request mode determines the
* type of geometry management used by the actor, either height for width
* (the default) or width for height.
*
* For actors implementing height for width, the parent container should get
* the preferred width first, and then the preferred height for that width.
*
* For actors implementing width for height, the parent container should get
* the preferred height first, and then the preferred width for that height.
*
* For instance:
*
* |[
* ClutterRequestMode mode;
* gfloat natural_width, min_width;
* gfloat natural_height, min_height;
*
* g_object_get (G_OBJECT (child), "request-mode", &amp;mode, NULL);
* if (mode == CLUTTER_REQUEST_HEIGHT_FOR_WIDTH)
* {
* clutter_actor_get_preferred_width (child, -1,
* &amp;min_width,
* &amp;natural_width);
* clutter_actor_get_preferred_height (child, natural_width,
* &amp;min_height,
* &amp;natural_height);
* }
* else
* {
* clutter_actor_get_preferred_height (child, -1,
* &amp;min_height,
* &amp;natural_height);
* clutter_actor_get_preferred_width (child, natural_height,
* &amp;min_width,
* &amp;natural_width);
* }
* ]|
*
* will retrieve the minimum and natural width and height depending on the
* preferred request mode of the #ClutterActor "child".
*
* The clutter_actor_get_preferred_size() function will implement this
* check for you.
*
* Since: 0.8
*/
pspec = g_param_spec_enum ("request-mode",
"Request Mode",
"The actor's request mode",
CLUTTER_TYPE_REQUEST_MODE,
CLUTTER_REQUEST_HEIGHT_FOR_WIDTH,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_REQUEST_MODE, pspec);
/**
* ClutterActor:depth:
*
* The position of the actor on the Z axis
*
* Since: 0.6
*/
pspec = g_param_spec_float ("depth",
"Depth",
"Position on the Z axis",
-G_MAXFLOAT, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_DEPTH, pspec);
/**
* ClutterActor:opacity:
*
* Opacity of the actor, between 0 (fully transparent) and
* 255 (fully opaque)
*/
pspec = g_param_spec_uchar ("opacity",
"Opacity",
"Opacity of actor",
0, 255,
255,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_OPACITY, pspec);
/**
* ClutterActor:visible:
*
* Whether the actor is set to be visible or not
*
* See also #ClutterActor:mapped
*/
pspec = g_param_spec_boolean ("visible",
"Visible",
"Whether the actor is visible or not",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_VISIBLE, pspec);
/**
* ClutterActor:mapped:
*
* Whether the actor is mapped (will be painted when the stage
* to which it belongs is mapped)
*
* Since: 1.0
*/
pspec = g_param_spec_boolean ("mapped",
"Mapped",
"Whether the actor will be painted",
FALSE,
CLUTTER_PARAM_READABLE);
g_object_class_install_property (object_class, PROP_MAPPED, pspec);
/**
* ClutterActor:realized:
*
* Whether the actor has been realized
*
* Since: 1.0
*/
pspec = g_param_spec_boolean ("realized",
"Realized",
"Whether the actor has been realized",
FALSE,
CLUTTER_PARAM_READABLE);
g_object_class_install_property (object_class, PROP_REALIZED, pspec);
/**
* ClutterActor:reactive:
*
* Whether the actor is reactive to events or not
*
* Only reactive actors will emit event-related signals
*
* Since: 0.6
*/
pspec = g_param_spec_boolean ("reactive",
"Reactive",
"Whether the actor is reactive to events",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_REACTIVE, pspec);
/**
* ClutterActor:has-clip:
*
* Whether the actor has the #ClutterActor:clip property set or not
*/
pspec = g_param_spec_boolean ("has-clip",
"Has Clip",
"Whether the actor has a clip set",
FALSE,
CLUTTER_PARAM_READABLE);
g_object_class_install_property (object_class, PROP_HAS_CLIP, pspec);
/**
* ClutterActor:clip:
*
* The clip region for the actor, in actor-relative coordinates
*
* Every part of the actor outside the clip region will not be
* painted
*/
pspec = g_param_spec_boxed ("clip",
"Clip",
"The clip region for the actor",
CLUTTER_TYPE_GEOMETRY,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_CLIP, pspec);
/**
* ClutterActor:name:
*
* The name of the actor
*
* Since: 0.2
*/
pspec = g_param_spec_string ("name",
"Name",
"Name of the actor",
NULL,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_NAME, pspec);
/**
* ClutterActor:scale-x:
*
* The horizontal scale of the actor
*
* Since: 0.6
*/
pspec = g_param_spec_double ("scale-x",
"Scale X",
"Scale factor on the X axis",
0.0, G_MAXDOUBLE,
1.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_SCALE_X, pspec);
/**
* ClutterActor:scale-y:
*
* The vertical scale of the actor
*
* Since: 0.6
*/
pspec = g_param_spec_double ("scale-y",
"Scale Y",
"Scale factor on the Y axis",
0.0, G_MAXDOUBLE,
1.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_SCALE_Y, pspec);
/**
* ClutterActor:scale-center-x:
*
* The horizontal center point for scaling
*
* Since: 1.0
*/
pspec = g_param_spec_float ("scale-center-x",
"Scale-Center-X",
"Horizontal scale center",
-G_MAXFLOAT, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_SCALE_CENTER_X, pspec);
/**
* ClutterActor:scale-center-y:
*
* The vertical center point for scaling
*
* Since: 1.0
*/
pspec = g_param_spec_float ("scale-center-y",
"Scale-Center-Y",
"Vertical scale center",
-G_MAXFLOAT, G_MAXFLOAT,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_SCALE_CENTER_Y, pspec);
/**
* ClutterActor:scale-gravity:
*
* The center point for scaling expressed as a #ClutterGravity
*
* Since: 1.0
*/
pspec = g_param_spec_enum ("scale-gravity",
"Scale-Gravity",
"The center of scaling",
CLUTTER_TYPE_GRAVITY,
CLUTTER_GRAVITY_NONE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_SCALE_GRAVITY,
pspec);
/**
* ClutterActor:rotation-angle-x:
*
* The rotation angle on the X axis
*
* Since: 0.6
*/
pspec = g_param_spec_double ("rotation-angle-x",
"Rotation Angle X",
"The rotation angle on the X axis",
-G_MAXDOUBLE, G_MAXDOUBLE,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_ROTATION_ANGLE_X, pspec);
/**
* ClutterActor:rotation-angle-y:
*
* The rotation angle on the Y axis
*
* Since: 0.6
*/
pspec = g_param_spec_double ("rotation-angle-y",
"Rotation Angle Y",
"The rotation angle on the Y axis",
-G_MAXDOUBLE, G_MAXDOUBLE,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_ROTATION_ANGLE_Y, pspec);
/**
* ClutterActor:rotation-angle-z:
*
* The rotation angle on the Z axis
*
* Since: 0.6
*/
pspec = g_param_spec_double ("rotation-angle-z",
"Rotation Angle Z",
"The rotation angle on the Z axis",
-G_MAXDOUBLE, G_MAXDOUBLE,
0.0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_ROTATION_ANGLE_Z, pspec);
/**
* ClutterActor:rotation-center-x:
*
* The rotation center on the X axis.
*
* Since: 0.6
*/
pspec = g_param_spec_boxed ("rotation-center-x",
"Rotation Center X",
"The rotation center on the X axis",
CLUTTER_TYPE_VERTEX,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_ROTATION_CENTER_X,
pspec);
/**
* ClutterActor:rotation-center-y:
*
* The rotation center on the Y axis.
*
* Since: 0.6
*/
pspec = g_param_spec_boxed ("rotation-center-y",
"Rotation Center Y",
"The rotation center on the Y axis",
CLUTTER_TYPE_VERTEX,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_ROTATION_CENTER_Y,
pspec);
/**
* ClutterActor:rotation-center-z:
*
* The rotation center on the Z axis.
*
* Since: 0.6
*/
pspec = g_param_spec_boxed ("rotation-center-z",
"Rotation Center Z",
"The rotation center on the Z axis",
CLUTTER_TYPE_VERTEX,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_ROTATION_CENTER_Z,
pspec);
/**
* ClutterActor:rotation-center-z-gravity:
*
* The rotation center on the Z axis expressed as a #ClutterGravity.
*
* Since: 1.0
*/
pspec = g_param_spec_enum ("rotation-center-z-gravity",
"Rotation-Center-Z-Gravity",
"Center point for rotation around the Z axis",
CLUTTER_TYPE_GRAVITY,
CLUTTER_GRAVITY_NONE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_ROTATION_CENTER_Z_GRAVITY,
pspec);
/**
* ClutterActor:anchor-x:
*
* The X coordinate of an actor's anchor point, relative to
* the actor coordinate space, in pixels
*
* Since: 0.8
*/
pspec = g_param_spec_float ("anchor-x",
"Anchor X",
"X coordinate of the anchor point",
-G_MAXFLOAT, G_MAXFLOAT,
0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_ANCHOR_X, pspec);
/**
* ClutterActor:anchor-y:
*
* The Y coordinate of an actor's anchor point, relative to
* the actor coordinate space, in pixels
*
* Since: 0.8
*/
pspec = g_param_spec_float ("anchor-y",
"Anchor Y",
"Y coordinate of the anchor point",
-G_MAXFLOAT, G_MAXFLOAT,
0,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class, PROP_ANCHOR_Y, pspec);
/**
* ClutterActor:anchor-gravity:
*
* The anchor point expressed as a #ClutterGravity
*
* Since: 1.0
*/
pspec = g_param_spec_enum ("anchor-gravity",
"Anchor-Gravity",
"The anchor point as a ClutterGravity",
CLUTTER_TYPE_GRAVITY,
CLUTTER_GRAVITY_NONE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_ANCHOR_GRAVITY, pspec);
/**
* ClutterActor:show-on-set-parent:
*
* If %TRUE, the actor is automatically shown when parented.
*
* Calling clutter_actor_hide() on an actor which has not been
* parented will set this property to %FALSE as a side effect.
*
* Since: 0.8
*/
pspec = g_param_spec_boolean ("show-on-set-parent",
"Show on set parent",
"Whether the actor is shown when parented",
TRUE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_SHOW_ON_SET_PARENT,
pspec);
/**
* ClutterActor:clip-to-allocation:
*
* Whether the clip region should track the allocated area
* of the actor.
*
* This property is ignored if a clip area has been explicitly
* set using clutter_actor_set_clip().
*
* Since: 1.0
*/
pspec = g_param_spec_boolean ("clip-to-allocation",
"Clip to Allocation",
"Sets the clip region to track the "
"actor's allocation",
FALSE,
CLUTTER_PARAM_READWRITE);
g_object_class_install_property (object_class,
PROP_CLIP_TO_ALLOCATION,
pspec);
/**
* ClutterActor::destroy:
* @actor: the object which received the signal
*
* The ::destroy signal is emitted when an actor is destroyed,
* either by direct invocation of clutter_actor_destroy() or
* when the #ClutterGroup that contains the actor is destroyed.
*
* Since: 0.2
*/
actor_signals[DESTROY] =
g_signal_new (I_("destroy"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_CLEANUP | G_SIGNAL_NO_RECURSE | G_SIGNAL_NO_HOOKS,
G_STRUCT_OFFSET (ClutterActorClass, destroy),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::show:
* @actor: the object which received the signal
*
* The ::show signal is emitted when an actor is visible and
* rendered on the stage.
*
* Since: 0.2
*/
actor_signals[SHOW] =
g_signal_new (I_("show"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ClutterActorClass, show),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::hide:
* @actor: the object which received the signal
*
* The ::hide signal is emitted when an actor is no longer rendered
* on the stage.
*
* Since: 0.2
*/
actor_signals[HIDE] =
g_signal_new (I_("hide"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_FIRST,
G_STRUCT_OFFSET (ClutterActorClass, hide),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::parent-set:
* @actor: the object which received the signal
* @old_parent: the previous parent of the actor, or %NULL
*
* This signal is emitted when the parent of the actor changes.
*
* Since: 0.2
*/
actor_signals[PARENT_SET] =
g_signal_new (I_("parent-set"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, parent_set),
NULL, NULL,
clutter_marshal_VOID__OBJECT,
G_TYPE_NONE, 1,
CLUTTER_TYPE_ACTOR);
/**
* ClutterActor::queue-redraw:
* @actor: the actor we're bubbling the redraw request through
* @origin: the actor which initiated the redraw request
*
* The ::queue_redraw signal is emitted when clutter_actor_queue_redraw()
* is called on @origin.
*
* The default implementation for #ClutterActor chains up to the
* parent actor and queues a redraw on the parent, thus "bubbling"
* the redraw queue up through the actor graph. The default
* implementation for #ClutterStage queues a clutter_redraw() in a
* main loop idle handler.
*
* Note that the @origin actor may be the stage, or a container; it
* does not have to be a leaf node in the actor graph.
*
* Toolkits embedding a #ClutterStage which require a redraw and
* relayout cycle can stop the emission of this signal using the
* GSignal API, redraw the UI and then call clutter_redraw()
* themselves, like:
*
* |[
* static void
* on_redraw_complete (void)
* {
* /&ast; execute the Clutter drawing pipeline &ast;/
* clutter_redraw ();
* }
*
* static void
* on_stage_queue_redraw (ClutterStage *stage)
* {
* /&ast; this prevents the default handler to run &ast;/
* g_signal_stop_emission_by_name (stage, "queue-redraw");
*
* /&ast; queue a redraw with the host toolkit and call
* &ast; a function when the redraw has been completed
* &ast;/
* queue_a_redraw (G_CALLBACK (on_redraw_complete));
* }
* ]|
*
* <note><para>This signal is emitted before the Clutter paint
* pipeline is executed. If you want to know when the pipeline has
* been completed you should connect to the ::paint signal on the
* Stage with g_signal_connect_after().</para></note>
*
* Since: 1.0
*/
actor_signals[QUEUE_REDRAW] =
g_signal_new (I_("queue-redraw"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, queue_redraw),
NULL, NULL,
clutter_marshal_VOID__OBJECT,
G_TYPE_NONE, 1,
CLUTTER_TYPE_ACTOR);
/**
* ClutterActor::event:
* @actor: the actor which received the event
* @event: a #ClutterEvent
*
* The ::event signal is emitted each time an event is received
* by the @actor. This signal will be emitted on every actor,
* following the hierarchy chain, until it reaches the top-level
* container (the #ClutterStage).
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[EVENT] =
g_signal_new (I_("event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::button-press-event:
* @actor: the actor which received the event
* @event: a #ClutterButtonEvent
*
* The ::button-press-event signal is emitted each time a mouse button
* is pressed on @actor.
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[BUTTON_PRESS_EVENT] =
g_signal_new (I_("button-press-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, button_press_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::button-release-event:
* @actor: the actor which received the event
* @event: a #ClutterButtonEvent
*
* The ::button-release-event signal is emitted each time a mouse button
* is released on @actor.
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[BUTTON_RELEASE_EVENT] =
g_signal_new (I_("button-release-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, button_release_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::scroll-event:
* @actor: the actor which received the event
* @event: a #ClutterScrollEvent
*
* The ::scroll-event signal is emitted each time the mouse is
* scrolled on @actor
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[SCROLL_EVENT] =
g_signal_new (I_("scroll-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, scroll_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::key-press-event:
* @actor: the actor which received the event
* @event: a #ClutterKeyEvent
*
* The ::key-press-event signal is emitted each time a keyboard button
* is pressed while @actor has key focus (see clutter_stage_set_key_focus()).
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[KEY_PRESS_EVENT] =
g_signal_new (I_("key-press-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, key_press_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::key-release-event:
* @actor: the actor which received the event
* @event: a #ClutterKeyEvent
*
* The ::key-release-event signal is emitted each time a keyboard button
* is released while @actor has key focus (see
* clutter_stage_set_key_focus()).
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[KEY_RELEASE_EVENT] =
g_signal_new (I_("key-release-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, key_release_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::motion-event:
* @actor: the actor which received the event
* @event: a #ClutterMotionEvent
*
* The ::motion-event signal is emitted each time the mouse pointer is
* moved over @actor.
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[MOTION_EVENT] =
g_signal_new (I_("motion-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, motion_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::key-focus-in:
* @actor: the actor which now has key focus
*
* The ::focus-in signal is emitted when @actor recieves key focus.
*
* Since: 0.6
*/
actor_signals[KEY_FOCUS_IN] =
g_signal_new (I_("key-focus-in"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, key_focus_in),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::key-focus-out:
* @actor: the actor which now has key focus
*
* The ::key-focus-out signal is emitted when @actor loses key focus.
*
* Since: 0.6
*/
actor_signals[KEY_FOCUS_OUT] =
g_signal_new (I_("key-focus-out"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, key_focus_out),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::enter-event:
* @actor: the actor which the pointer has entered.
* @event: a #ClutterCrossingEvent
*
* The ::enter-event signal is emitted when the pointer enters the @actor
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[ENTER_EVENT] =
g_signal_new (I_("enter-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, enter_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::leave-event:
* @actor: the actor which the pointer has left
* @event: a #ClutterCrossingEvent
*
* The ::leave-event signal is emitted when the pointer leaves the @actor.
