mirror of
https://github.com/brl/mutter.git
synced 2024-11-30 12:00:44 -05:00
af0726480c
In the future if we want to annotate matrices with internal flags, and add caching of the inverse matrix then we need to ensure that all matrix modifications are done by cogl_matrix API so we'd know when to dirty the cache or update the flags. This just adds documentation to that effect, and assuming the most likley case where someone would try and directly write to matrix members would probably be to load a constant matrix other than the identity matrix; I renamed cogl_matrix_init_from_gl_matrix to cogl_matrix_init_from_array to make it seem more general purpose.
155 lines
4.6 KiB
C
155 lines
4.6 KiB
C
#include <cogl-matrix.h>
|
|
|
|
#include <glib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
void
|
|
cogl_matrix_init_identity (CoglMatrix *matrix)
|
|
{
|
|
matrix->xx = 1; matrix->xy = 0; matrix->xz = 0; matrix->xw = 0;
|
|
matrix->yx = 0; matrix->yy = 1; matrix->yz = 0; matrix->yw = 0;
|
|
matrix->zx = 0; matrix->zy = 0; matrix->zz = 1; matrix->zw = 0;
|
|
matrix->wx = 0; matrix->wy = 0; matrix->wz = 0; matrix->ww = 1;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_multiply (CoglMatrix *result,
|
|
const CoglMatrix *a,
|
|
const CoglMatrix *b)
|
|
{
|
|
CoglMatrix r;
|
|
|
|
/* row 0 */
|
|
r.xx = a->xx * b->xx + a->xy * b->yx + a->xz * b->zx + a->xw * b->wx;
|
|
r.xy = a->xx * b->xy + a->xy * b->yy + a->xz * b->zy + a->xw * b->wy;
|
|
r.xz = a->xx * b->xz + a->xy * b->yz + a->xz * b->zz + a->xw * b->wz;
|
|
r.xw = a->xx * b->xw + a->xy * b->yw + a->xz * b->zw + a->xw * b->ww;
|
|
|
|
/* row 1 */
|
|
r.yx = a->yx * b->xx + a->yy * b->yx + a->yz * b->zx + a->yw * b->wx;
|
|
r.yy = a->yx * b->xy + a->yy * b->yy + a->yz * b->zy + a->yw * b->wy;
|
|
r.yz = a->yx * b->xz + a->yy * b->yz + a->yz * b->zz + a->yw * b->wz;
|
|
r.yw = a->yx * b->xw + a->yy * b->yw + a->yz * b->zw + a->yw * b->ww;
|
|
|
|
/* row 2 */
|
|
r.zx = a->zx * b->xx + a->zy * b->yx + a->zz * b->zx + a->zw * b->wx;
|
|
r.zy = a->zx * b->xy + a->zy * b->yy + a->zz * b->zy + a->zw * b->wy;
|
|
r.zz = a->zx * b->xz + a->zy * b->yz + a->zz * b->zz + a->zw * b->wz;
|
|
r.zw = a->zx * b->xw + a->zy * b->yw + a->zz * b->zw + a->zw * b->ww;
|
|
|
|
/* row 3 */
|
|
r.wx = a->wx * b->xx + a->wy * b->yx + a->wz * b->zx + a->ww * b->wx;
|
|
r.wy = a->wx * b->xy + a->wy * b->yy + a->wz * b->zy + a->ww * b->wy;
|
|
r.wz = a->wx * b->xz + a->wy * b->yz + a->wz * b->zz + a->ww * b->wz;
|
|
r.ww = a->wx * b->xw + a->wy * b->yw + a->wz * b->zw + a->ww * b->ww;
|
|
|
|
/* The idea was that having this unrolled; it might be easier for the
|
|
* compiler to vectorize, but that's probably not true. Mesa does it
|
|
* using a single for (i=0; i<4; i++) approach, may that's better...
