mirror of
https://github.com/brl/mutter.git
synced 2024-11-23 00:20:42 -05:00
061240ef2a
This adds cogl_texture_2d_sliced_new_from_bitmap/data/file apis in preparation for removing the cogl_texture_new_from_bitmap/file apis that are considered a bit too magic, but we don't want to loose the convenience they have. Reviewed-by: Neil Roberts <neil@linux.intel.com> (cherry picked from commit 218da8e1349d7658f45c6933b9736c0d32941b8b) Conflicts: cogl/cogl-auto-texture.c
296 lines
13 KiB
C
296 lines
13 KiB
C
/*
|
|
* Cogl
|
|
*
|
|
* An object oriented GL/GLES Abstraction/Utility Layer
|
|
*
|
|
* Copyright (C) 2011 Intel Corporation.
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library. If not, see
|
|
* <http://www.gnu.org/licenses/>.
|
|
*
|
|
*
|
|
* Authors:
|
|
* Robert Bragg <robert@linux.intel.com>
|
|
*/
|
|
|
|
#ifndef __COGL_TEXURE_2D_SLICED_H
|
|
#define __COGL_TEXURE_2D_SLICED_H
|
|
|
|
#include "cogl-context.h"
|
|
#include "cogl-types.h"
|
|
|
|
/**
|
|
* SECTION:cogl-texture-2d-sliced
|
|
* @short_description: Functions for creating and manipulating 2D meta
|
|
* textures that may internally be comprised of
|
|
* multiple 2D textures with power-of-two sizes.
|
|
*
|
|
* These functions allow high-level meta textures (See the
|
|
* #CoglMetaTexture interface) to be allocated that may internally be
|
|
* comprised of multiple 2D texture "slices" with power-of-two sizes.
|
|
*
|
|
* This API can be useful when working with GPUs that don't have
|
|
* native support for non-power-of-two textures or if you want to load
|
|
* a texture that is larger than the GPUs maximum texture size limits.
|
|
*
|
|
* The algorithm for slicing works by first trying to map a virtual
|
|
* size to the next larger power-of-two size and then seeing how many
|
|
* wasted pixels that would result in. For example if you have a
|
|
* virtual texture that's 259 texels wide, the next pot size = 512 and
|
|
* the amount of waste would be 253 texels. If the amount of waste is
|
|
* above a max-waste threshold then we would next slice that texture
|
|
* into one that's 256 texels and then looking at how many more texels
|
|
* remain unallocated after that we choose the next power-of-two size.
|
|
* For the example of a 259 texel image that would mean having a 256
|
|
* texel wide texture, leaving 3 texels unallocated so we'd then
|
|
* create a 4 texel wide texture - now there is only one texel of
|
|
* waste. The algorithm continues to slice the right most textures
|
|
* until the amount of waste is less than or equal to a specfied
|
|
* max-waste threshold. The same logic for slicing from left to right
|
|
* is also applied from top to bottom.
|
|
*/
|
|
|
|
typedef struct _CoglTexture2DSliced CoglTexture2DSliced;
|
|
#define COGL_TEXTURE_2D_SLICED(X) ((CoglTexture2DSliced *)X)
|
|
|
|
/**
|
|
* cogl_texture_2d_sliced_new_with_size:
|
|
* @ctx: A #CoglContext
|
|
* @width: The virtual width of your sliced texture.
|
|
* @height: The virtual height of your sliced texture.
|
|
* @max_waste: The threshold of how wide a strip of wasted texels
|
|
* are allowed along the right and bottom textures before
|
|
* they must be sliced to reduce the amount of waste. A
|
|
* negative can be passed to disable slicing.
|
|
* @internal_format: The format of the texture
|
|
*
|
|
* Creates a #CoglTexture2DSliced that may internally be comprised of
|
|
* 1 or more #CoglTexture2D textures depending on GPU limitations.
|
|
* For example if the GPU only supports power-of-two sized textures
|
|
* then a sliced texture will turn a non-power-of-two size into a
|
|
* combination of smaller power-of-two sized textures. If the
|
|
* requested texture size is larger than is supported by the hardware
|
|
* then the texture will be sliced into smaller textures that can be
|
|
* accessed by the hardware.
|
|
*
|
|
* @max_waste is used as a threshold for recursively slicing the
|
|
* right-most or bottom-most slices into smaller sizes until the
|
|
* wasted padding at the bottom and right of the textures is less than
|
|
* specified. A negative @max_waste will disable slicing.
|
|
*
|
|
* The storage for the texture is not allocated before this function
|
|
* returns. You can call cogl_texture_allocate() to explicitly
|
|
* allocate the underlying storage or let Cogl automatically allocate
|
|
* storage lazily.