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[LEAVE_EVENT] =
g_signal_new (I_("leave-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, leave_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::captured-event:
* @actor: the actor which received the signal
* @event: a #ClutterEvent
*
* The ::captured-event signal is emitted when an event is captured
* by Clutter. This signal will be emitted starting from the top-level
* container (the #ClutterStage) to the actor which received the event
* going down the hierarchy. This signal can be used to intercept every
* event before the specialized events (like
* ClutterActor::button-press-event or ::key-released-event) are
* emitted.
*
* Return value: %TRUE if the event has been handled by the actor,
* or %FALSE to continue the emission.
*
* Since: 0.6
*/
actor_signals[CAPTURED_EVENT] =
g_signal_new (I_("captured-event"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, captured_event),
_clutter_boolean_handled_accumulator, NULL,
clutter_marshal_BOOLEAN__BOXED,
G_TYPE_BOOLEAN, 1,
CLUTTER_TYPE_EVENT | G_SIGNAL_TYPE_STATIC_SCOPE);
/**
* ClutterActor::paint:
* @actor: the #ClutterActor that received the signal
*
* The ::paint signal is emitted each time an actor is being painted.
*
* Subclasses of #ClutterActor should override the class signal handler
* and paint themselves in that function.
*
* It is possible to connect a handler to the ::paint signal in order
* to set up some custom aspect of a paint.
*
* Since: 0.8
*/
actor_signals[PAINT] =
g_signal_new (I_("paint"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, paint),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::realize:
* @actor: the #ClutterActor that received the signal
*
* The ::realize signal is emitted each time an actor is being
* realized.
*
* Since: 0.8
*/
actor_signals[REALIZE] =
g_signal_new (I_("realize"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, realize),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::unrealize:
* @actor: the #ClutterActor that received the signal
*
* The ::unrealize signal is emitted each time an actor is being
* unrealized.
*
* Since: 0.8
*/
actor_signals[UNREALIZE] =
g_signal_new (I_("unrealize"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, unrealize),
NULL, NULL,
clutter_marshal_VOID__VOID,
G_TYPE_NONE, 0);
/**
* ClutterActor::map:
* @actor: the #ClutterActor to map
*
* The ::map virtual functon must be overridden in order to call
* clutter_actor_map() on any child actors if the actor is not a
* #ClutterContainer. When overriding, it is mandatory to chain up
* to the parent implementation.
*
* Since: 1.0
*/
/**
* ClutterActor::unmap:
* @actor: the #ClutterActor to unmap
*
* The ::unmap virtual functon must be overridden in order to call
* clutter_actor_unmap() on any child actors if the actor is not a
* #ClutterContainer. When overriding, it is mandatory to chain up
* to the parent implementation.
*
* Since: 1.0
*/
/**
* ClutterActor::pick:
* @actor: the #ClutterActor that received the signal
* @color: the #ClutterColor to be used when picking
*
* The ::pick signal is emitted each time an actor is being painted
* in "pick mode". The pick mode is used to identify the actor during
* the event handling phase, or by clutter_stage_get_actor_at_pos().
* The actor should paint its shape using the passed @pick_color.
*
* Subclasses of #ClutterActor should override the class signal handler
* and paint themselves in that function.
*
* It is possible to connect a handler to the ::pick signal in order
* to set up some custom aspect of a paint in pick mode.
*
* Since: 1.0
*/
actor_signals[PICK] =
g_signal_new (I_("pick"),
G_TYPE_FROM_CLASS (object_class),
G_SIGNAL_RUN_LAST,
G_STRUCT_OFFSET (ClutterActorClass, pick),
NULL, NULL,
clutter_marshal_VOID__BOXED,
G_TYPE_NONE, 1,
CLUTTER_TYPE_COLOR);
klass->show = clutter_actor_real_show;
klass->show_all = clutter_actor_show;
klass->hide = clutter_actor_real_hide;
klass->hide_all = clutter_actor_hide;
klass->map = clutter_actor_real_map;
klass->unmap = clutter_actor_real_unmap;
klass->unrealize = clutter_actor_real_unrealize;
klass->pick = clutter_actor_real_pick;
klass->get_preferred_width = clutter_actor_real_get_preferred_width;
klass->get_preferred_height = clutter_actor_real_get_preferred_height;
klass->allocate = clutter_actor_real_allocate;
klass->queue_redraw = clutter_actor_real_queue_redraw;
}
static void
clutter_actor_init (ClutterActor *self)
{
ClutterActorPrivate *priv;
self->priv = priv = CLUTTER_ACTOR_GET_PRIVATE (self);
priv->parent_actor = NULL;
priv->has_clip = FALSE;
priv->opacity = 0xff;
priv->id = clutter_id_pool_add (CLUTTER_CONTEXT()->id_pool, self);
priv->scale_x = 1.0;
priv->scale_y = 1.0;
priv->shader_data = NULL;
priv->show_on_set_parent = TRUE;
priv->needs_width_request = TRUE;
priv->needs_height_request = TRUE;
priv->needs_allocation = TRUE;
priv->opacity_parent = NULL;
priv->enable_model_view_transform = TRUE;
memset (priv->clip, 0, sizeof (gfloat) * 4);
}
/**
* clutter_actor_destroy:
* @self: a #ClutterActor
*
* Destroys an actor. When an actor is destroyed, it will break any
* references it holds to other objects. If the actor is inside a
* container, the actor will be removed.
*
* When you destroy a container, its children will be destroyed as well.
*
* Note: you cannot destroy the #ClutterStage returned by
* clutter_stage_get_default().
*/
void
clutter_actor_destroy (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
g_object_ref (self);
/* avoid recursion while destroying */
if (!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_DESTRUCTION))
{
CLUTTER_SET_PRIVATE_FLAGS (self, CLUTTER_ACTOR_IN_DESTRUCTION);
g_object_run_dispose (G_OBJECT (self));
CLUTTER_SET_PRIVATE_FLAGS (self, CLUTTER_ACTOR_IN_DESTRUCTION);
}
g_object_unref (self);
}
/**
* clutter_actor_queue_redraw:
* @self: A #ClutterActor
*
* Queues up a redraw of an actor and any children. The redraw occurs
* once the main loop becomes idle (after the current batch of events
* has been processed, roughly).
*
* Applications rarely need to call this, as redraws are handled
* automatically by modification functions.
*
* This function will not do anything if @self is not visible, or
* if the actor is inside an invisible part of the scenegraph.
*
* Also be aware that painting is a NOP for actors with an opacity of
* 0
*/
void
clutter_actor_queue_redraw (ClutterActor *self)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
clutter_actor_queue_redraw_with_origin (self, self);
}
/**
* clutter_actor_queue_relayout:
* @self: A #ClutterActor
*
* Indicates that the actor's size request or other layout-affecting
* properties may have changed. This function is used inside #ClutterActor
* subclass implementations, not by applications directly.
*
* Queueing a new layout automatically queues a redraw as well.
*
* Since: 0.8
*/
void
clutter_actor_queue_relayout (ClutterActor *self)
{
ClutterActorPrivate *priv;
priv = self->priv;
if (priv->needs_width_request &&
priv->needs_height_request &&
priv->needs_allocation)
return; /* save some cpu cycles */
priv->needs_width_request = TRUE;
priv->needs_height_request = TRUE;
priv->needs_allocation = TRUE;
/* always repaint also (no-op if not mapped) */
clutter_actor_queue_redraw (self);
/* We need to go all the way up the hierarchy */
if (priv->parent_actor)
clutter_actor_queue_relayout (priv->parent_actor);
}
/**
* clutter_actor_get_preferred_size:
* @self: a #ClutterActor
* @min_width_p: (out) (allow-none): return location for the minimum width, or %NULL
* @min_height_p: (out) (allow-none): return location for the minimum height, or %NULL
* @natural_width_p: (out) (allow-none): return location for the natural width, or %NULL
* @natural_height_p: (out) (allow-none): return location for the natural height, or %NULL
*
* Computes the preferred minimum and natural size of an actor, taking into
* account the actor's geometry management (either height-for-width
* or width-for-height).
*
* The width and height used to compute the preferred height and preferred
* width are the actor's natural ones.
*
* If you need to control the height for the preferred width, or the width for
* the preferred height, you should use clutter_actor_get_preferred_width()
* and clutter_actor_get_preferred_height(), and check the actor's preferred
* geometry management using the #ClutterActor:request-mode property.
*
* Since: 0.8
*/
void
clutter_actor_get_preferred_size (ClutterActor *self,
gfloat *min_width_p,
gfloat *min_height_p,
gfloat *natural_width_p,
gfloat *natural_height_p)
{
ClutterActorPrivate *priv;
gfloat for_width, for_height;
gfloat min_width, min_height;
gfloat natural_width, natural_height;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
for_width = for_height = 0;
min_width = min_height = 0;
natural_width = natural_height = 0;
if (priv->request_mode == CLUTTER_REQUEST_HEIGHT_FOR_WIDTH)
{
CLUTTER_NOTE (LAYOUT, "Preferred size (height-for-width)");
clutter_actor_get_preferred_width (self, -1,
&min_width,
&natural_width);
clutter_actor_get_preferred_height (self, natural_width,
&min_height,
&natural_height);
}
else
{
CLUTTER_NOTE (LAYOUT, "Preferred size (width-for-height)");
clutter_actor_get_preferred_height (self, -1,
&min_height,
&natural_height);
clutter_actor_get_preferred_width (self, natural_height,
&min_width,
&natural_width);
}
if (min_width_p)
*min_width_p = min_width;
if (min_height_p)
*min_height_p = min_height;
if (natural_width_p)
*natural_width_p = natural_width;
if (natural_height_p)
*natural_height_p = natural_height;
}
#define FLOAT_EPSILON (1e-4) /* 1/1000 pixel is the precision used */
/**
* clutter_actor_get_preferred_width:
* @self: A #ClutterActor
* @for_height: available height when computing the preferred width,
* or a negative value to indicate that no height is defined
* @min_width_p: (out): return location for minimum width, or %NULL
* @natural_width_p: (out): return location for the natural width, or %NULL
*
* Computes the requested minimum and natural widths for an actor,
* optionally depending on the specified height, or if they are
* already computed, returns the cached values.
*
* An actor may not get its request - depending on the layout
* manager that's in effect.
*
* A request should not incorporate the actor's scale or anchor point;
* those transformations do not affect layout, only rendering.
*
* Since: 0.8
*/
void
clutter_actor_get_preferred_width (ClutterActor *self,
gfloat for_height,
gfloat *min_width_p,
gfloat *natural_width_p)
{
ClutterActorClass *klass;
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
klass = CLUTTER_ACTOR_GET_CLASS (self);
priv = self->priv;
if (priv->needs_width_request ||
priv->request_width_for_height != for_height)
{
gfloat min_width, natural_width;
min_width = natural_width = 0;
CLUTTER_NOTE (LAYOUT, "Width request for %.2f px", for_height);
klass->get_preferred_width (self, for_height,
&min_width,
&natural_width);
if (natural_width < min_width - FLOAT_EPSILON)
{
g_warning ("Actor of type %s reported a natural width "
"of %.2f px lower than min width %.2f px",
G_OBJECT_TYPE_NAME (self),
natural_width,
min_width);
}
if (!priv->min_width_set)
priv->request_min_width = min_width;
if (!priv->natural_width_set)
priv->request_natural_width = natural_width;
priv->request_width_for_height = for_height;
priv->needs_width_request = FALSE;
}
if (min_width_p)
*min_width_p = priv->request_min_width;
if (natural_width_p)
*natural_width_p = priv->request_natural_width;
}
/**
* clutter_actor_get_preferred_height:
* @self: A #ClutterActor
* @for_width: available width to assume in computing desired height,
* or a negative value to indicate that no width is defined
* @min_height_p: (out): return location for minimum height, or %NULL
* @natural_height_p: (out): return location for natural height, or %NULL
*
* Computes the requested minimum and natural heights for an actor,
* or if they are already computed, returns the cached values.
*
* An actor may not get its request - depending on the layout
* manager that's in effect.
*
* A request should not incorporate the actor's scale or anchor point;
* those transformations do not affect layout, only rendering.
*
* Since: 0.8
*/
void
clutter_actor_get_preferred_height (ClutterActor *self,
gfloat for_width,
gfloat *min_height_p,
gfloat *natural_height_p)
{
ClutterActorClass *klass;
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
klass = CLUTTER_ACTOR_GET_CLASS (self);
priv = self->priv;
if (priv->needs_height_request ||
priv->request_height_for_width != for_width)
{
gfloat min_height, natural_height;
min_height = natural_height = 0;
CLUTTER_NOTE (LAYOUT, "Width request for %.2f px", for_width);
klass->get_preferred_height (self, for_width,
&min_height,
&natural_height);
if (natural_height < min_height - FLOAT_EPSILON)
{
g_warning ("Actor of type %s reported a natural height "
"of %.2f px lower than min height %.2f px",
G_OBJECT_TYPE_NAME (self),
natural_height,
min_height);
}
if (!priv->min_height_set)
priv->request_min_height = min_height;
if (!priv->natural_height_set)
priv->request_natural_height = natural_height;
priv->request_height_for_width = for_width;
priv->needs_height_request = FALSE;
}
if (min_height_p)
*min_height_p = priv->request_min_height;
if (natural_height_p)
*natural_height_p = priv->request_natural_height;
}
/**
* clutter_actor_get_allocation_coords:
* @self: A #ClutterActor
* @x_1: (out): x1 coordinate
* @y_1: (out): y1 coordinate
* @x_2: (out): x2 coordinate
* @y_2: (out): y2 coordinate
*
* Gets the layout box an actor has been assigned. The allocation can
* only be assumed valid inside a paint() method; anywhere else, it
* may be out-of-date.
*
* An allocation does not incorporate the actor's scale or anchor point;
* those transformations do not affect layout, only rendering.
*
* The returned coordinates are in pixels.
*
* Since: 0.8
*/
void
clutter_actor_get_allocation_coords (ClutterActor *self,
gint *x_1,
gint *y_1,
gint *x_2,
gint *y_2)
{
ClutterActorBox allocation = { 0, };
g_return_if_fail (CLUTTER_IS_ACTOR (self));
clutter_actor_get_allocation_box (self, &allocation);
if (x_1)
*x_1 = allocation.x1;
if (y_1)
*y_1 = allocation.y1;
if (x_2)
*x_2 = allocation.x2;
if (y_2)
*y_2 = allocation.y2;
}
/**
* clutter_actor_get_allocation_box:
* @self: A #ClutterActor
* @box: (out): the function fills this in with the actor's allocation
*
* Gets the layout box an actor has been assigned. The allocation can
* only be assumed valid inside a paint() method; anywhere else, it
* may be out-of-date.
*
* An allocation does not incorporate the actor's scale or anchor point;
* those transformations do not affect layout, only rendering.
*
* <note>Do not call any of the clutter_actor_get_allocation_*() family
* of functions inside the implementation of the get_preferred_width()
* or get_preferred_height() virtual functions.</note>
*
* Since: 0.8
*/
void
clutter_actor_get_allocation_box (ClutterActor *self,
ClutterActorBox *box)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
/* XXX - if needs_allocation=TRUE, we can either 1) g_return_if_fail,
* which limits calling get_allocation to inside paint() basically; or
* we can 2) force a layout, which could be expensive if someone calls
* get_allocation somewhere silly; or we can 3) just return the latest
* value, allowing it to be out-of-date, and assume people know what
* they are doing.
*
* The least-surprises approach that keeps existing code working is
* likely to be 2). People can end up doing some inefficient things,
* though, and in general code that requires 2) is probably broken.
*/
/* this implements 2) */
if (G_UNLIKELY (self->priv->needs_allocation))
{
ClutterActor *stage = clutter_actor_get_stage (self);
/* do not queue a relayout on an unparented actor */
if (stage)
_clutter_stage_maybe_relayout (stage);
}
/* commenting out the code above and just keeping this assigment
* implements 3)
*/
*box = self->priv->allocation;
}
/**
* clutter_actor_get_allocation_geometry:
* @self: A #ClutterActor
* @geom: (out): allocation geometry in pixels
*
* Gets the layout box an actor has been assigned. The allocation can
* only be assumed valid inside a paint() method; anywhere else, it
* may be out-of-date.
*
* An allocation does not incorporate the actor's scale or anchor point;
* those transformations do not affect layout, only rendering.
*
* The returned rectangle is in pixels.
*
* Since: 0.8
*/
void
clutter_actor_get_allocation_geometry (ClutterActor *self,
ClutterGeometry *geom)
{
gint x2, y2;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
clutter_actor_get_allocation_coords (self, &geom->x, &geom->y, &x2, &y2);
geom->width = x2 - geom->x;
geom->height = y2 - geom->y;
}
/**
* clutter_actor_allocate:
* @self: A #ClutterActor
* @box: new allocation of the actor, in parent-relative coordinates
* @absolute_origin_changed: whether the position of the parent has
* changed in stage coordinates
*
* Called by the parent of an actor to assign the actor its size.