|
|
*/
|
|
|
|
*result = r;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_rotate (CoglMatrix *matrix,
|
|
float angle,
|
|
float x,
|
|
float y,
|
|
float z)
|
|
{
|
|
CoglMatrix rotation;
|
|
CoglMatrix result;
|
|
angle *= G_PI / 180.0f;
|
|
float c = cosf (angle);
|
|
float s = sinf (angle);
|
|
|
|
rotation.xx = x * x * (1.0f - c) + c;
|
|
rotation.yx = y * x * (1.0f - c) + z * s;
|
|
rotation.zx = x * z * (1.0f - c) - y * s;
|
|
rotation.wx = 0.0f;
|
|
|
|
rotation.xy = x * y * (1.0f - c) - z * s;
|
|
rotation.yy = y * y * (1.0f - c) + c;
|
|
rotation.zy = y * z * (1.0f - c) + x * s;
|
|
rotation.wy = 0.0f;
|
|
|
|
rotation.xz = x * z * (1.0f - c) + y * s;
|
|
rotation.yz = y * z * (1.0f - c) - x * s;
|
|
rotation.zz = z * z * (1.0f - c) + c;
|
|
rotation.wz = 0.0f;
|
|
|
|
rotation.xw = 0.0f;
|
|
rotation.yw = 0.0f;
|
|
rotation.zw = 0.0f;
|
|
rotation.ww = 1.0f;
|
|
|
|
cogl_matrix_multiply (&result, matrix, &rotation);
|
|
*matrix = result;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_translate (CoglMatrix *matrix,
|
|
float x,
|
|
float y,
|
|
float z)
|
|
{
|
|
matrix->xw = matrix->xx * x + matrix->xy * y + matrix->xz * z + matrix->xw;
|
|
matrix->yw = matrix->yx * x + matrix->yy * y + matrix->yz * z + matrix->yw;
|
|
matrix->zw = matrix->zx * x + matrix->zy * y + matrix->zz * z + matrix->zw;
|
|
matrix->ww = matrix->wx * x + matrix->wy * y + matrix->wz * z + matrix->ww;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_scale (CoglMatrix *matrix,
|
|
float sx,
|
|
float sy,
|
|
float sz)
|
|
{
|
|
matrix->xx *= sx; matrix->xy *= sy; matrix->xz *= sz;
|
|
matrix->yx *= sx; matrix->yy *= sy; matrix->yz *= sz;
|
|
matrix->zx *= sx; matrix->zy *= sy; matrix->zz *= sz;
|
|
matrix->wx *= sx; matrix->wy *= sy; matrix->wz *= sz;
|
|
}
|
|
|
|
#if 0
|
|
gboolean
|
|
cogl_matrix_invert (CoglMatrix *matrix)
|
|
{
|
|
/* TODO */
|
|
/* Note: It might be nice to also use the flag based tricks that mesa does
|
|
* to alow it to track the type of transformations a matrix represents
|
|
* so it can use various assumptions to optimise the inversion.
|
|
*/
|
|
}
|
|
#endif
|
|
|
|
void
|
|
cogl_matrix_transform_point (const CoglMatrix *matrix,
|
|
float *x,
|
|
float *y,
|
|
float *z,
|
|
float *w)
|
|
{
|
|
float _x = *x, _y = *y, _z = *z, _w = *w;
|
|
|
|
*x = matrix->xx * _x + matrix->xy * _y + matrix->xz * _z + matrix->xw * _w;
|
|
*y = matrix->yx * _x + matrix->yy * _y + matrix->yz * _z + matrix->yw * _w;
|
|
*z = matrix->zx * _x + matrix->zy * _y + matrix->zz * _z + matrix->zw * _w;
|
|
*w = matrix->wx * _x + matrix->wy * _y + matrix->wz * _z + matrix->ww * _w;
|
|
}
|
|
|
|
void
|
|
cogl_matrix_init_from_array (CoglMatrix *matrix, const float *array)
|
|
{
|
|
memcpy (matrix, array, sizeof (float) * 16);
|
|
}
|
|
|
|
const float *
|
|
cogl_matrix_get_array (const CoglMatrix *matrix)
|
|
{
|
|
return (float *)matrix;
|
|
}
|
|
|