|
|
*
|
|
* <note>It's possible for the allocation of a sliced texture to fail
|
|
* later due to impossible slicing constraints if a negative
|
|
* @max_waste value is given. If the given virtual texture size size
|
|
* is larger than is supported by the hardware but slicing is disabled
|
|
* the texture size would be too large to handle.</note>
|
|
*
|
|
* Returns: A new #CoglTexture2DSliced object with no storage
|
|
* allocated yet.
|
|
*
|
|
* Since: 1.10
|
|
* Stability: unstable
|
|
*/
|
|
CoglTexture2DSliced *
|
|
cogl_texture_2d_sliced_new_with_size (CoglContext *ctx,
|
|
int width,
|
|
int height,
|
|
int max_waste,
|
|
CoglPixelFormat internal_format);
|
|
|
|
/**
|
|
* cogl_texture_2d_sliced_new_from_file:
|
|
* @ctx: A #CoglContext
|
|
* @filename: the file to load
|
|
* @max_waste: The threshold of how wide a strip of wasted texels
|
|
* are allowed along the right and bottom textures before
|
|
* they must be sliced to reduce the amount of waste. A
|
|
* negative can be passed to disable slicing.
|
|
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
|
|
* texture. If %COGL_PIXEL_FORMAT_ANY is given then a premultiplied
|
|
* format similar to the format of the source data will be used. The
|
|
* default blending equations of Cogl expect premultiplied color data;
|
|
* the main use of passing a non-premultiplied format here is if you
|
|
* have non-premultiplied source data and are going to adjust the blend
|
|
* mode (see cogl_material_set_blend()) or use the data for something
|
|
* other than straight blending.
|
|
* @error: A #CoglError to catch exceptional errors or %NULL
|
|
*
|
|
* Creates a #CoglTexture2DSliced from an image file.
|
|
*
|
|
* A #CoglTexture2DSliced may internally be comprised of 1 or more
|
|
* #CoglTexture2D textures depending on GPU limitations. For example
|
|
* if the GPU only supports power-of-two sized textures then a sliced
|
|
* texture will turn a non-power-of-two size into a combination of
|
|
* smaller power-of-two sized textures. If the requested texture size
|
|
* is larger than is supported by the hardware then the texture will
|
|
* be sliced into smaller textures that can be accessed by the
|
|
* hardware.
|
|
*
|
|
* @max_waste is used as a threshold for recursively slicing the
|
|
* right-most or bottom-most slices into smaller sizes until the
|
|
* wasted padding at the bottom and right of the textures is less than
|
|
* specified. A negative @max_waste will disable slicing.
|
|
*
|
|
* <note>It's possible for the allocation of a sliced texture to fail
|
|
* later due to impossible slicing constraints if a negative
|
|
* @max_waste value is given. If the given virtual texture size is
|
|
* larger than is supported by the hardware but slicing is disabled
|
|
* the texture size would be too large to handle.</note>
|
|
*
|
|
* Return value: A newly created #CoglTexture2DSliced or %NULL on
|
|
* failure and @error will be updated.
|
|
*
|
|
* Since: 1.16
|
|
*/
|
|
CoglTexture2DSliced *
|
|
cogl_texture_2d_sliced_new_from_file (CoglContext *ctx,
|
|
const char *filename,
|
|
int max_waste,
|
|
CoglPixelFormat internal_format,
|
|
CoglError **error);
|
|
|
|
/**
|
|
* cogl_texture_2d_sliced_new_from_data:
|
|
* @width: width of texture in pixels
|
|
* @height: height of texture in pixels
|
|
* @format: the #CoglPixelFormat the buffer is stored in in RAM
|
|
* @max_waste: The threshold of how wide a strip of wasted texels
|
|
* are allowed along the right and bottom textures before
|
|
* they must be sliced to reduce the amount of waste. A
|
|
* negative can be passed to disable slicing.
|
|
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
|
|
* texture. If %COGL_PIXEL_FORMAT_ANY is given then a premultiplied
|
|
* format similar to the format of the source data will be used. The
|
|
* default blending equations of Cogl expect premultiplied color data;
|
|
* the main use of passing a non-premultiplied format here is if you
|
|
* have non-premultiplied source data and are going to adjust the blend
|
|
* mode (see cogl_material_set_blend()) or use the data for something
|
|
* other than straight blending.
|
|
* @rowstride: the memory offset in bytes between the start of each
|
|
* row in @data. A value of 0 will make Cogl automatically
|
|
* calculate @rowstride from @width and @format.
|
|
* @data: pointer the memory region where the source buffer resides
|
|
* @error: A #CoglError to catch exceptional errors or %NULL
|
|
*
|
|
* Creates a new #CoglTexture2DSliced texture based on data residing
|
|
* in memory.