* Should never be called by applications (except when implementing
* a container or layout manager).
*
* Actors can know from their allocation box whether they have moved
* with respect to their parent actor. The absolute_origin_changed
* parameter additionally indicates whether the parent has moved with
* respect to the stage, for example because a grandparent's origin
* has moved.
*
* Since: 0.8
*/
void
clutter_actor_allocate (ClutterActor *self,
const ClutterActorBox *box,
gboolean absolute_origin_changed)
{
ClutterActorPrivate *priv;
ClutterActorClass *klass;
gboolean child_moved;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
klass = CLUTTER_ACTOR_GET_CLASS (self);
child_moved = (box->x1 != priv->allocation.x1 ||
box->y1 != priv->allocation.y1);
/* If we get an allocation "out of the blue"
* (we did not queue relayout), then we want to
* ignore it. But if we have needs_allocation set,
* we want to guarantee that allocate() virtual
* method is always called, i.e. that queue_relayout()
* always results in an allocate() invocation on
* an actor.
*
* The optimization here is to avoid re-allocating
* actors that did not queue relayout and were
* not moved.
*/
if (!priv->needs_allocation &&
!absolute_origin_changed &&
!child_moved &&
box->x2 == priv->allocation.x2 &&
box->y2 == priv->allocation.y2)
{
CLUTTER_NOTE (LAYOUT, "No allocation needed");
return;
}
/* When absolute_origin_changed is passed in to
* clutter_actor_allocate(), it indicates whether the parent has its
* absolute origin moved; when passed in to ClutterActor::allocate()
* virtual method though, it indicates whether the child has its
* absolute origin moved. So we set it to TRUE if child_moved.
*/
klass->allocate (self, box, absolute_origin_changed || child_moved);
}
/**
* clutter_actor_set_geometry:
* @self: A #ClutterActor
* @geometry: A #ClutterGeometry
*
* Sets the actor's fixed position and forces its minimum and natural
* size, in pixels. This means the untransformed actor will have the
* given geometry. This is the same as calling clutter_actor_set_position()
* and clutter_actor_set_size().
*/
void
clutter_actor_set_geometry (ClutterActor *self,
const ClutterGeometry *geometry)
{
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_position (self, geometry->x, geometry->y);
clutter_actor_set_size (self, geometry->width, geometry->height);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_get_geometry:
* @self: A #ClutterActor
* @geometry: (out): A location to store actors #ClutterGeometry
*
* Gets the size and position of an actor relative to its parent
* actor. This is the same as calling clutter_actor_get_position() and
* clutter_actor_get_size(). It tries to "do what you mean" and get the
* requested size and position if the actor's allocation is invalid.
*/
void
clutter_actor_get_geometry (ClutterActor *self,
ClutterGeometry *geometry)
{
gfloat x, y, width, height;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (geometry != NULL);
clutter_actor_get_position (self, &x, &y);
clutter_actor_get_size (self, &width, &height);
geometry->x = (int) x;
geometry->y = (int) y;
geometry->width = (int) width;
geometry->height = (int) height;
}
/**
* clutter_actor_set_position
* @self: A #ClutterActor
* @x: New left position of actor in pixels.
* @y: New top position of actor in pixels.
*
* Sets the actor's fixed position in pixels relative to any parent
* actor.
*
* If a layout manager is in use, this position will override the
* layout manager and force a fixed position.
*/
void
clutter_actor_set_position (ClutterActor *self,
gfloat x,
gfloat y)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_x (self, x);
clutter_actor_set_y (self, y);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_get_fixed_position_set:
* @self: A #ClutterActor
*
* Checks whether an actor has a fixed position set (and will thus be
* unaffected by any layout manager).
*
* Return value: %TRUE if the fixed position is set on the actor
*
* Since: 0.8
*/
gboolean
clutter_actor_get_fixed_position_set (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
return self->priv->position_set;
}
/**
* clutter_actor_set_fixed_position_set:
* @self: A #ClutterActor
* @is_set: whether to use fixed position
*
* Sets whether an actor has a fixed position set (and will thus be
* unaffected by any layout manager).
*
* Since: 0.8
*/
void
clutter_actor_set_fixed_position_set (ClutterActor *self,
gboolean is_set)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (self->priv->position_set == (is_set != FALSE))
return;
self->priv->position_set = is_set != FALSE;
g_object_notify (G_OBJECT (self), "fixed-position-set");
clutter_actor_queue_relayout (self);
}
/**
* clutter_actor_move_by:
* @self: A #ClutterActor
* @dx: Distance to move Actor on X axis.
* @dy: Distance to move Actor on Y axis.
*
* Moves an actor by the specified distance relative to its current
* position in pixels.
*
* This function modifies the fixed position of an actor and thus removes
* it from any layout management. Another way to move an actor is with an
* anchor point, see clutter_actor_set_anchor_point().
*
* Since: 0.2
*/
void
clutter_actor_move_by (ClutterActor *self,
gfloat dx,
gfloat dy)
{
ClutterActorPrivate *priv;
gfloat x, y;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
x = priv->fixed_x;
y = priv->fixed_y;
clutter_actor_set_position (self, x + dx, y + dy);
}
static void
clutter_actor_set_min_width (ClutterActor *self,
gfloat min_width)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
/* if we are setting the size on a top-level actor and the
* backend only supports static top-levels (e.g. framebuffers)
* then we ignore the passed value and we override it with
* the stage implementation's preferred size.
*/
if ((CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL) &&
clutter_feature_available (CLUTTER_FEATURE_STAGE_STATIC))
return;
if (priv->min_width_set && min_width == priv->request_min_width)
return;
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_store_old_geometry (self, &old);
priv->request_min_width = min_width;
g_object_notify (G_OBJECT (self), "min-width");
clutter_actor_set_min_width_set (self, TRUE);
clutter_actor_notify_if_geometry_changed (self, &old);
g_object_thaw_notify (G_OBJECT (self));
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_min_height (ClutterActor *self,
gfloat min_height)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
/* if we are setting the size on a top-level actor and the
* backend only supports static top-levels (e.g. framebuffers)
* then we ignore the passed value and we override it with
* the stage implementation's preferred size.
*/
if ((CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL) &&
clutter_feature_available (CLUTTER_FEATURE_STAGE_STATIC))
return;
if (priv->min_height_set && min_height == priv->request_min_height)
return;
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_store_old_geometry (self, &old);
priv->request_min_height = min_height;
g_object_notify (G_OBJECT (self), "min-height");
clutter_actor_set_min_height_set (self, TRUE);
clutter_actor_notify_if_geometry_changed (self, &old);
g_object_thaw_notify (G_OBJECT (self));
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_natural_width (ClutterActor *self,
gfloat natural_width)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
/* if we are setting the size on a top-level actor and the
* backend only supports static top-levels (e.g. framebuffers)
* then we ignore the passed value and we override it with
* the stage implementation's preferred size.
*/
if ((CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL) &&
clutter_feature_available (CLUTTER_FEATURE_STAGE_STATIC))
return;
if (priv->natural_width_set &&
natural_width == priv->request_natural_width)
return;
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_store_old_geometry (self, &old);
priv->request_natural_width = natural_width;
g_object_notify (G_OBJECT (self), "natural-width");
clutter_actor_set_natural_width_set (self, TRUE);
clutter_actor_notify_if_geometry_changed (self, &old);
g_object_thaw_notify (G_OBJECT (self));
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_natural_height (ClutterActor *self,
gfloat natural_height)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
/* if we are setting the size on a top-level actor and the
* backend only supports static top-levels (e.g. framebuffers)
* then we ignore the passed value and we override it with
* the stage implementation's preferred size.
*/
if ((CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL) &&
clutter_feature_available (CLUTTER_FEATURE_STAGE_STATIC))
return;
if (priv->natural_height_set &&
natural_height == priv->request_natural_height)
return;
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_store_old_geometry (self, &old);
priv->request_natural_height = natural_height;
g_object_notify (G_OBJECT (self), "natural-height");
clutter_actor_set_natural_height_set (self, TRUE);
clutter_actor_notify_if_geometry_changed (self, &old);
g_object_thaw_notify (G_OBJECT (self));
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_min_width_set (ClutterActor *self,
gboolean use_min_width)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
if (priv->min_width_set == (use_min_width != FALSE))
return;
clutter_actor_store_old_geometry (self, &old);
priv->min_width_set = use_min_width != FALSE;
g_object_notify (G_OBJECT (self), "min-width-set");
clutter_actor_notify_if_geometry_changed (self, &old);
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_min_height_set (ClutterActor *self,
gboolean use_min_height)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
if (priv->min_height_set == (use_min_height != FALSE))
return;
clutter_actor_store_old_geometry (self, &old);
priv->min_height_set = use_min_height != FALSE;
g_object_notify (G_OBJECT (self), "min-height-set");
clutter_actor_notify_if_geometry_changed (self, &old);
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_natural_width_set (ClutterActor *self,
gboolean use_natural_width)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
if (priv->natural_width_set == (use_natural_width != FALSE))
return;
clutter_actor_store_old_geometry (self, &old);
priv->natural_width_set = use_natural_width != FALSE;
g_object_notify (G_OBJECT (self), "natural-width-set");
clutter_actor_notify_if_geometry_changed (self, &old);
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_natural_height_set (ClutterActor *self,
gboolean use_natural_height)
{
ClutterActorPrivate *priv = self->priv;
ClutterActorBox old = { 0, };
if (priv->natural_height_set == (use_natural_height != FALSE))
return;
clutter_actor_store_old_geometry (self, &old);
priv->natural_height_set = use_natural_height != FALSE;
g_object_notify (G_OBJECT (self), "natural-height-set");
clutter_actor_notify_if_geometry_changed (self, &old);
clutter_actor_queue_relayout (self);
}
static void
clutter_actor_set_request_mode (ClutterActor *self,
ClutterRequestMode mode)
{
ClutterActorPrivate *priv = self->priv;
if (priv->request_mode == mode)
return;
priv->request_mode = mode;
priv->needs_width_request = TRUE;
priv->needs_height_request = TRUE;
g_object_notify (G_OBJECT (self), "request-mode");
clutter_actor_queue_relayout (self);
}
/**
* clutter_actor_set_size
* @self: A #ClutterActor
* @width: New width of actor in pixels, or -1
* @height: New height of actor in pixels, or -1
*
* Sets the actor's size request in pixels. This overrides any
* "normal" size request the actor would have. For example
* a text actor might normally request the size of the text;
* this function would force a specific size instead.
*
* If @width and/or @height are -1 the actor will use its
* "normal" size request instead of overriding it, i.e.
* you can "unset" the size with -1.
*
* This function sets or unsets both the minimum and natural size.
*/
void
clutter_actor_set_size (ClutterActor *self,
gfloat width,
gfloat height)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_object_freeze_notify (G_OBJECT (self));
if (width >= 0)
{
clutter_actor_set_min_width (self, width);
clutter_actor_set_natural_width (self, width);
}
else
{
clutter_actor_set_min_width_set (self, FALSE);
clutter_actor_set_natural_width_set (self, FALSE);
}
if (height >= 0)
{
clutter_actor_set_min_height (self, height);
clutter_actor_set_natural_height (self, height);
}
else
{
clutter_actor_set_min_height_set (self, FALSE);
clutter_actor_set_natural_height_set (self, FALSE);
}
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_get_size:
* @self: A #ClutterActor
* @width: return location for the width, or %NULL.
* @height: return location for the height, or %NULL.
*
* This function tries to "do what you mean" and return
* the size an actor will have. If the actor has a valid
* allocation, the allocation will be returned; otherwise,
* the actors natural size request will be returned.
*
* If you care whether you get the request vs. the allocation, you
* should probably call a different function like
* clutter_actor_get_allocation_coords() or
* clutter_actor_get_preferred_width().
*
* Since: 0.2
*/
void
clutter_actor_get_size (ClutterActor *self,
gfloat *width,
gfloat *height)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (width)
*width = clutter_actor_get_width (self);
if (height)
*height = clutter_actor_get_height (self);
}
/**
* clutter_actor_get_position:
* @self: a #ClutterActor
* @x: return location for the X coordinate, or %NULL
* @y: return location for the Y coordinate, or %NULL
*
* This function tries to "do what you mean" and tell you where the
* actor is, prior to any transformations. Retrieves the fixed
* position of an actor in pixels, if one has been set; otherwise, if
* the allocation is valid, returns the actor's allocated position;
* otherwise, returns 0,0.
*
* The returned position is in pixels.
*
* Since: 0.6
*/
void
clutter_actor_get_position (ClutterActor *self,
gfloat *x,
gfloat *y)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (x)
*x = clutter_actor_get_x (self);
if (y)
*y = clutter_actor_get_y (self);
}
/**
* clutter_actor_get_transformed_position:
* @self: A #ClutterActor
* @x: (out): return location for the X coordinate, or %NULL
* @y: (out): return location for the Y coordinate, or %NULL
*
* Gets the absolute position of an actor, in pixels relative to the stage.
*
* Since: 0.8
*/
void
clutter_actor_get_transformed_position (ClutterActor *self,
gfloat *x,
gfloat *y)
{
ClutterVertex v1;
ClutterVertex v2;
v1.x = v1.y = 0;
clutter_actor_apply_transform_to_point (self, &v1, &v2);
if (x)
*x = v2.x;
if (y)
*y = v2.y;
}
/**
* clutter_actor_get_transformed_size:
* @self: A #ClutterActor
* @width: (out): return location for the width, or %NULL
* @height: (out): return location for the height, or %NULL
*
* Gets the absolute size of an actor in pixels, taking into account the
* scaling factors.
*
* If the actor has a valid allocation, the allocated size will be used.
* If the actor has not a valid allocation then the preferred size will
* be transformed and returned.
*
* If you want the transformed allocation, see
* clutter_actor_get_abs_allocation_vertices() instead.
*
* <note>When the actor (or one of its ancestors) is rotated around the
* X or Y axis, it no longer appears as on the stage as a rectangle, but
* as a generic quadrangle; in that case this function returns the size
* of the smallest rectangle that encapsulates the entire quad. Please
* note that in this case no assumptions can be made about the relative
* position of this envelope to the absolute position of the actor, as
* returned by clutter_actor_get_transformed_position(); if you need this
* information, you need to use clutter_actor_get_abs_allocation_vertices()
* to get the coords of the actual quadrangle.</note>
*
* Since: 0.8
*/
void
clutter_actor_get_transformed_size (ClutterActor *self,
gfloat *width,
gfloat *height)
{
ClutterActorPrivate *priv;
ClutterVertex v[4];
gfloat x_min, x_max, y_min, y_max;
gint i;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
/* if the actor hasn't been allocated yet, get the preferred
* size and transform that
*/
if (priv->needs_allocation)
{
gfloat natural_width, natural_height;
ClutterActorBox box;
/* make a fake allocation to transform */
clutter_actor_get_position (self, &box.x1, &box.y1);
natural_width = natural_height = 0;
clutter_actor_get_preferred_size (self, NULL, NULL,
&natural_width,
&natural_height);
box.x2 = box.x1 + natural_width;
box.y2 = box.y1 + natural_height;
clutter_actor_transform_and_project_box (self, &box, v);
}
else
clutter_actor_get_abs_allocation_vertices (self, v);
x_min = x_max = v[0].x;
y_min = y_max = v[0].y;
for (i = 1; i < G_N_ELEMENTS (v); ++i)
{
if (v[i].x < x_min)
x_min = v[i].x;
if (v[i].x > x_max)
x_max = v[i].x;
if (v[i].y < y_min)
y_min = v[i].y;
if (v[i].y > y_max)
y_max = v[i].y;
}
if (width)
*width = x_max - x_min;
if (height)
*height = y_max - y_min;
}
/**
* clutter_actor_get_width:
* @self: A #ClutterActor
*
* Retrieves the width of a #ClutterActor.
*
* If the actor has a valid allocation, this function will return the
* width of the allocated area given to the actor.
*
* If the actor does not have a valid allocation, this function will
* return the actor's natural width, that is the preferred width of
* the actor.
*
* If you care whether you get the preferred width or the width that
* has been assigned to the actor, you should probably call a different
* function like clutter_actor_get_allocation_coords() to retrieve the
* allocated size or clutter_actor_get_preferred_width() to retrieve the
* preferred width.
*
* If an actor has a fixed width, for instance a width that has been
* assigned using clutter_actor_set_width(), the width returned will
* be the same value.
*
* Return value: the width of the actor, in pixels
*/
gfloat
clutter_actor_get_width (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
priv = self->priv;
if (priv->needs_allocation)
{
gfloat natural_width = 0;
if (self->priv->request_mode == CLUTTER_REQUEST_HEIGHT_FOR_WIDTH)
clutter_actor_get_preferred_width (self, -1, NULL, &natural_width);
else
{
gfloat natural_height = 0;
clutter_actor_get_preferred_height (self, -1, NULL, &natural_height);
clutter_actor_get_preferred_width (self, natural_height,
NULL,
&natural_width);
}
return natural_width;
}
else
return priv->allocation.x2 - priv->allocation.x1;
}
/**
* clutter_actor_get_height:
* @self: A #ClutterActor
*
* Retrieves the height of a #ClutterActor.
