mutter/cogl/cogl-indices.h
Robert Bragg a0441778ad This re-licenses Cogl 1.18 under the MIT license
Since the Cogl 1.18 branch is actively maintained in parallel with the
master branch; this is a counter part to commit 1b83ef938fc16b which
re-licensed the master branch to use the MIT license.

This re-licensing is a follow up to the proposal that was sent to the
Cogl mailing list:
http://lists.freedesktop.org/archives/cogl/2013-December/001465.html

Note: there was a copyright assignment policy in place for Clutter (and
therefore Cogl which was part of Clutter at the time) until the 11th of
June 2010 and so we only checked the details after that point (commit
0bbf50f905)

For each file, authors were identified via this Git command:
$ git blame -p -C -C -C20 -M -M10  0bbf50f905..HEAD

We received blanket approvals for re-licensing all Red Hat and Collabora
contributions which reduced how many people needed to be contacted
individually:
- http://lists.freedesktop.org/archives/cogl/2013-December/001470.html
- http://lists.freedesktop.org/archives/cogl/2014-January/001536.html

Individual approval requests were sent to all the other identified authors
who all confirmed the re-license on the Cogl mailinglist:
http://lists.freedesktop.org/archives/cogl/2014-January

As well as updating the copyright header in all sources files, the
COPYING file has been updated to reflect the license change and also
document the other licenses used in Cogl such as the SGI Free Software
License B, version 2.0 and the 3-clause BSD license.

This patch was not simply cherry-picked from master; but the same
methodology was used to check the source files.
2014-02-22 02:02:53 +00:00

153 lines
5.1 KiB
C

/*
* Cogl
*
* A Low Level GPU Graphics and Utilities API
*
* Copyright (C) 2010 Intel Corporation.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use, copy,
* modify, merge, publish, distribute, sublicense, and/or sell copies
* of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*
*
* Authors:
* Robert Bragg <robert@linux.intel.com>
*/
#if !defined(__COGL_H_INSIDE__) && !defined(COGL_COMPILATION)
#error "Only <cogl/cogl.h> can be included directly."
#endif
#ifndef __COGL_INDICES_H__
#define __COGL_INDICES_H__
/* We forward declare the CoglIndices type here to avoid some circular
* dependency issues with the following headers.
*/
typedef struct _CoglIndices CoglIndices;
#include <cogl/cogl-index-buffer.h>
COGL_BEGIN_DECLS
/**
* SECTION:cogl-indices
* @short_description: Describe vertex indices stored in a #CoglIndexBuffer.
*
* Indices allow you to avoid duplicating vertices in your vertex data
* by virtualizing your data and instead providing a sequence of index
* values that tell the GPU which data should be used for each vertex.
*
* If the GPU is given a sequence of indices it doesn't simply walk
* through each vertex of your data in order it will instead walk
* through the indices which can provide random access to the
* underlying data.
*
* Since it's very common to have duplicate vertices when describing a
* shape as a list of triangles it can often be a significant space
* saving to describe geometry using indices. Reducing the size of
* your models can make it cheaper to map them into the GPU by
* reducing the demand on memory bandwidth and may help to make better
* use of your GPUs internal vertex caching.
*
* For example, to describe a quadrilateral as 2 triangles for the GPU
* you could either provide data with 6 vertices or instead with
* indices you can provide vertex data for just 4 vertices and an
* index buffer that specfies the 6 vertices by indexing the shared
* vertices multiple times.
*
* |[
* CoglVertex2f quad_vertices[] = {
* {x0, y0}, //0 = top left
* {x1, y1}, //1 = bottom left
* {x2, y2}, //2 = bottom right
* {x3, y3}, //3 = top right
* };
* //tell the gpu how to interpret the quad as 2 triangles...
* unsigned char indices[] = {0, 1, 2, 0, 2, 3};
* ]|
*
* Even in the above illustration we see a saving of 10bytes for one
* quad compared to having data for 6 vertices and no indices but if
* you need to draw 100s or 1000s of quads then its really quite
* significant.
*
* Something else to consider is that often indices can be defined
* once and remain static while the vertex data may change for
* animations perhaps. That means you may be able to ignore the
* negligable cost of mapping your indices into the GPU if they don't
* ever change.
*
* The above illustration is actually a good example of static indices
* because it's really common that developers have quad mesh data that
* they need to display and we know exactly what that indices array
* needs to look like depending on the number of quads that need to be
* drawn. It doesn't matter how the quads might be animated and
* changed the indices will remain the same. Cogl even has a utility
* (cogl_get_rectangle_indices()) to get access to re-useable indices
* for drawing quads as above.
*/
CoglIndices *
cogl_indices_new (CoglContext *context,
CoglIndicesType type,
const void *indices_data,
int n_indices);
CoglIndices *
cogl_indices_new_for_buffer (CoglIndicesType type,
CoglIndexBuffer *buffer,
size_t offset);
CoglIndexBuffer *
cogl_indices_get_buffer (CoglIndices *indices);
CoglIndicesType
cogl_indices_get_type (CoglIndices *indices);
size_t
cogl_indices_get_offset (CoglIndices *indices);
void
cogl_indices_set_offset (CoglIndices *indices,
size_t offset);
CoglIndices *
cogl_get_rectangle_indices (CoglContext *context, int n_rectangles);
/**
* cogl_is_indices:
* @object: A #CoglObject pointer
*
* Gets whether the given object references a #CoglIndices.
*
* Return value: %TRUE if the object references a #CoglIndices
* and %FALSE otherwise.
* Since: 1.10
* Stability: unstable
*/
CoglBool
cogl_is_indices (void *object);
COGL_END_DECLS
#endif /* __COGL_INDICES_H__ */