|
|
*
|
|
* A #CoglTexture2DSliced may internally be comprised of 1 or more
|
|
* #CoglTexture2D textures depending on GPU limitations. For example
|
|
* if the GPU only supports power-of-two sized textures then a sliced
|
|
* texture will turn a non-power-of-two size into a combination of
|
|
* smaller power-of-two sized textures. If the requested texture size
|
|
* is larger than is supported by the hardware then the texture will
|
|
* be sliced into smaller textures that can be accessed by the
|
|
* hardware.
|
|
*
|
|
* @max_waste is used as a threshold for recursively slicing the
|
|
* right-most or bottom-most slices into smaller sizes until the
|
|
* wasted padding at the bottom and right of the textures is less than
|
|
* specified. A negative @max_waste will disable slicing.
|
|
*
|
|
* <note>It's possible for the allocation of a sliced texture to fail
|
|
* later due to impossible slicing constraints if a negative
|
|
* @max_waste value is given. If the given virtual texture size is
|
|
* larger than is supported by the hardware but slicing is disabled
|
|
* the texture size would be too large to handle.</note>
|
|
*
|
|
* Return value: A newly created #CoglTexture2DSliced or %NULL on
|
|
* failure and @error will be updated.
|
|
*
|
|
* Since: 1.16
|
|
*/
|
|
CoglTexture2DSliced *
|
|
cogl_texture_2d_sliced_new_from_data (CoglContext *ctx,
|
|
int width,
|
|
int height,
|
|
int max_waste,
|
|
CoglPixelFormat format,
|
|
CoglPixelFormat internal_format,
|
|
int rowstride,
|
|
const uint8_t *data,
|
|
CoglError **error);
|
|
|
|
/**
|
|
* cogl_texture_2d_sliced_new_from_bitmap:
|
|
* @bitmap: A #CoglBitmap
|
|
* @max_waste: The threshold of how wide a strip of wasted texels
|
|
* are allowed along the right and bottom textures before
|
|
* they must be sliced to reduce the amount of waste. A
|
|
* negative can be passed to disable slicing.
|
|
* @internal_format: the #CoglPixelFormat to use for the GPU storage of the
|
|
* texture. If %COGL_PIXEL_FORMAT_ANY is given then a premultiplied
|
|
* format similar to the format of the source data will be used. The
|
|
* default blending equations of Cogl expect premultiplied color data;
|
|
* the main use of passing a non-premultiplied format here is if you
|
|
* have non-premultiplied source data and are going to adjust the blend
|
|
* mode (see cogl_material_set_blend()) or use the data for something
|
|
* other than straight blending.
|
|
* @error: A #CoglError to catch exceptional errors or %NULL
|
|
*
|
|
* Creates a new #CoglTexture2DSliced texture based on data residing
|
|
* in a bitmap.
|
|
*
|
|
* A #CoglTexture2DSliced may internally be comprised of 1 or more
|
|
* #CoglTexture2D textures depending on GPU limitations. For example
|
|
* if the GPU only supports power-of-two sized textures then a sliced
|
|
* texture will turn a non-power-of-two size into a combination of
|
|
* smaller power-of-two sized textures. If the requested texture size
|
|
* is larger than is supported by the hardware then the texture will
|
|
* be sliced into smaller textures that can be accessed by the
|
|
* hardware.
|
|
*
|
|
* @max_waste is used as a threshold for recursively slicing the
|
|
* right-most or bottom-most slices into smaller sizes until the
|
|
* wasted padding at the bottom and right of the textures is less than
|
|
* specified. A negative @max_waste will disable slicing.
|
|
*
|
|
* <note>It's possible for the allocation of a sliced texture to fail
|
|
* later due to impossible slicing constraints if a negative
|
|
* @max_waste value is given. If the given virtual texture size is
|
|
* larger than is supported by the hardware but slicing is disabled
|
|
* the texture size would be too large to handle.</note>
|
|
*
|
|
* Return value: A newly created #CoglTexture2DSliced or %NULL on
|
|
* failure and @error will be updated.
|
|
*
|
|
* Since: 1.16
|
|
*/
|
|
CoglTexture2DSliced *
|
|
cogl_texture_2d_sliced_new_from_bitmap (CoglBitmap *bmp,
|
|
int max_waste,
|
|
CoglPixelFormat internal_format,
|
|
CoglError **error);
|
|
|
|
/**
|
|
* cogl_is_texture_2d_sliced:
|
|
* @object: A #CoglObject pointer
|
|
*
|
|
* Gets whether the given object references a #CoglTexture2DSliced.
|
|
*
|
|
* Return value: %TRUE if the object references a #CoglTexture2DSliced
|
|
* and %FALSE otherwise.
|
|
* Since: 1.10
|
|
* Stability: unstable
|
|
*/
|
|
CoglBool
|
|
cogl_is_texture_2d_sliced (void *object);
|
|
|
|
#endif /* __COGL_TEXURE_2D_SLICED_H */
|