*
* If the actor has a valid allocation, this function will return the
* height of the allocated area given to the actor.
*
* If the actor does not have a valid allocation, this function will
* return the actor's natural height, that is the preferred height of
* the actor.
*
* If you care whether you get the preferred height or the height that
* has been assigned to the actor, you should probably call a different
* function like clutter_actor_get_allocation_coords() to retrieve the
* allocated size or clutter_actor_get_preferred_height() to retrieve the
* preferred height.
*
* If an actor has a fixed height, for instance a height that has been
* assigned using clutter_actor_set_height(), the height returned will
* be the same value.
*
* Return value: the height of the actor, in pixels
*/
gfloat
clutter_actor_get_height (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
priv = self->priv;
if (priv->needs_allocation)
{
gfloat natural_height = 0;
if (priv->request_mode == CLUTTER_REQUEST_HEIGHT_FOR_WIDTH)
{
gfloat natural_width = 0;
clutter_actor_get_preferred_width (self, -1, NULL, &natural_width);
clutter_actor_get_preferred_height (self, natural_width,
NULL, &natural_height);
}
else
clutter_actor_get_preferred_height (self, -1, NULL, &natural_height);
return natural_height;
}
else
return priv->allocation.y2 - priv->allocation.y1;
}
/**
* clutter_actor_set_width
* @self: A #ClutterActor
* @width: Requested new width for the actor, in pixels
*
* Forces a width on an actor, causing the actor's preferred width
* and height (if any) to be ignored.
*
* This function sets both the minimum and natural size of the actor.
*
* since: 0.2
**/
void
clutter_actor_set_width (ClutterActor *self,
gfloat width)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_min_width (self, width);
clutter_actor_set_natural_width (self, width);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_set_height
* @self: A #ClutterActor
* @height: Requested new height for the actor, in pixels
*
* Forces a height on an actor, causing the actor's preferred width
* and height (if any) to be ignored.
*
* This function sets both the minimum and natural size of the actor.
*
* since: 0.2
**/
void
clutter_actor_set_height (ClutterActor *self,
gfloat height)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_min_height (self, height);
clutter_actor_set_natural_height (self, height);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_set_x:
* @self: a #ClutterActor
* @x: the actor's position on the X axis
*
* Sets the actor's X coordinate, relative to its parent, in pixels.
*
* Overrides any layout manager and forces a fixed position for
* the actor.
*
* Since: 0.6
*/
void
clutter_actor_set_x (ClutterActor *self,
gfloat x)
{
ClutterActorBox old = { 0, };
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (priv->position_set && priv->fixed_x == x)
return;
clutter_actor_store_old_geometry (self, &old);
priv->fixed_x = x;
clutter_actor_set_fixed_position_set (self, TRUE);
clutter_actor_notify_if_geometry_changed (self, &old);
clutter_actor_queue_relayout (self);
}
/**
* clutter_actor_set_y:
* @self: a #ClutterActor
* @y: the actor's position on the Y axis
*
* Sets the actor's Y coordinate, relative to its parent, in pixels.#
*
* Overrides any layout manager and forces a fixed position for
* the actor.
*
* Since: 0.6
*/
void
clutter_actor_set_y (ClutterActor *self,
gfloat y)
{
ClutterActorBox old = { 0, };
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (priv->position_set && priv->fixed_y == y)
return;
clutter_actor_store_old_geometry (self, &old);
priv->fixed_y = y;
clutter_actor_set_fixed_position_set (self, TRUE);
clutter_actor_notify_if_geometry_changed (self, &old);
clutter_actor_queue_relayout (self);
}
/**
* clutter_actor_get_x
* @self: A #ClutterActor
*
* Retrieves the X coordinate of a #ClutterActor.
*
* This function tries to "do what you mean", by returning the
* correct value depending on the actor's state.
*
* If the actor has a valid allocation, this function will return
* the X coordinate of the origin of the allocation box.
*
* If the actor has any fixed coordinate set using clutter_actor_set_x(),
* clutter_actor_set_position() or clutter_actor_set_geometry(), this
* function will return that coordinate.
*
* If both the allocation and a fixed position are missing, this function
* will return 0.
*
* Return value: the X coordinate, in pixels, ignoring any
* transformation (i.e. scaling, rotation)
*/
gfloat
clutter_actor_get_x (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
priv = self->priv;
if (priv->needs_allocation)
{
if (priv->position_set)
return priv->fixed_x;
else
return 0;
}
else
return priv->allocation.x1;
}
/**
* clutter_actor_get_y
* @self: A #ClutterActor
*
* Retrieves the Y coordinate of a #ClutterActor.
*
* This function tries to "do what you mean", by returning the
* correct value depending on the actor's state.
*
* If the actor has a valid allocation, this function will return
* the Y coordinate of the origin of the allocation box.
*
* If the actor has any fixed coordinate set using clutter_actor_set_y(),
* clutter_actor_set_position() or clutter_actor_set_geometry(), this
* function will return that coordinate.
*
* If both the allocation and a fixed position are missing, this function
* will return 0.
*
* Return value: the Y coordinate, in pixels, ignoring any
* transformation (i.e. scaling, rotation)
*/
gfloat
clutter_actor_get_y (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
if (self->priv->needs_allocation)
{
if (self->priv->position_set)
return self->priv->fixed_y;
else
return 0;
}
else
return self->priv->allocation.y1;
}
/**
* clutter_actor_set_scale:
* @self: A #ClutterActor
* @scale_x: double factor to scale actor by horizontally.
* @scale_y: double factor to scale actor by vertically.
*
* Scales an actor with the given factors. The scaling is relative to
* the scale center and the anchor point. The scale center is
* unchanged by this function and defaults to 0,0.
*
* Since: 0.2
*/
void
clutter_actor_set_scale (ClutterActor *self,
gdouble scale_x,
gdouble scale_y)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
priv->scale_x = scale_x;
g_object_notify (G_OBJECT (self), "scale-x");
priv->scale_y = scale_y;
g_object_notify (G_OBJECT (self), "scale-y");
if (CLUTTER_ACTOR_IS_VISIBLE (self))
clutter_actor_queue_redraw (self);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_set_scale_full:
* @self: A #ClutterActor
* @scale_x: double factor to scale actor by horizontally.
* @scale_y: double factor to scale actor by vertically.
* @center_x: X coordinate of the center of the scale.
* @center_y: Y coordinate of the center of the scale
*
* Scales an actor with the given factors around the given center
* point. The center point is specified in pixels relative to the
* anchor point (usually the top left corner of the actor).
*
* Since: 1.0
*/
void
clutter_actor_set_scale_full (ClutterActor *self,
gdouble scale_x,
gdouble scale_y,
gfloat center_x,
gfloat center_y)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_scale (self, scale_x, scale_y);
if (priv->scale_center.is_fractional)
g_object_notify (G_OBJECT (self), "scale-gravity");
g_object_notify (G_OBJECT (self), "scale-center-x");
g_object_notify (G_OBJECT (self), "scale-center-y");
clutter_anchor_coord_set_units (&priv->scale_center, center_x, center_y, 0);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_set_scale_with_gravity:
* @self: A #ClutterActor
* @scale_x: double factor to scale actor by horizontally.
* @scale_y: double factor to scale actor by vertically.
* @gravity: the location of the scale center expressed as a compass
* direction.
*
* Scales an actor with the given factors around the given
* center point. The center point is specified as one of the compass
* directions in #ClutterGravity. For example, setting it to north
* will cause the top of the actor to remain unchanged and the rest of
* the actor to expand left, right and downwards.
*
* Since: 1.0
*/
void
clutter_actor_set_scale_with_gravity (ClutterActor *self,
gdouble scale_x,
gdouble scale_y,
ClutterGravity gravity)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (gravity == CLUTTER_GRAVITY_NONE)
clutter_actor_set_scale_full (self, scale_x, scale_y, 0, 0);
else
{
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_scale (self, scale_x, scale_y);
g_object_notify (G_OBJECT (self), "scale-gravity");
g_object_notify (G_OBJECT (self), "scale-center-x");
g_object_notify (G_OBJECT (self), "scale-center-y");
clutter_anchor_coord_set_gravity (&priv->scale_center, gravity);
g_object_thaw_notify (G_OBJECT (self));
}
}
/**
* clutter_actor_get_scale:
* @self: A #ClutterActor
* @scale_x: (out): Location to store horizonal float scale factor, or %NULL.
* @scale_y: (out): Location to store vertical float scale factor, or %NULL.
*
* Retrieves an actors scale in floating point.
*
* Since: 0.2
*/
void
clutter_actor_get_scale (ClutterActor *self,
gdouble *scale_x,
gdouble *scale_y)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (scale_x)
*scale_x = self->priv->scale_x;
if (scale_y)
*scale_y = self->priv->scale_y;
}
/**
* clutter_actor_get_scale_center:
* @self: A #ClutterActor
* @center_x: (out): Location to store the X position of the scale center, or %NULL.
* @center_y: (out): Location to store the Y position of the scale center, or %NULL.
*
* Retrieves the scale center coordinate in pixels relative to the top
* left corner of the actor. If the scale center was specified using a
* #ClutterGravity this will calculate the pixel offset using the
* current size of the actor.
*
* Since: 1.0
*/
void
clutter_actor_get_scale_center (ClutterActor *self,
gfloat *center_x,
gfloat *center_y)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
clutter_anchor_coord_get_units (self, &self->priv->scale_center,
center_x,
center_y,
NULL);
}
/**
* clutter_actor_get_scale_gravity:
* @self: A #ClutterActor
*
* Retrieves the scale center as a compass direction. If the scale
* center was specified in pixels or units this will return
* %CLUTTER_GRAVITY_NONE.
*
* Return value: the scale gravity
*
* Since: 1.0
*/
ClutterGravity
clutter_actor_get_scale_gravity (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), CLUTTER_GRAVITY_NONE);
return clutter_anchor_coord_get_gravity (&self->priv->scale_center);
}
/**
* clutter_actor_set_opacity:
* @self: A #ClutterActor
* @opacity: New opacity value for the actor.
*
* Sets the actor's opacity, with zero being completely transparent and
* 255 (0xff) being fully opaque.
*/
void
clutter_actor_set_opacity (ClutterActor *self,
guint8 opacity)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (priv->opacity != opacity)
{
priv->opacity = opacity;
clutter_actor_queue_redraw (self);
g_object_notify (G_OBJECT (self), "opacity");
}
}
/**
* clutter_actor_get_paint_opacity:
* @self: A #ClutterActor
*
* Retrieves the absolute opacity of the actor, as it appears on the stage.
*
* This function traverses the hierarchy chain and composites the opacity of
* the actor with that of its parents.
*
* This function is intended for subclasses to use in the paint virtual
* function, to paint themselves with the correct opacity.
*
* Return value: The actor opacity value.
*
* Since: 0.8
*/
guint8
clutter_actor_get_paint_opacity (ClutterActor *self)
{
ClutterActorPrivate *priv;
ClutterActor *parent;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
priv = self->priv;
if (priv->opacity_parent)
return clutter_actor_get_paint_opacity (priv->opacity_parent);
parent = priv->parent_actor;
/* Factor in the actual actors opacity with parents */
if (G_LIKELY (parent))
{
guint8 opacity = clutter_actor_get_paint_opacity (parent);
if (opacity != 0xff)
return (opacity * priv->opacity) / 0xff;
}
return clutter_actor_get_opacity (self);
}
/**
* clutter_actor_get_opacity:
* @self: a #ClutterActor
*
* Retrieves the opacity value of an actor, as set by
* clutter_actor_set_opacity().
*
* For retrieving the absolute opacity of the actor inside a paint
* virtual function, see clutter_actor_get_paint_opacity().
*
* Return value: the opacity of the actor
*/
guint8
clutter_actor_get_opacity (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
return self->priv->opacity;
}
/**
* clutter_actor_set_name:
* @self: A #ClutterActor
* @name: Textual tag to apply to actor
*
* Sets the given name to @self. The name can be used to identify
* a #ClutterActor.
*/
void
clutter_actor_set_name (ClutterActor *self,
const gchar *name)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_free (self->priv->name);
self->priv->name = g_strdup (name);
g_object_notify (G_OBJECT (self), "name");
}
/**
* clutter_actor_get_name:
* @self: A #ClutterActor
*
* Retrieves the name of @self.
*
* Return value: the name of the actor, or %NULL. The returned string is
* owned by the actor and should not be modified or freed.
*/
G_CONST_RETURN gchar *
clutter_actor_get_name (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), NULL);
return self->priv->name;
}
/**
* clutter_actor_get_gid:
* @self: A #ClutterActor
*
* Retrieves the unique id for @self.
*
* Return value: Globally unique value for this object instance.
*
* Since: 0.6
*/
guint32
clutter_actor_get_gid (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
return self->priv->id;
}
/**
* clutter_actor_set_depth:
* @self: a #ClutterActor
* @depth: Z co-ord
*
* Sets the Z coordinate of @self to @depth.
*
* The unit used by @depth is dependant on the perspective setup. See
* also clutter_stage_set_perspective().
*/
void
clutter_actor_set_depth (ClutterActor *self,
gfloat depth)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (priv->z != depth)
{
/* Sets Z value - XXX 2.0: should we invert? */
priv->z = depth;
if (priv->parent_actor && CLUTTER_IS_CONTAINER (priv->parent_actor))
{
ClutterContainer *parent;
/* We need to resort the container stacking order as to
* correctly render alpha values.
*
* FIXME: This is sub-optimal. maybe queue the the sort
* before stacking
*/
parent = CLUTTER_CONTAINER (priv->parent_actor);
clutter_container_sort_depth_order (parent);
}
clutter_actor_queue_redraw (self);
g_object_notify (G_OBJECT (self), "depth");
}
}
/**
* clutter_actor_get_depth:
* @self: a #ClutterActor
*
* Retrieves the depth of @self.
*
* Return value: the depth of the actor
*/
gfloat
clutter_actor_get_depth (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), -1);
return self->priv->z;
}
/**
* clutter_actor_set_rotation:
* @self: a #ClutterActor
* @axis: the axis of rotation
* @angle: the angle of rotation
* @x: X coordinate of the rotation center
* @y: Y coordinate of the rotation center
* @z: Z coordinate of the rotation center
*
* Sets the rotation angle of @self around the given axis.
*
* The rotation center coordinates used depend on the value of @axis:
* <itemizedlist>
* <listitem><para>%CLUTTER_X_AXIS requires @y and @z</para></listitem>
* <listitem><para>%CLUTTER_Y_AXIS requires @x and @z</para></listitem>
* <listitem><para>%CLUTTER_Z_AXIS requires @x and @y</para></listitem>
* </itemizedlist>
*
* The rotation coordinates are relative to the anchor point of the
* actor, set using clutter_actor_set_anchor_point(). If no anchor
* point is set, the upper left corner is assumed as the origin.
*
* Since: 0.8
*/
void
clutter_actor_set_rotation (ClutterActor *self,
ClutterRotateAxis axis,
gdouble angle,
gfloat x,
gfloat y,
gfloat z)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_rotation_internal (self, axis, angle);
switch (axis)
{
case CLUTTER_X_AXIS:
clutter_anchor_coord_set_units (&priv->rx_center, x, y, z);
g_object_notify (G_OBJECT (self), "rotation-center-x");
break;
case CLUTTER_Y_AXIS:
clutter_anchor_coord_set_units (&priv->ry_center, x, y, z);
g_object_notify (G_OBJECT (self), "rotation-center-y");
break;
case CLUTTER_Z_AXIS:
if (priv->rz_center.is_fractional)
g_object_notify (G_OBJECT (self), "rotation-center-z-gravity");
clutter_anchor_coord_set_units (&priv->rz_center, x, y, z);
g_object_notify (G_OBJECT (self), "rotation-center-z");
break;
}
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_set_z_rotation_from_gravity:
* @self: a #ClutterActor
* @angle: the angle of rotation
* @gravity: the center point of the rotation
*
* Sets the rotation angle of @self around the Z axis using the center
* point specified as a compass point. For example to rotate such that
* the center of the actor remains static you can use
* %CLUTTER_GRAVITY_CENTER. If the actor changes size the center point
* will move accordingly.
*
* Since: 1.0
*/
void
clutter_actor_set_z_rotation_from_gravity (ClutterActor *self,
gdouble angle,
ClutterGravity gravity)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (gravity == CLUTTER_GRAVITY_NONE)
clutter_actor_set_rotation (self, CLUTTER_Z_AXIS, angle, 0, 0, 0);
else
{
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_rotation_internal (self, CLUTTER_Z_AXIS, angle);
clutter_anchor_coord_set_gravity (&priv->rz_center, gravity);
g_object_notify (G_OBJECT (self), "rotation-center-z-gravity");
g_object_notify (G_OBJECT (self), "rotation-center-z");
g_object_thaw_notify (G_OBJECT (self));
}
}
/**
* clutter_actor_get_rotation:
* @self: a #ClutterActor
* @axis: the axis of rotation
* @x: (out): return value for the X coordinate of the center of rotation
* @y: (out): return value for the Y coordinate of the center of rotation
* @z: (out): return value for the Z coordinate of the center of rotation
*
* Retrieves the angle and center of rotation on the given axis,
* set using clutter_actor_set_rotation().
*
* Return value: the angle of rotation
*
* Since: 0.8
*/
gdouble
clutter_actor_get_rotation (ClutterActor *self,
ClutterRotateAxis axis,
gfloat *x,
gfloat *y,
gfloat *z)
{
ClutterActorPrivate *priv;
gdouble retval = 0;
AnchorCoord *anchor_coord = NULL;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
priv = self->priv;
switch (axis)
{
case CLUTTER_X_AXIS:
anchor_coord = &priv->rx_center;
retval = priv->rxang;
break;
case CLUTTER_Y_AXIS:
anchor_coord = &priv->ry_center;
retval = priv->ryang;
break;
case CLUTTER_Z_AXIS:
anchor_coord = &priv->rz_center;
retval = priv->rzang;
break;
}
clutter_anchor_coord_get_units (self, anchor_coord, x, y, z);
return retval;
}
/**
* clutter_actor_get_z_rotation_gravity:
* @self: A #ClutterActor
*
* Retrieves the center for the rotation around the Z axis as a
* compass direction. If the center was specified in pixels or units
* this will return %CLUTTER_GRAVITY_NONE.
*
* Return value: the Z rotation center
*
* Since: 1.0
*/
ClutterGravity
clutter_actor_get_z_rotation_gravity (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0.0);
return clutter_anchor_coord_get_gravity (&self->priv->rz_center);
}
/**
* clutter_actor_set_clip:
* @self: A #ClutterActor
* @xoff: X offset of the clip rectangle
* @yoff: Y offset of the clip rectangle
* @width: Width of the clip rectangle
* @height: Height of the clip rectangle
*
* Sets clip area for @self. The clip area is always computed from the
* upper left corner of the actor, even if the anchor point is set
* otherwise.
*
* Since: 0.6
*/
void
clutter_actor_set_clip (ClutterActor *self,
gfloat xoff,
gfloat yoff,
gfloat width,
gfloat height)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (priv->has_clip &&
priv->clip[0] == xoff &&
priv->clip[1] == yoff &&
priv->clip[2] == width &&
priv->clip[3] == height)
return;
priv->clip[0] = xoff;
priv->clip[1] = yoff;
priv->clip[2] = width;
priv->clip[3] = height;
priv->has_clip = TRUE;
clutter_actor_queue_redraw (self);
g_object_notify (G_OBJECT (self), "has-clip");
g_object_notify (G_OBJECT (self), "clip");
}
/**
* clutter_actor_remove_clip
* @self: A #ClutterActor
*
* Removes clip area from @self.
*/
void
clutter_actor_remove_clip (ClutterActor *self)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (!self->priv->has_clip)
return;
self->priv->has_clip = FALSE;
clutter_actor_queue_redraw (self);
g_object_notify (G_OBJECT (self), "has-clip");
}
/**
* clutter_actor_has_clip:
* @self: a #ClutterActor
*
* Determines whether the actor has a clip area set or not.
*
* Return value: %TRUE if the actor has a clip area set.
*
* Since: 0.1.1
*/
gboolean
clutter_actor_has_clip (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
return self->priv->has_clip;
}
/**
* clutter_actor_get_clip:
* @self: a #ClutterActor
* @xoff: (out): return location for the X offset of the clip rectangle, or %NULL
* @yoff: (out): return location for the Y offset of the clip rectangle, or %NULL
* @width: (out): return location for the width of the clip rectangle, or %NULL
* @height: (out): return location for the height of the clip rectangle, or %NULL
*
* Gets the clip area for @self, if any is set
*
* Since: 0.6
*/
void
clutter_actor_get_clip (ClutterActor *self,
gfloat *xoff,
gfloat *yoff,
gfloat *width,
gfloat *height)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (!priv->has_clip)
return;
if (xoff)
*xoff = priv->clip[0];
if (yoff)
*yoff = priv->clip[1];
if (width)
*width = priv->clip[2];
if (height)
*height = priv->clip[3];
}
/**
* clutter_actor_set_parent:
* @self: A #ClutterActor
* @parent: A new #ClutterActor parent
*
* Sets the parent of @self to @parent. The opposite function is
* clutter_actor_unparent().
*
* This function should not be used by applications, but by custom
* container actor subclasses.
*/
void
clutter_actor_set_parent (ClutterActor *self,
ClutterActor *parent)
{
ClutterMainContext *clutter_context;
ClutterActorPrivate *priv;
clutter_context = clutter_context_get_default ();
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (CLUTTER_IS_ACTOR (parent));
g_return_if_fail (self != parent);
g_return_if_fail (clutter_context != NULL);
priv = self->priv;
if (priv->parent_actor != NULL)
{
g_warning ("Cannot set a parent on an actor which has a parent.\n"
"You must use clutter_actor_unparent() first.\n");
return;
}
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
g_warning ("Cannot set a parent on a toplevel actor\n");
return;
}
g_object_ref_sink (self);
priv->parent_actor = parent;
/* clutter_actor_reparent() will emit ::parent-set for us */
if (!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_REPARENT))
g_signal_emit (self, actor_signals[PARENT_SET], 0, NULL);
/* If parent is mapped or realized, we need to also be mapped or
* realized once we're inside the parent.
*/
clutter_actor_update_map_state (self, MAP_STATE_CHECK);
if (priv->show_on_set_parent)
clutter_actor_show (self);
if (CLUTTER_ACTOR_IS_MAPPED (self))
{
clutter_actor_queue_redraw (self);
}
/* maintain the invariant that if an actor needs layout,
* its parents do as well
*/
if (priv->needs_width_request ||
priv->needs_height_request ||
priv->needs_allocation)
{
/* we work around the short-circuiting we do
* in clutter_actor_queue_relayout() since we
* want to force a relayout
*/
priv->needs_width_request = TRUE;
priv->needs_height_request = TRUE;
priv->needs_allocation = TRUE;
clutter_actor_queue_relayout (priv->parent_actor);
}
}
/**
* clutter_actor_get_parent:
* @self: A #ClutterActor
*
* Retrieves the parent of @self.
*
* Return Value: (transfer none): The #ClutterActor parent, or %NULL if no parent is set
*/
ClutterActor *
clutter_actor_get_parent (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), NULL);
return self->priv->parent_actor;
}
/**
* clutter_actor_get_paint_visibility:
* @self: A #ClutterActor
*
* Retrieves the 'paint' visibility of an actor recursively checking for non
* visible parents.
*
* This is by definition the same as CLUTTER_ACTOR_IS_MAPPED().
*
* Return Value: TRUE if the actor is visibile and will be painted.
*
* Since: 0.8.4
*/
gboolean
clutter_actor_get_paint_visibility (ClutterActor *actor)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (actor), FALSE);
return CLUTTER_ACTOR_IS_MAPPED (actor);
}
/**
* clutter_actor_unparent:
* @self: a #ClutterActor
*
* Removes the parent of @self.
*
* This function should not be used in applications. It should be called by
* implementations of container actors, to dissociate a child from the
* container.
*
* Since: 0.1.1
*/
void
clutter_actor_unparent (ClutterActor *self)
{
ClutterActorPrivate *priv;
ClutterActor *old_parent;
gboolean was_mapped;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
if (priv->parent_actor == NULL)
return;
was_mapped = CLUTTER_ACTOR_IS_MAPPED (self);
/* we need to unrealize *before* we set parent_actor to NULL,
* because in an unrealize method actors are dissociating from the
* stage, which means they need to be able to
* clutter_actor_get_stage(). This should unmap and unrealize,
* unless we're reparenting.
*/
clutter_actor_update_map_state (self, MAP_STATE_MAKE_UNREALIZED);
old_parent = priv->parent_actor;
priv->parent_actor = NULL;
/* clutter_actor_reparent() will emit ::parent-set for us */
if (!(CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IN_REPARENT))
g_signal_emit (self, actor_signals[PARENT_SET], 0, old_parent);
/* Queue a redraw on old_parent only if we were painted in the first
* place. Will be no-op if old parent is not shown.
*/
if (was_mapped && !CLUTTER_ACTOR_IS_MAPPED (self))
clutter_actor_queue_redraw (old_parent);
/* remove the reference we acquired in clutter_actor_set_parent() */
g_object_unref (self);
}
/**
* clutter_actor_reparent:
* @self: a #ClutterActor
* @new_parent: the new #ClutterActor parent
*
* This function resets the parent actor of @self. It is
* logically equivalent to calling clutter_actor_unparent()
* and clutter_actor_set_parent(), but more efficiently
* implemented, ensures the child is not finalized
* when unparented, and emits the parent-set signal only
* one time.
*
* Since: 0.2
*/
void
clutter_actor_reparent (ClutterActor *self,
ClutterActor *new_parent)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (CLUTTER_IS_ACTOR (new_parent));
g_return_if_fail (self != new_parent);
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
g_warning ("Cannot set a parent on a toplevel actor\n");
return;
}
priv = self->priv;
if (priv->parent_actor != new_parent)
{
ClutterActor *old_parent;
CLUTTER_SET_PRIVATE_FLAGS (self, CLUTTER_ACTOR_IN_REPARENT);
old_parent = priv->parent_actor;
g_object_ref (self);
if (CLUTTER_IS_CONTAINER (priv->parent_actor))
{
ClutterContainer *parent = CLUTTER_CONTAINER (priv->parent_actor);
/* Note, will call unparent() */
clutter_container_remove_actor (parent, self);
}
else
clutter_actor_unparent (self);
if (CLUTTER_IS_CONTAINER (new_parent))
/* Note, will call parent() */
clutter_container_add_actor (CLUTTER_CONTAINER (new_parent), self);
else
clutter_actor_set_parent (self, new_parent);
/* we emit the ::parent-set signal once */
g_signal_emit (self, actor_signals[PARENT_SET], 0, old_parent);
g_object_unref (self);
CLUTTER_UNSET_PRIVATE_FLAGS (self, CLUTTER_ACTOR_IN_REPARENT);
/* the IN_REPARENT flag suspends state updates */
clutter_actor_update_map_state (self, MAP_STATE_CHECK);
}
}
/**
* clutter_actor_raise:
* @self: A #ClutterActor
* @below: (allow-none): A #ClutterActor to raise above.
*
* Puts @self above @below.
*
* Both actors must have the same parent.
*
* This function is the equivalent of clutter_container_raise_child().
*/
void
clutter_actor_raise (ClutterActor *self,
ClutterActor *below)
{
ClutterActor *parent;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
parent = clutter_actor_get_parent (self);
if (!parent)
{
g_warning ("Actor of type %s is not inside a container",
g_type_name (G_OBJECT_TYPE (self)));
return;
}
if (below)
{
if (parent != clutter_actor_get_parent (below))
{
g_warning ("Actor of type %s is not in the same "
"container of actor of type %s",
g_type_name (G_OBJECT_TYPE (self)),
g_type_name (G_OBJECT_TYPE (below)));
return;
}
}
clutter_container_raise_child (CLUTTER_CONTAINER (parent), self, below);
}
/**
* clutter_actor_lower:
* @self: A #ClutterActor
* @above: (allow-none): A #ClutterActor to lower below
*
* Puts @self below @above.
*
* Both actors must have the same parent.
*
* This function is the equivalent of clutter_container_lower_child().
*/
void
clutter_actor_lower (ClutterActor *self,
ClutterActor *above)
{
ClutterActor *parent;
g_return_if_fail (CLUTTER_IS_ACTOR(self));
parent = clutter_actor_get_parent (self);
if (!parent)
{
g_warning ("Actor of type %s is not inside a container",
g_type_name (G_OBJECT_TYPE (self)));
return;
}
if (above)
{
if (parent != clutter_actor_get_parent (above))
{
g_warning ("Actor of type %s is not in the same "
"container of actor of type %s",
g_type_name (G_OBJECT_TYPE (self)),
g_type_name (G_OBJECT_TYPE (above)));
return;
}
}
clutter_container_lower_child (CLUTTER_CONTAINER (parent), self, above);
}
/**
* clutter_actor_raise_top:
* @self: A #ClutterActor
*
* Raises @self to the top.
*
* This function calls clutter_actor_raise() internally.
*/
void
clutter_actor_raise_top (ClutterActor *self)
{
clutter_actor_raise (self, NULL);
}
/**
* clutter_actor_lower_bottom:
* @self: A #ClutterActor
*
* Lowers @self to the bottom.
*
* This function calls clutter_actor_lower() internally.
*/
void
clutter_actor_lower_bottom (ClutterActor *self)
{
clutter_actor_lower (self, NULL);
}
/*
* Event handling
*/
/**
* clutter_actor_event:
* @actor: a #ClutterActor
* @event: a #ClutterEvent
* @capture: TRUE if event in in capture phase, FALSE otherwise.
*
* This function is used to emit an event on the main stage.
* You should rarely need to use this function, except for
* synthetising events.
*
* Return value: the return value from the signal emission: %TRUE
* if the actor handled the event, or %FALSE if the event was
* not handled
*
* Since: 0.6
*/
gboolean
clutter_actor_event (ClutterActor *actor,
ClutterEvent *event,
gboolean capture)
{
gboolean retval = FALSE;
gint signal_num = -1;
g_return_val_if_fail (CLUTTER_IS_ACTOR (actor), FALSE);
g_return_val_if_fail (event != NULL, FALSE);
g_object_ref (actor);
if (capture)
{
g_signal_emit (actor, actor_signals[CAPTURED_EVENT], 0,
event,
&retval);
goto out;
}
g_signal_emit (actor, actor_signals[EVENT], 0, event, &retval);
if (!retval)
{
switch (event->type)
{
case CLUTTER_NOTHING:
break;
case CLUTTER_BUTTON_PRESS:
signal_num = BUTTON_PRESS_EVENT;
break;
case CLUTTER_BUTTON_RELEASE:
signal_num = BUTTON_RELEASE_EVENT;
break;
case CLUTTER_SCROLL:
signal_num = SCROLL_EVENT;
break;
case CLUTTER_KEY_PRESS:
signal_num = KEY_PRESS_EVENT;
break;
case CLUTTER_KEY_RELEASE:
signal_num = KEY_RELEASE_EVENT;
break;
case CLUTTER_MOTION:
signal_num = MOTION_EVENT;
break;
case CLUTTER_ENTER:
signal_num = ENTER_EVENT;
break;
case CLUTTER_LEAVE:
signal_num = LEAVE_EVENT;
break;
case CLUTTER_DELETE:
case CLUTTER_DESTROY_NOTIFY:
case CLUTTER_CLIENT_MESSAGE:
default:
signal_num = -1;
break;
}
if (signal_num != -1)
g_signal_emit (actor, actor_signals[signal_num], 0,
event, &retval);
}
out:
g_object_unref (actor);
return retval;
}
/**
* clutter_actor_set_reactive:
* @actor: a #ClutterActor
* @reactive: whether the actor should be reactive to events
*
* Sets @actor as reactive. Reactive actors will receive events.
*
* Since: 0.6
*/
void
clutter_actor_set_reactive (ClutterActor *actor,
gboolean reactive)
{
g_return_if_fail (CLUTTER_IS_ACTOR (actor));
if (reactive == CLUTTER_ACTOR_IS_REACTIVE (actor))
return;
if (reactive)
CLUTTER_ACTOR_SET_FLAGS (actor, CLUTTER_ACTOR_REACTIVE);
else
CLUTTER_ACTOR_UNSET_FLAGS (actor, CLUTTER_ACTOR_REACTIVE);
g_object_notify (G_OBJECT (actor), "reactive");
}
/**
* clutter_actor_get_reactive:
* @actor: a #ClutterActor
*
* Checks whether @actor is marked as reactive.
*
* Return value: %TRUE if the actor is reactive
*
* Since: 0.6
*/
gboolean
clutter_actor_get_reactive (ClutterActor *actor)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (actor), FALSE);
return CLUTTER_ACTOR_IS_REACTIVE (actor) ? TRUE : FALSE;
}
/**
* clutter_actor_get_anchor_point:
* @self: a #ClutterActor
* @anchor_x: (out): return location for the X coordinate of the anchor point
* @anchor_y: (out): return location for the Y coordinate of the anchor point
*
* Gets the current anchor point of the @actor in pixels.
*
* Since: 0.6
*/
void
clutter_actor_get_anchor_point (ClutterActor *self,
gfloat *anchor_x,
gfloat *anchor_y)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
clutter_anchor_coord_get_units (self, &priv->anchor,
anchor_x,
anchor_y,
NULL);
}
/**
* clutter_actor_set_anchor_point:
* @self: a #ClutterActor
* @anchor_x: X coordinate of the anchor point
* @anchor_y: Y coordinate of the anchor point
*
* Sets an anchor point for @self. The anchor point is a point in the
* coordinate space of an actor to which the actor position within its
* parent is relative; the default is (0, 0), i.e. the top-left corner
* of the actor.
*
* Since: 0.6
*/
void
clutter_actor_set_anchor_point (ClutterActor *self,
gfloat anchor_x,
gfloat anchor_y)
{
ClutterActorPrivate *priv;
gboolean changed = FALSE;
gfloat old_anchor_x, old_anchor_y;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
clutter_anchor_coord_get_units (self, &priv->anchor,
&old_anchor_x,
&old_anchor_y,
NULL);
if (priv->anchor.is_fractional)
g_object_notify (G_OBJECT (self), "anchor-gravity");
if (old_anchor_x != anchor_x)
{
g_object_notify (G_OBJECT (self), "anchor-x");
changed = TRUE;
}
if (old_anchor_y != anchor_y)
{
g_object_notify (G_OBJECT (self), "anchor-y");
changed = TRUE;
}
clutter_anchor_coord_set_units (&priv->anchor, anchor_x, anchor_y, 0);
if (changed && CLUTTER_ACTOR_IS_VISIBLE (self))
clutter_actor_queue_redraw (self);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_get_anchor_point_gravity:
* @self: a #ClutterActor
*
* Retrieves the anchor position expressed as a #ClutterGravity. If
* the anchor point was specified using pixels or units this will
* return %CLUTTER_GRAVITY_NONE.
*
* Return value: the #ClutterGravity used by the anchor point
*
* Since: 1.0
*/
ClutterGravity
clutter_actor_get_anchor_point_gravity (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), CLUTTER_GRAVITY_NONE);
priv = self->priv;
return clutter_anchor_coord_get_gravity (&priv->anchor);
}
/**
* clutter_actor_move_anchor_point:
* @self: a #ClutterActor
* @anchor_x: X coordinate of the anchor point
* @anchor_y: Y coordinate of the anchor point
*
* Sets an anchor point for the actor, and adjusts the actor postion so that
* the relative position of the actor toward its parent remains the same.
*
* Since: 0.6
*/
void
clutter_actor_move_anchor_point (ClutterActor *self,
gfloat anchor_x,
gfloat anchor_y)
{
ClutterActorPrivate *priv;
gfloat old_anchor_x, old_anchor_y;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
clutter_anchor_coord_get_units (self, &priv->anchor,
&old_anchor_x,
&old_anchor_y,
NULL);
g_object_freeze_notify (G_OBJECT (self));
clutter_actor_set_anchor_point (self, anchor_x, anchor_y);
if (priv->position_set)
clutter_actor_move_by (self,
anchor_x - old_anchor_x,
anchor_y - old_anchor_y);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_move_anchor_point_from_gravity:
* @self: a #ClutterActor
* @gravity: #ClutterGravity.
*
* Sets an anchor point on the actor based on the given gravity, adjusting the
* actor postion so that its relative position within its parent remains
* unchanged.
*
* Since version 1.0 the anchor point will be stored as a gravity so
* that if the actor changes size then the anchor point will move. For
* example, if you set the anchor point to %CLUTTER_GRAVITY_SOUTH_EAST
* and later double the size of the actor, the anchor point will move
* to the bottom right.
*
* Since: 0.6
*/
void
clutter_actor_move_anchor_point_from_gravity (ClutterActor *self,
ClutterGravity gravity)
{
gfloat old_anchor_x, old_anchor_y, new_anchor_x, new_anchor_y;
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
g_object_freeze_notify (G_OBJECT (self));
clutter_anchor_coord_get_units (self, &priv->anchor,
&old_anchor_x,
&old_anchor_y,
NULL);
clutter_actor_set_anchor_point_from_gravity (self, gravity);
clutter_anchor_coord_get_units (self, &priv->anchor,
&new_anchor_x,
&new_anchor_y,
NULL);
if (priv->position_set)
clutter_actor_move_by (self,
new_anchor_x - old_anchor_x,
new_anchor_y - old_anchor_y);
g_object_thaw_notify (G_OBJECT (self));
}
/**
* clutter_actor_set_anchor_point_from_gravity:
* @self: a #ClutterActor
* @gravity: #ClutterGravity.
*
* Sets an anchor point on the actor, based on the given gravity (this is a
* convenience function wrapping clutter_actor_set_anchor_point()).
*
* Since version 1.0 the anchor point will be stored as a gravity so
* that if the actor changes size then the anchor point will move. For
* example, if you set the anchor point to %CLUTTER_GRAVITY_SOUTH_EAST
* and later double the size of the actor, the anchor point will move
* to the bottom right.
*
* Since: 0.6
*/
void
clutter_actor_set_anchor_point_from_gravity (ClutterActor *self,
ClutterGravity gravity)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (gravity == CLUTTER_GRAVITY_NONE)
clutter_actor_set_anchor_point (self, 0, 0);
else
{
clutter_anchor_coord_set_gravity (&self->priv->anchor, gravity);
g_object_notify (G_OBJECT (self), "anchor-gravity");
g_object_notify (G_OBJECT (self), "anchor-x");
g_object_notify (G_OBJECT (self), "anchor-y");
}
}
typedef enum
{
PARSE_X,
PARSE_Y,
PARSE_WIDTH,
PARSE_HEIGHT,
PARSE_ANCHOR_X,
PARSE_ANCHOR_Y
} ParseDimension;
static gfloat
parse_units (ClutterActor *self,
ParseDimension dimension,
JsonNode *node)
{
GValue value = { 0, };
gfloat retval = 0;
if (JSON_NODE_TYPE (node) != JSON_NODE_VALUE)
return 0;
json_node_get_value (node, &value);
if (G_VALUE_HOLDS (&value, G_TYPE_INT))
{
retval = g_value_get_int (&value);
}
else if (G_VALUE_HOLDS (&value, G_TYPE_STRING))
{
gint64 val;
gchar *end;
val = g_ascii_strtoll (g_value_get_string (&value), &end, 10);
/* skip whitespace */
while (g_ascii_isspace (*end))
end++;
/* assume pixels */
if (*end == '\0')
{
retval = val;
goto out;
}
if (strcmp (end, "px") == 0)
{
retval = val;
goto out;
}
if (strcmp (end, "em") == 0)
{
retval = CLUTTER_UNITS_FROM_EM (val);
goto out;
}
if (strcmp (end, "mm") == 0)
{
retval = CLUTTER_UNITS_FROM_MM (val);
goto out;
}
if (strcmp (end, "pt") == 0)
{
retval = CLUTTER_UNITS_FROM_POINTS (val);
goto out;
}
if (end[0] == '%' && end[1] == '\0')
{
ClutterActor *stage;
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
g_warning ("Unable to set percentage of %s on a top-level "
"actor of type '%s'",
(dimension == PARSE_X ||
dimension == PARSE_WIDTH ||
dimension == PARSE_ANCHOR_X) ? "width" : "height",
g_type_name (G_OBJECT_TYPE (self)));
retval = 0;
goto out;
}
stage = clutter_actor_get_stage (self);
if (stage == NULL)
stage = clutter_stage_get_default ();
if (dimension == PARSE_X ||
dimension == PARSE_WIDTH ||
dimension == PARSE_ANCHOR_X)
{
retval = clutter_actor_get_width (stage) * val;
}
else
{
retval = clutter_actor_get_height (stage) * val;
}
goto out;
}
g_warning ("Invalid value '%s': integers, strings or floating point "
"values can be used for the x, y, width and height "
"properties. Valid modifiers for strings are 'px', 'mm' "
"and '%%'.",
g_value_get_string (&value));
retval = 0;
}
else if (G_VALUE_HOLDS (&value, G_TYPE_DOUBLE))
{
ClutterActor *stage;
gdouble val;
stage = clutter_actor_get_stage (self);
if (stage == NULL)
stage = clutter_stage_get_default ();
if (CLUTTER_PRIVATE_FLAGS (self) & CLUTTER_ACTOR_IS_TOPLEVEL)
{
g_warning ("Unable to set percentage of %s on a top-level "
"actor of type '%s'",
(dimension == PARSE_X || dimension == PARSE_WIDTH) ? "width"
: "height",
g_type_name (G_OBJECT_TYPE (self)));
retval = 0;
goto out;
}
val = g_value_get_double (&value);
if (dimension == PARSE_X ||
dimension == PARSE_WIDTH ||
dimension == PARSE_ANCHOR_X)
{
retval = clutter_actor_get_width (stage) * val;
}
else
{
retval = clutter_actor_get_height (stage) * val;
}
}
else
{
g_warning ("Invalid value of type '%s': integers, strings of floating "
"point values can be used for the x, y, width, height "
"anchor-x and anchor-y properties.",
g_type_name (G_VALUE_TYPE (&value)));
}
out:
g_value_unset (&value);
return retval;
}
typedef struct {
ClutterRotateAxis axis;
gdouble angle;
gfloat center_x;
gfloat center_y;
gfloat center_z;
} RotationInfo;
static inline gboolean
parse_rotation_array (ClutterActor *actor,
JsonArray *array,
RotationInfo *info)
{
JsonNode *element;
if (json_array_get_length (array) != 2)
return FALSE;
/* angle */
element = json_array_get_element (array, 0);
if (JSON_NODE_TYPE (element) == JSON_NODE_VALUE)
info->angle = json_node_get_double (element);
else
return FALSE;
/* center */
element = json_array_get_element (array, 1);
if (JSON_NODE_TYPE (element) == JSON_NODE_ARRAY)
{
JsonArray *center = json_node_get_array (element);
if (json_array_get_length (center) != 2)
return FALSE;
switch (info->axis)
{
case CLUTTER_X_AXIS:
info->center_y = parse_units (actor, PARSE_Y,
json_array_get_element (center, 0));
info->center_z = parse_units (actor, PARSE_Y,
json_array_get_element (center, 1));
return TRUE;
case CLUTTER_Y_AXIS:
info->center_x = parse_units (actor, PARSE_X,
json_array_get_element (center, 0));
info->center_z = parse_units (actor, PARSE_X,
json_array_get_element (center, 1));
return TRUE;
case CLUTTER_Z_AXIS:
info->center_x = parse_units (actor, PARSE_X,
json_array_get_element (center, 0));
info->center_y = parse_units (actor, PARSE_Y,
json_array_get_element (center, 1));
return TRUE;
}
}
return FALSE;
}
static gboolean
parse_rotation (ClutterActor *actor,
JsonNode *node,
RotationInfo *info)
{
JsonArray *array;
guint len, i;
gboolean retval = FALSE;
if (JSON_NODE_TYPE (node) != JSON_NODE_ARRAY)
{
g_warning ("Invalid node of type '%s' found, expecting an array",
json_node_type_name (node));
return FALSE;
}
array = json_node_get_array (node);
len = json_array_get_length (array);
for (i = 0; i < len; i++)
{
JsonNode *element = json_array_get_element (array, i);
JsonObject *object;
JsonNode *member;
if (JSON_NODE_TYPE (element) != JSON_NODE_OBJECT)
{
g_warning ("Invalid node of type '%s' found, expecting an object",
json_node_type_name (element));
return FALSE;
}
object = json_node_get_object (element);
if (json_object_has_member (object, "x-axis"))
{
member = json_object_get_member (object, "x-axis");
info->axis = CLUTTER_X_AXIS;
if (JSON_NODE_TYPE (member) == JSON_NODE_VALUE)
{
info->angle = json_node_get_double (member);
retval = TRUE;
}
else if (JSON_NODE_TYPE (member) == JSON_NODE_ARRAY)
retval = parse_rotation_array (actor,
json_node_get_array (member),
info);
else
retval = FALSE;
}
else if (json_object_has_member (object, "y-axis"))
{
member = json_object_get_member (object, "y-axis");
info->axis = CLUTTER_Y_AXIS;
if (JSON_NODE_TYPE (member) == JSON_NODE_VALUE)
{
info->angle = json_node_get_double (member);
retval = TRUE;
}
else if (JSON_NODE_TYPE (member) == JSON_NODE_ARRAY)
retval = parse_rotation_array (actor,
json_node_get_array (member),
info);
else
retval = FALSE;
}
else if (json_object_has_member (object, "z-axis"))
{
member = json_object_get_member (object, "z-axis");
info->axis = CLUTTER_Z_AXIS;
if (JSON_NODE_TYPE (member) == JSON_NODE_VALUE)
{
info->angle = json_node_get_double (member);
retval = TRUE;
}
else if (JSON_NODE_TYPE (member) == JSON_NODE_ARRAY)
retval = parse_rotation_array (actor,
json_node_get_array (member),
info);
else
retval = FALSE;
}
}
return retval;
}
static gboolean
clutter_actor_parse_custom_node (ClutterScriptable *scriptable,
ClutterScript *script,
GValue *value,
const gchar *name,
JsonNode *node)
{
ClutterActor *actor = CLUTTER_ACTOR (scriptable);
gboolean retval = FALSE;
if ((name[0] == 'x' && name[1] == '\0') ||
(name[0] == 'y' && name[1] == '\0') ||
(strcmp (name, "width") == 0) ||
(strcmp (name, "height") == 0) ||
(strcmp (name, "anchor_x") == 0) ||
(strcmp (name, "anchor_y") == 0))
{
ParseDimension dimension;
gfloat units;
if (name[0] == 'x')
dimension = PARSE_X;
else if (name[0] == 'y')
dimension = PARSE_Y;
else if (name[0] == 'w')
dimension = PARSE_WIDTH;
else if (name[0] == 'h')
dimension = PARSE_HEIGHT;
else if (name[0] == 'a' && name[7] == 'x')
dimension = PARSE_ANCHOR_X;
else if (name[0] == 'a' && name[7] == 'y')
dimension = PARSE_ANCHOR_Y;
else
return FALSE;
units = parse_units (actor, dimension, node);
/* convert back to pixels: all properties are pixel-based */
g_value_init (value, G_TYPE_INT);
g_value_set_int (value, units);
retval = TRUE;
}
else if (strcmp (name, "rotation") == 0)
{
RotationInfo *info;
info = g_slice_new0 (RotationInfo);
retval = parse_rotation (actor, node, info);
if (retval)
{
g_value_init (value, G_TYPE_POINTER);
g_value_set_pointer (value, info);
}
else
g_slice_free (RotationInfo, info);
}
return retval;
}
static void
clutter_actor_set_custom_property (ClutterScriptable *scriptable,
ClutterScript *script,
const gchar *name,
const GValue *value)
{
CLUTTER_NOTE (SCRIPT, "in ClutterActor::set_custom_property('%s')", name);
if (strcmp (name, "rotation") == 0)
{
RotationInfo *info;
if (!G_VALUE_HOLDS (value, G_TYPE_POINTER))
return;
info = g_value_get_pointer (value);
clutter_actor_set_rotation (CLUTTER_ACTOR (scriptable),
info->axis, info->angle,
info->center_x,
info->center_y,
info->center_z);
g_slice_free (RotationInfo, info);
}
else
g_object_set_property (G_OBJECT (scriptable), name, value);
}
static void
clutter_scriptable_iface_init (ClutterScriptableIface *iface)
{
iface->parse_custom_node = clutter_actor_parse_custom_node;
iface->set_custom_property = clutter_actor_set_custom_property;
}
/**
* clutter_actor_transform_stage_point
* @self: A #ClutterActor
* @x: (in): x screen coordinate of the point to unproject
* @y: (in): y screen coordinate of the point to unproject
* @x_out: (out): return location for the unprojected x coordinance
* @y_out: (out): return location for the unprojected y coordinance
*
* This function translates screen coordinates (@x, @y) to
* coordinates relative to the actor. For example, it can be used to translate
* screen events from global screen coordinates into actor-local coordinates.
*
* The conversion can fail, notably if the transform stack results in the
* actor being projected on the screen as a mere line.
*
* The conversion should not be expected to be pixel-perfect due to the
* nature of the operation. In general the error grows when the skewing
* of the actor rectangle on screen increases.
*
* Note: This function is fairly computationally intensive.
*
* Note: This function only works when the allocation is up-to-date,
* i.e. inside of paint()
*
* Return value: %TRUE if conversion was successful.
*
* Since: 0.6
*/
gboolean
clutter_actor_transform_stage_point (ClutterActor *self,
gfloat x,
gfloat y,
gfloat *x_out,
gfloat *y_out)
{
ClutterVertex v[4];
float ST[3][3];
float RQ[3][3];
int du, dv, xi, yi;
float px, py;
float xf, yf, wf, det;
ClutterActorPrivate *priv;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
priv = self->priv;
/* This implementation is based on the quad -> quad projection algorithm
* described by Paul Heckbert in:
*
* http://www.cs.cmu.edu/~ph/texfund/texfund.pdf
*
* and the sample implementation at:
*
* http://www.cs.cmu.edu/~ph/src/texfund/
*
* Our texture is a rectangle with origin [0, 0], so we are mapping from
* quad to rectangle only, which significantly simplifies things; the
* function calls have been unrolled, and most of the math is done in fixed
* point.
*/
clutter_actor_get_abs_allocation_vertices (self, v);
/* Keeping these as ints simplifies the multiplication (no significant
* loss of precision here).
*/
du = (int) (priv->allocation.x2 - priv->allocation.x1);
dv = (int) (priv->allocation.y2 - priv->allocation.y1);
if (!du || !dv)
return FALSE;
#define UX2FP(x) (x)
#define DET2FP(a,b,c,d) (((a) * (d)) - ((b) * (c)))
/* First, find mapping from unit uv square to xy quadrilateral; this
* equivalent to the pmap_square_quad() functions in the sample
* implementation, which we can simplify, since our target is always
* a rectangle.
*/
px = v[0].x - v[1].x + v[3].x - v[2].x;
py = v[0].y - v[1].y + v[3].y - v[2].y;
if (!px && !py)
{
/* affine transform */
RQ[0][0] = UX2FP (v[1].x - v[0].x);
RQ[1][0] = UX2FP (v[3].x - v[1].x);
RQ[2][0] = UX2FP (v[0].x);
RQ[0][1] = UX2FP (v[1].y - v[0].y);
RQ[1][1] = UX2FP (v[3].y - v[1].y);
RQ[2][1] = UX2FP (v[0].y);
RQ[0][2] = 0;
RQ[1][2] = 0;
RQ[2][2] = 1.0;
}
else
{
/* projective transform */
double dx1, dx2, dy1, dy2, del;
dx1 = UX2FP (v[1].x - v[3].x);
dx2 = UX2FP (v[2].x - v[3].x);
dy1 = UX2FP (v[1].y - v[3].y);
dy2 = UX2FP (v[2].y - v[3].y);
del = DET2FP (dx1, dx2, dy1, dy2);
if (!del)
return FALSE;
/*
* The division here needs to be done in floating point for
* precisions reasons.
*/
RQ[0][2] = (DET2FP (UX2FP (px), dx2, UX2FP (py), dy2) / del);
RQ[1][2] = (DET2FP (dx1, UX2FP (px), dy1, UX2FP (py)) / del);
RQ[1][2] = (DET2FP (dx1, UX2FP (px), dy1, UX2FP (py)) / del);
RQ[2][2] = 1.0;
RQ[0][0] = UX2FP (v[1].x - v[0].x) + (RQ[0][2] * UX2FP (v[1].x));
RQ[1][0] = UX2FP (v[2].x - v[0].x) + (RQ[1][2] * UX2FP (v[2].x));
RQ[2][0] = UX2FP (v[0].x);
RQ[0][1] = UX2FP (v[1].y - v[0].y) + (RQ[0][2] * UX2FP (v[1].y));
RQ[1][1] = UX2FP (v[2].y - v[0].y) + (RQ[1][2] * UX2FP (v[2].y));
RQ[2][1] = UX2FP (v[0].y);
}
/*
* Now combine with transform from our rectangle (u0,v0,u1,v1) to unit
* square. Since our rectangle is based at 0,0 we only need to scale.
*/
RQ[0][0] /= du;
RQ[1][0] /= dv;
RQ[0][1] /= du;
RQ[1][1] /= dv;
RQ[0][2] /= du;
RQ[1][2] /= dv;
/*
* Now RQ is transform from uv rectangle to xy quadrilateral; we need an
* inverse of that.
*/
ST[0][0] = DET2FP (RQ[1][1], RQ[1][2], RQ[2][1], RQ[2][2]);
ST[1][0] = DET2FP (RQ[1][2], RQ[1][0], RQ[2][2], RQ[2][0]);
ST[2][0] = DET2FP (RQ[1][0], RQ[1][1], RQ[2][0], RQ[2][1]);
ST[0][1] = DET2FP (RQ[2][1], RQ[2][2], RQ[0][1], RQ[0][2]);
ST[1][1] = DET2FP (RQ[2][2], RQ[2][0], RQ[0][2], RQ[0][0]);
ST[2][1] = DET2FP (RQ[2][0], RQ[2][1], RQ[0][0], RQ[0][1]);
ST[0][2] = DET2FP (RQ[0][1], RQ[0][2], RQ[1][1], RQ[1][2]);
ST[1][2] = DET2FP (RQ[0][2], RQ[0][0], RQ[1][2], RQ[1][0]);
ST[2][2] = DET2FP (RQ[0][0], RQ[0][1], RQ[1][0], RQ[1][1]);
/*
* Check the resulting matrix is OK.
*/
det = (RQ[0][0] * ST[0][0])
+ (RQ[0][1] * ST[0][1])
+ (RQ[0][2] * ST[0][2]);
if (!det)
return FALSE;
/*
* Now transform our point with the ST matrix; the notional w
* coordinate is 1, hence the last part is simply added.
*/
xi = (int) x;
yi = (int) y;
xf = xi * ST[0][0] + yi * ST[1][0] + ST[2][0];
yf = xi * ST[0][1] + yi * ST[1][1] + ST[2][1];
wf = xi * ST[0][2] + yi * ST[1][2] + ST[2][2];
if (x_out)
*x_out = xf / wf;
if (y_out)
*y_out = yf / wf;
#undef UX2FP
#undef DET2FP
return TRUE;
}
/*
* ClutterGeometry
*/
static ClutterGeometry*
clutter_geometry_copy (const ClutterGeometry *geometry)
{
return g_slice_dup (ClutterGeometry, geometry);
}
static void
clutter_geometry_free (ClutterGeometry *geometry)
{
if (G_LIKELY (geometry != NULL))
g_slice_free (ClutterGeometry, geometry);
}
GType
clutter_geometry_get_type (void)
{
static GType our_type = 0;
if (G_UNLIKELY (our_type == 0))
our_type =
g_boxed_type_register_static (I_("ClutterGeometry"),
(GBoxedCopyFunc) clutter_geometry_copy,
(GBoxedFreeFunc) clutter_geometry_free);
return our_type;
}
/*
* ClutterVertices
*/
static ClutterVertex *
clutter_vertex_copy (const ClutterVertex *vertex)
{
return g_slice_dup (ClutterVertex, vertex);
}
static void
clutter_vertex_free (ClutterVertex *vertex)
{
if (G_UNLIKELY (vertex != NULL))
g_slice_free (ClutterVertex, vertex);
}
GType
clutter_vertex_get_type (void)
{
static GType our_type = 0;
if (G_UNLIKELY (our_type == 0))
our_type =
g_boxed_type_register_static (I_("ClutterVertex"),
(GBoxedCopyFunc) clutter_vertex_copy,
(GBoxedFreeFunc) clutter_vertex_free);
return our_type;
}
/*
* ClutterActorBox
*/
static ClutterActorBox *
clutter_actor_box_copy (const ClutterActorBox *box)
{
return g_slice_dup (ClutterActorBox, box);
}
static void
clutter_actor_box_free (ClutterActorBox *box)
{
if (G_LIKELY (box != NULL))
g_slice_free (ClutterActorBox, box);
}
GType
clutter_actor_box_get_type (void)
{
static GType our_type = 0;
if (G_UNLIKELY (our_type == 0))
our_type =
g_boxed_type_register_static (I_("ClutterActorBox"),
(GBoxedCopyFunc) clutter_actor_box_copy,
(GBoxedFreeFunc) clutter_actor_box_free);
return our_type;
}
/******************************************************************************/
struct _ShaderData
{
ClutterShader *shader;
/* list of values that should be set on the shader
* before each paint cycle
*/
GHashTable *value_hash;
};
static void
shader_value_free (gpointer data)
{
GValue *var = data;
g_value_unset (var);
g_slice_free (GValue, var);
}
static void
destroy_shader_data (ClutterActor *self)
{
ClutterActorPrivate *actor_priv = self->priv;
ShaderData *shader_data = actor_priv->shader_data;
if (shader_data == NULL)
return;
if (shader_data->shader)
{
g_object_unref (shader_data->shader);
shader_data->shader = NULL;
}
if (shader_data->value_hash)
{
g_hash_table_destroy (shader_data->value_hash);
shader_data->value_hash = NULL;
}
g_slice_free (ShaderData, shader_data);
actor_priv->shader_data = NULL;
}
/**
* clutter_actor_get_shader:
* @self: a #ClutterActor
*
* Queries the currently set #ClutterShader on @self.
*
* Return value: (transfer none): The currently set #ClutterShader or %NULL if no
* shader is set.
*
* Since: 0.6
*/
ClutterShader *
clutter_actor_get_shader (ClutterActor *self)
{
ClutterActorPrivate *actor_priv;
ShaderData *shader_data;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
actor_priv = self->priv;
shader_data = actor_priv->shader_data;
if (shader_data == NULL)
return NULL;
return shader_data->shader;
}
/**
* clutter_actor_set_shader:
* @self: a #ClutterActor
* @shader: a #ClutterShader or %NULL to unset the shader.
*
* Sets the #ClutterShader to be used when rendering @self.
*
* If @shader is %NULL it will unset any currently set shader
* for the actor.
*
* Return value: %TRUE if the shader was successfully applied
*
* Since: 0.6
*/
gboolean
clutter_actor_set_shader (ClutterActor *self,
ClutterShader *shader)
{
ClutterActorPrivate *actor_priv;
ShaderData *shader_data;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
g_return_val_if_fail (shader == NULL || CLUTTER_IS_SHADER (shader), FALSE);
if (shader != NULL)
g_object_ref (shader);
else
{
/* if shader passed in is NULL we destroy the shader */
destroy_shader_data (self);
return TRUE;
}
actor_priv = self->priv;
shader_data = actor_priv->shader_data;
if (shader_data == NULL)
{
actor_priv->shader_data = shader_data = g_slice_new (ShaderData);
shader_data->shader = NULL;
shader_data->value_hash =
g_hash_table_new_full (g_str_hash, g_str_equal,
g_free,
shader_value_free);
}
if (shader_data->shader != NULL)
g_object_unref (shader_data->shader);
shader_data->shader = shader;
clutter_actor_queue_redraw (self);
return TRUE;
}
static void
set_each_param (gpointer key,
gpointer value,
gpointer user_data)
{
ClutterShader *shader = user_data;
GValue *var = value;
clutter_shader_set_uniform (shader, (const gchar *)key, var);
}
static void
clutter_actor_shader_pre_paint (ClutterActor *actor,
gboolean repeat)
{
ClutterActorPrivate *priv;
ShaderData *shader_data;
ClutterShader *shader;
ClutterMainContext *context;
priv = actor->priv;
shader_data = priv->shader_data;
if (!shader_data)
return;
context = clutter_context_get_default ();
shader = shader_data->shader;
if (shader)
{
clutter_shader_set_is_enabled (shader, TRUE);
g_hash_table_foreach (shader_data->value_hash, set_each_param, shader);
if (!repeat)
context->shaders = g_slist_prepend (context->shaders, actor);
}
}
static void
clutter_actor_shader_post_paint (ClutterActor *actor)
{
ClutterActorPrivate *priv;
ShaderData *shader_data;
ClutterShader *shader;
ClutterMainContext *context;
priv = actor->priv;
shader_data = priv->shader_data;
if (!shader_data)
return;
context = clutter_context_get_default ();
shader = shader_data->shader;
if (shader)
{
clutter_shader_set_is_enabled (shader, FALSE);
context->shaders = g_slist_remove (context->shaders, actor);
if (context->shaders)
{
/* call pre-paint again, this time with the second argument being
* TRUE, indicating that we are reapplying the shader and thus
* should not be prepended to the stack
*/
clutter_actor_shader_pre_paint (context->shaders->data, TRUE);
}
}
}
/**
* clutter_actor_set_shader_param:
* @self: a #ClutterActor
* @param: the name of the parameter
* @value: the value of the parameter
*
* Sets the value for a named parameter of the shader applied
* to @actor.
*
* Since: 1.0
*/
void
clutter_actor_set_shader_param (ClutterActor *self,
const gchar *param,
const GValue *value)
{
ClutterActorPrivate *priv;
ShaderData *shader_data;
GValue *var;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
g_return_if_fail (param != NULL);
g_return_if_fail (CLUTTER_VALUE_HOLDS_SHADER_FLOAT (value) ||
CLUTTER_VALUE_HOLDS_SHADER_INT (value) ||
CLUTTER_VALUE_HOLDS_SHADER_MATRIX (value) ||
G_VALUE_HOLDS_FLOAT (value) ||
G_VALUE_HOLDS_INT (value));
priv = self->priv;
shader_data = priv->shader_data;
if (!shader_data)
return;
var = g_slice_new0 (GValue);
g_value_init (var, G_VALUE_TYPE (value));
g_value_copy (value, var);
g_hash_table_insert (shader_data->value_hash, g_strdup (param), var);
if (CLUTTER_ACTOR_IS_VISIBLE (self))
clutter_actor_queue_redraw (self);
}
/**
* clutter_actor_set_shader_param_float:
* @self: a #ClutterActor
* @param: the name of the parameter
* @value: the value of the parameter
*
* Sets the value for a named float parameter of the shader applied
* to @actor.
*
* Since: 0.8
*/
void
clutter_actor_set_shader_param_float (ClutterActor *self,
const gchar *param,
gfloat value)
{
GValue var = { 0, };
g_value_init (&var, G_TYPE_FLOAT);
g_value_set_float (&var, value);
clutter_actor_set_shader_param (self, param, &var);
g_value_unset (&var);
}
/**
* clutter_actor_set_shader_param_int:
* @self: a #ClutterActor
* @param: the name of the parameter
* @value: the value of the parameter
*
* Sets the value for a named int parameter of the shader applied to
* @actor.
*
* Since: 0.8
*/
void
clutter_actor_set_shader_param_int (ClutterActor *self,
const gchar *param,
gint value)
{
GValue var = { 0, };
g_value_init (&var, G_TYPE_INT);
g_value_set_int (&var, value);
clutter_actor_set_shader_param (self, param, &var);
g_value_unset (&var);
}
/**
* clutter_actor_is_rotated:
* @self: a #ClutterActor
*
* Checks whether any rotation is applied to the actor.
*
* Return value: %TRUE if the actor is rotated.
*
* Since: 0.6
*/
gboolean
clutter_actor_is_rotated (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
priv = self->priv;
if (priv->rxang || priv->ryang || priv->rzang)
return TRUE;
return FALSE;
}
/**
* clutter_actor_is_scaled:
* @self: a #ClutterActor
*
* Checks whether the actor is scaled in either dimension.
*
* Return value: %TRUE if the actor is scaled.
*
* Since: 0.6
*/
gboolean
clutter_actor_is_scaled (ClutterActor *self)
{
ClutterActorPrivate *priv;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), FALSE);
priv = self->priv;
if (priv->scale_x != 1.0 || priv->scale_y != 1.0)
return TRUE;
return FALSE;
}
/**
* clutter_actor_box_get_from_vertices:
* @vtx: array of four #ClutterVertex
* @box: (out): return location for a #ClutterActorBox
*
* Calculates the bounding box represented by the four vertices; for details
* of the vertex array see clutter_actor_get_abs_allocation_vertices().
*
* Since: 0.6
*/
void
clutter_actor_get_box_from_vertices (ClutterVertex vtx[4],
ClutterActorBox *box)
{
gfloat x_1, x_2, y_1, y_2;
/* 4-way min/max */
x_1 = vtx[0].x;
y_1 = vtx[0].y;
if (vtx[1].x < x_1)
x_1 = vtx[1].x;
if (vtx[2].x < x_1)
x_1 = vtx[2].x;
if (vtx[3].x < x_1)
x_1 = vtx[3].x;
if (vtx[1].y < y_1)
y_1 = vtx[1].y;
if (vtx[2].y < y_1)
y_1 = vtx[2].y;
if (vtx[3].y < y_1)
y_1 = vtx[3].y;
x_2 = vtx[0].x;
y_2 = vtx[0].y;
if (vtx[1].x > x_2)
x_2 = vtx[1].x;
if (vtx[2].x > x_2)
x_2 = vtx[2].x;
if (vtx[3].x > x_2)
x_2 = vtx[3].x;
if (vtx[1].y > y_2)
y_2 = vtx[1].y;
if (vtx[2].y > y_2)
y_2 = vtx[2].y;
if (vtx[3].y > y_2)
y_2 = vtx[3].y;
box->x1 = x_1;
box->x2 = x_2;
box->y1 = y_1;
box->y2 = y_2;
}
/**
* clutter_actor_get_stage:
* @actor: a #ClutterActor
*
* Retrieves the #ClutterStage where @actor is contained.
*
* Return value: (transfer none): the stage containing the actor, or %NULL
*
* Since: 0.8
*/
ClutterActor *
clutter_actor_get_stage (ClutterActor *actor)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (actor), NULL);
while (actor && !(CLUTTER_PRIVATE_FLAGS (actor) & CLUTTER_ACTOR_IS_TOPLEVEL))
actor = clutter_actor_get_parent (actor);
return actor;
}
/**
* clutter_actor_allocate_available_size:
* @self: a #ClutterActor
* @x: the actor's X coordinate
* @y: the actor's Y coordinate
* @available_width: the maximum available width, or -1 to use the
* actor's natural width
* @available_height: the maximum available height, or -1 to use the
* actor's natural height
* @absolute_origin_changed: whether the position of the parent has
* changed in stage coordinates
*
* Allocates @self taking into account the #ClutterActor<!-- -->'s
* preferred size, but limiting it to the maximum available width
* and height provided.
*
* This function will do the right thing when dealing with the
* actor's request mode.
*
* The implementation of this function is equivalent to:
*
* |[
* if (request_mode == CLUTTER_REQUEST_HEIGHT_FOR_WIDTH)
* {
* clutter_actor_get_preferred_width (self, available_height,
* &amp;min_width,
* &amp;natural_width);
* width = CLAMP (natural_width, min_width, available_width);
*
* clutter_actor_get_preferred_height (self, width,
* &amp;min_height,
* &amp;natural_height);
* height = CLAMP (natural_height, min_height, available_height);
* }
* else
* {
* clutter_actor_get_preferred_height (self, available_width,
* &amp;min_height,
* &amp;natural_height);
* height = CLAMP (natural_height, min_height, available_height);
*
* clutter_actor_get_preferred_width (self, height,
* &amp;min_width,
* &amp;natural_width);
* width = CLAMP (natural_width, min_width, available_width);
* }
*
* box.x1 = x; box.y1 = y;
* box.x2 = box.x1 + available_width;
* box.y2 = box.y1 + available_height;
* clutter_actor_allocate (self, &amp;box, absolute_origin_changed);
* ]|
*
* This function can be used by fluid layout managers to allocate
* an actor's preferred size without making it bigger than the area
* available for the container.
*
* Since: 1.0
*/
void
clutter_actor_allocate_available_size (ClutterActor *self,
gfloat x,
gfloat y,
gfloat available_width,
gfloat available_height,
gboolean absolute_origin_changed)
{
ClutterActorPrivate *priv;
gfloat width, height;
gfloat min_width, min_height;
gfloat natural_width, natural_height;
ClutterActorBox box;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
switch (priv->request_mode)
{
case CLUTTER_REQUEST_HEIGHT_FOR_WIDTH:
clutter_actor_get_preferred_width (self, available_height,
&min_width,
&natural_width);
width = CLAMP (natural_width, min_width, available_width);
clutter_actor_get_preferred_height (self, width,
&min_height,
&natural_height);
height = CLAMP (natural_height, min_height, available_height);
break;
case CLUTTER_REQUEST_WIDTH_FOR_HEIGHT:
clutter_actor_get_preferred_height (self, available_width,
&min_height,
&natural_height);
height = CLAMP (natural_height, min_height, available_height);
clutter_actor_get_preferred_width (self, height,
&min_width,
&natural_width);
width = CLAMP (natural_width, min_width, available_width);
break;
}
box.x1 = x;
box.y1 = y;
box.x2 = box.x1 + width;
box.y2 = box.y1 + height;
clutter_actor_allocate (self, &box, absolute_origin_changed);
}
/**
* clutter_actor_allocate_preferred_size:
* @self: a #ClutterActor
* @absolute_origin_changed: whether the position of the parent has
* changed in stage coordinates
*
* Allocates the natural size of @self.
*
* This function is a utility call for #ClutterActor implementations
* that allocates the actor's preferred natural size. It can be used
* by fixed layout managers (like #ClutterGroup or so called
* 'composite actors') inside the ClutterActor::allocate
* implementation to give each child exactly how much space it
* requires.
*
* This function is not meant to be used by applications. It is also
* not meant to be used outside the implementation of the
* ClutterActor::allocate virtual function.
*
* Since: 0.8
*/
void
clutter_actor_allocate_preferred_size (ClutterActor *self,
gboolean absolute_origin_changed)
{
gfloat actor_x, actor_y;
gfloat natural_width, natural_height;
ClutterActorBox actor_box;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
actor_x = clutter_actor_get_x (self);
actor_y = clutter_actor_get_y (self);
clutter_actor_get_preferred_size (self,
NULL, NULL,
&natural_width,
&natural_height);
actor_box.x1 = actor_x;
actor_box.y1 = actor_y;
actor_box.x2 = actor_box.x1 + natural_width;
actor_box.y2 = actor_box.y1 + natural_height;
clutter_actor_allocate (self, &actor_box, absolute_origin_changed);
}
/**
* clutter_actor_grab_key_focus:
* @self: a #ClutterActor
*
* Sets the key focus of the #ClutterStage including @self
* to this #ClutterActor.
*
* Since: 1.0
*/
void
clutter_actor_grab_key_focus (ClutterActor *self)
{
ClutterActor *parent;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
parent = clutter_actor_get_parent (self);
if (!parent)
return;
parent = clutter_actor_get_stage (self);
if (parent && CLUTTER_IS_STAGE (parent))
clutter_stage_set_key_focus (CLUTTER_STAGE (parent), self);
}
/**
* clutter_actor_get_pango_context:
* @self: a #ClutterActor
*
* Retrieves the #PangoContext for @self. The actor's #PangoContext
* is already configured using the appropriate font map, resolution
* and font options.
*
* Unlike clutter_actor_create_pango_context(), this context is owend
* by the #ClutterActor and it will be updated each time the options
* stored by the #ClutterBackend change.
*
* You can use the returned #PangoContext to create a #PangoLayout
* and render text using cogl_pango_render_layout() to reuse the
* glyphs cache also used by Clutter.
*
* Return value: (transfer none): the #PangoContext for a #ClutterActor.
* The returned #PangoContext is owned by the actor and should not be
* unreferenced by the application code
*
* Since: 1.0
*/
PangoContext *
clutter_actor_get_pango_context (ClutterActor *self)
{
ClutterActorPrivate *priv;
ClutterMainContext *ctx;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), NULL);
priv = self->priv;
if (priv->pango_context)
return priv->pango_context;
ctx = CLUTTER_CONTEXT ();
priv->pango_context = _clutter_context_get_pango_context (ctx);
g_object_ref (priv->pango_context);
return priv->pango_context;
}
/**
* clutter_actor_create_pango_context:
* @self: a #ClutterActor
*
* Creates a #PangoContext for the given actor. The #PangoContext
* is already configured using the appropriate font map, resolution
* and font options.
*
* See also clutter_actor_get_pango_context().
*
* Return value: the newly created #PangoContext. Use g_object_unref()
* on the returned value to deallocate its resources
*
* Since: 1.0
*/
PangoContext *
clutter_actor_create_pango_context (ClutterActor *self)
{
ClutterMainContext *ctx;
PangoContext *retval;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), NULL);
ctx = CLUTTER_CONTEXT ();
retval = _clutter_context_create_pango_context (ctx);
return retval;
}
/**
* clutter_actor_create_pango_layout:
* @self: a #ClutterActor
* @text: the text to set on the #PangoLayout, or %NULL
*
* Creates a new #PangoLayout from the same #PangoContext used
* by the #ClutterActor. The #PangoLayout is already configured
* with the font map, resolution and font options, and the
* given @text.
*
* If you want to keep around a #PangoLayout created by this
* function you will have to connect to the #ClutterBackend::font-changed
* and #ClutterBackend::resolution-changed signals, and call
* pango_layout_context_changed() in response to them.
*
* Return value: the newly created #PangoLayout. Use g_object_unref()
* when done
*
* Since: 1.0
*/
PangoLayout *
clutter_actor_create_pango_layout (ClutterActor *self,
const gchar *text)
{
PangoContext *context;
PangoLayout *layout;
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), NULL);
context = clutter_actor_get_pango_context (self);
layout = pango_layout_new (context);
if (text)
pango_layout_set_text (layout, text, -1);
return layout;
}
/* Allows overriding the parent traversed when querying an actors paint
* opacity. Used by ClutterClone. */
void
_clutter_actor_set_opacity_parent (ClutterActor *self,
ClutterActor *parent)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
self->priv->opacity_parent = parent;
}
/* Allows you to disable applying the actors model view transform during
* a paint. Used by ClutterClone. */
void
_clutter_actor_set_enable_model_view_transform (ClutterActor *self,
gboolean enable)
{
g_return_if_fail (CLUTTER_IS_ACTOR (self));
self->priv->enable_model_view_transform = enable;
}
void
_clutter_actor_set_enable_paint_unmapped (ClutterActor *self,
gboolean enable)
{
ClutterActorPrivate *priv;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
priv = self->priv;
priv->enable_paint_unmapped = enable;
if (priv->enable_paint_unmapped)
clutter_actor_update_map_state (self, MAP_STATE_MAKE_MAPPED);
else
clutter_actor_update_map_state (self, MAP_STATE_MAKE_UNMAPPED);
}
static void
clutter_anchor_coord_get_units (ClutterActor *self,
const AnchorCoord *coord,
gfloat *x,
gfloat *y,
gfloat *z)
{
if (coord->is_fractional)
{
gfloat actor_width, actor_height;
clutter_actor_get_size (self, &actor_width, &actor_height);
if (x)
*x = actor_width * coord->v.fraction.x;
if (y)
*y = actor_height * coord->v.fraction.y;
if (z)
*z = 0;
}
else
{
if (x)
*x = coord->v.units.x;
if (y)
*y = coord->v.units.y;
if (z)
*z = coord->v.units.z;
}
}
static void
clutter_anchor_coord_set_units (AnchorCoord *coord,
gfloat x,
gfloat y,
gfloat z)
{
coord->is_fractional = FALSE;
coord->v.units.x = x;
coord->v.units.y = y;
coord->v.units.z = z;
}
static ClutterGravity
clutter_anchor_coord_get_gravity (AnchorCoord *coord)
{
if (coord->is_fractional)
{
if (coord->v.fraction.x == 0.0)
{
if (coord->v.fraction.y == 0.0)
return CLUTTER_GRAVITY_NORTH_WEST;
else if (coord->v.fraction.y == 0.5)
return CLUTTER_GRAVITY_WEST;
else if (coord->v.fraction.y == 1.0)
return CLUTTER_GRAVITY_SOUTH_WEST;
else
return CLUTTER_GRAVITY_NONE;
}
else if (coord->v.fraction.x == 0.5)
{
if (coord->v.fraction.y == 0.0)
return CLUTTER_GRAVITY_NORTH;
else if (coord->v.fraction.y == 0.5)
return CLUTTER_GRAVITY_CENTER;
else if (coord->v.fraction.y == 1.0)
return CLUTTER_GRAVITY_SOUTH;
else
return CLUTTER_GRAVITY_NONE;
}
else if (coord->v.fraction.x == 1.0)
{
if (coord->v.fraction.y == 0.0)
return CLUTTER_GRAVITY_NORTH_EAST;
else if (coord->v.fraction.y == 0.5)
return CLUTTER_GRAVITY_EAST;
else if (coord->v.fraction.y == 1.0)
return CLUTTER_GRAVITY_SOUTH_EAST;
else
return CLUTTER_GRAVITY_NONE;
}
else
return CLUTTER_GRAVITY_NONE;
}
else
return CLUTTER_GRAVITY_NONE;
}
static void
clutter_anchor_coord_set_gravity (AnchorCoord *coord,
ClutterGravity gravity)
{
switch (gravity)
{
case CLUTTER_GRAVITY_NORTH:
coord->v.fraction.x = 0.5;
coord->v.fraction.y = 0.0;
break;
case CLUTTER_GRAVITY_NORTH_EAST:
coord->v.fraction.x = 1.0;
coord->v.fraction.y = 0.0;
break;
case CLUTTER_GRAVITY_EAST:
coord->v.fraction.x = 1.0;
coord->v.fraction.y = 0.5;
break;
case CLUTTER_GRAVITY_SOUTH_EAST:
coord->v.fraction.x = 1.0;
coord->v.fraction.y = 1.0;
break;
case CLUTTER_GRAVITY_SOUTH:
coord->v.fraction.x = 0.5;
coord->v.fraction.y = 1.0;
break;
case CLUTTER_GRAVITY_SOUTH_WEST:
coord->v.fraction.x = 0.0;
coord->v.fraction.y = 1.0;
break;
case CLUTTER_GRAVITY_WEST:
coord->v.fraction.x = 0.0;
coord->v.fraction.y = 0.5;
break;
case CLUTTER_GRAVITY_NORTH_WEST:
coord->v.fraction.x = 0.0;
coord->v.fraction.y = 0.0;
break;
case CLUTTER_GRAVITY_CENTER:
coord->v.fraction.x = 0.5;
coord->v.fraction.y = 0.5;
break;
default:
coord->v.fraction.x = 0.0;
coord->v.fraction.y = 0.0;
break;
}
coord->is_fractional = TRUE;
}
static gboolean
clutter_anchor_coord_is_zero (const AnchorCoord *coord)
{
if (coord->is_fractional)
return coord->v.fraction.x == 0.0 && coord->v.fraction.y == 0.0;
else
return (coord->v.units.x == 0.0
&& coord->v.units.y == 0.0
&& coord->v.units.z == 0.0);
}
/**
* clutter_actor_get_flags:
* @self: a #ClutterActor
*
* Retrieves the flags set on @self
*
* Return value: a bitwise or of #ClutterActorFlags or 0
*
* Since: 1.0
*/
ClutterActorFlags
clutter_actor_get_flags (ClutterActor *self)
{
g_return_val_if_fail (CLUTTER_IS_ACTOR (self), 0);
return self->flags;
}
/**
* clutter_actor_set_flags:
* @self: a #ClutterActor
* @flags: the flags to set
*
* Sets @flags on @self
*
* This function will emit notifications for the changed properties
*
* Since: 1.0
*/
void
clutter_actor_set_flags (ClutterActor *self,
ClutterActorFlags flags)
{
ClutterActorFlags old_flags;
GObject *obj;
gboolean was_reactive_set, reactive_set;
gboolean was_realized_set, realized_set;
gboolean was_mapped_set, mapped_set;
gboolean was_visible_set, visible_set;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
if (self->flags == flags)
return;
obj = G_OBJECT (self);
g_object_freeze_notify (obj);
old_flags = self->flags;
was_reactive_set = ((old_flags & CLUTTER_ACTOR_REACTIVE) != 0);
was_realized_set = ((old_flags & CLUTTER_ACTOR_REALIZED) != 0);
was_mapped_set = ((old_flags & CLUTTER_ACTOR_MAPPED) != 0);
was_visible_set = ((old_flags & CLUTTER_ACTOR_VISIBLE) != 0);
self->flags |= flags;
reactive_set = ((self->flags & CLUTTER_ACTOR_REACTIVE) != 0);
realized_set = ((self->flags & CLUTTER_ACTOR_REALIZED) != 0);
mapped_set = ((self->flags & CLUTTER_ACTOR_MAPPED) != 0);
visible_set = ((self->flags & CLUTTER_ACTOR_VISIBLE) != 0);
if (reactive_set != was_reactive_set)
g_object_notify (obj, "reactive");
if (realized_set != was_realized_set)
g_object_notify (obj, "realized");
if (mapped_set != was_mapped_set)
g_object_notify (obj, "mapped");
if (visible_set != was_visible_set)
g_object_notify (obj, "visible");
g_object_thaw_notify (obj);
}
/**
* clutter_actor_unset_flags:
* @self: a #ClutterActor
* @flags: the flags to unset
*
* Unsets @flags on @self
*
* This function will emit notifications for the changed properties
*
* Since: 1.0
*/
void
clutter_actor_unset_flags (ClutterActor *self,
ClutterActorFlags flags)
{
ClutterActorFlags old_flags;
GObject *obj;
gboolean was_reactive_set, reactive_set;
gboolean was_realized_set, realized_set;
gboolean was_mapped_set, mapped_set;
gboolean was_visible_set, visible_set;
g_return_if_fail (CLUTTER_IS_ACTOR (self));
obj = G_OBJECT (self);
g_object_freeze_notify (obj);
old_flags = self->flags;
was_reactive_set = ((old_flags & CLUTTER_ACTOR_REACTIVE) != 0);
was_realized_set = ((old_flags & CLUTTER_ACTOR_REALIZED) != 0);
was_mapped_set = ((old_flags & CLUTTER_ACTOR_MAPPED) != 0);
was_visible_set = ((old_flags & CLUTTER_ACTOR_VISIBLE) != 0);
self->flags &= ~flags;
if (self->flags == old_flags)
return;
reactive_set = ((self->flags & CLUTTER_ACTOR_REACTIVE) != 0);
realized_set = ((self->flags & CLUTTER_ACTOR_REALIZED) != 0);
mapped_set = ((self->flags & CLUTTER_ACTOR_MAPPED) != 0);
visible_set = ((self->flags & CLUTTER_ACTOR_VISIBLE) != 0);
if (reactive_set != was_reactive_set)
g_object_notify (obj, "reactive");
if (realized_set != was_realized_set)
g_object_notify (obj, "realized");
if (mapped_set != was_mapped_set)
g_object_notify (obj, "mapped");
if (visible_set != was_visible_set)
g_object_notify (obj, "visible");
g_object_thaw_notify (obj);
}