/* * Clutter. * * An OpenGL based 'interactive canvas' library. * * Copyright (C) 2010 Intel Corporation. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library. If not, see * . * * Authors: * Robert Bragg * Emmanuele Bassi */ #include "config.h" #include #include #include #include "clutter/clutter-actor-private.h" #include "clutter/clutter-paint-volume-private.h" #include "clutter/clutter-private.h" #include "clutter/clutter-stage-private.h" #include "clutter/clutter-actor-box-private.h" static void _clutter_paint_volume_axis_align (ClutterPaintVolume *pv); G_DEFINE_BOXED_TYPE (ClutterPaintVolume, clutter_paint_volume, clutter_paint_volume_copy, clutter_paint_volume_free); /* Since paint volumes are used so heavily in a typical paint * traversal of a Clutter scene graph and since paint volumes often * have a very short life cycle that maps well to stack allocation we * allow initializing a static ClutterPaintVolume variable to avoid * hammering the memory allocator. * * We were seeing slice allocation take about 1% cumulative CPU time * for some very simple clutter tests which although it isn't a *lot* * this is an easy way to basically drop that to 0%. * * The PaintVolume will be internally marked as static and * clutter_paint_volume_free should still be used to "free" static * volumes. This allows us to potentially store dynamically allocated * data inside paint volumes in the future since we would be able to * free it during _paint_volume_free(). */ void _clutter_paint_volume_init_static (ClutterPaintVolume *pv, ClutterActor *actor) { pv->actor = actor; memset (pv->vertices, 0, 8 * sizeof (graphene_point3d_t)); pv->is_static = TRUE; pv->is_empty = TRUE; pv->is_axis_aligned = TRUE; pv->is_complete = TRUE; pv->is_2d = TRUE; } void _clutter_paint_volume_copy_static (const ClutterPaintVolume *src_pv, ClutterPaintVolume *dst_pv) { g_return_if_fail (src_pv != NULL && dst_pv != NULL); memcpy (dst_pv, src_pv, sizeof (ClutterPaintVolume)); dst_pv->is_static = TRUE; } /** * clutter_paint_volume_copy: * @pv: a #ClutterPaintVolume * * Copies @pv into a new #ClutterPaintVolume * * Return value: a newly allocated copy of a #ClutterPaintVolume */ ClutterPaintVolume * clutter_paint_volume_copy (const ClutterPaintVolume *pv) { ClutterPaintVolume *copy; g_return_val_if_fail (pv != NULL, NULL); copy = g_memdup2 (pv, sizeof (ClutterPaintVolume)); copy->is_static = FALSE; return copy; } void _clutter_paint_volume_set_from_volume (ClutterPaintVolume *pv, const ClutterPaintVolume *src) { gboolean is_static = pv->is_static; memcpy (pv, src, sizeof (ClutterPaintVolume)); pv->is_static = is_static; } /** * clutter_paint_volume_free: * @pv: a #ClutterPaintVolume * * Frees the resources allocated by @pv */ void clutter_paint_volume_free (ClutterPaintVolume *pv) { g_return_if_fail (pv != NULL); if (G_LIKELY (pv->is_static)) return; g_free (pv); } /** * clutter_paint_volume_set_origin: * @pv: a #ClutterPaintVolume * @origin: a #graphene_point3d_t * * Sets the origin of the paint volume. * * The origin is defined as the X, Y and Z coordinates of the top-left * corner of an actor's paint volume, in actor coordinates. * * The default is origin is assumed at: (0, 0, 0) */ void clutter_paint_volume_set_origin (ClutterPaintVolume *pv, const graphene_point3d_t *origin) { static const int key_vertices[4] = { 0, 1, 3, 4 }; float dx, dy, dz; int i; g_return_if_fail (pv != NULL); dx = origin->x - pv->vertices[0].x; dy = origin->y - pv->vertices[0].y; dz = origin->z - pv->vertices[0].z; /* If we change the origin then all the key vertices of the paint * volume need to be shifted too... */ for (i = 0; i < 4; i++) { pv->vertices[key_vertices[i]].x += dx; pv->vertices[key_vertices[i]].y += dy; pv->vertices[key_vertices[i]].z += dz; } pv->is_complete = FALSE; } /** * clutter_paint_volume_get_origin: * @pv: a #ClutterPaintVolume * @vertex: (out): the return location for a #graphene_point3d_t * * Retrieves the origin of the #ClutterPaintVolume. */ void clutter_paint_volume_get_origin (const ClutterPaintVolume *pv, graphene_point3d_t *vertex) { g_return_if_fail (pv != NULL); g_return_if_fail (vertex != NULL); *vertex = pv->vertices[0]; } static void _clutter_paint_volume_update_is_empty (ClutterPaintVolume *pv) { if (pv->vertices[0].x == pv->vertices[1].x && pv->vertices[0].y == pv->vertices[3].y && pv->vertices[0].z == pv->vertices[4].z) pv->is_empty = TRUE; else pv->is_empty = FALSE; } /** * clutter_paint_volume_set_width: * @pv: a #ClutterPaintVolume * @width: the width of the paint volume, in pixels * * Sets the width of the paint volume. The width is measured along * the x axis in the actor coordinates that @pv is associated with. */ void clutter_paint_volume_set_width (ClutterPaintVolume *pv, gfloat width) { gfloat right_xpos; g_return_if_fail (pv != NULL); g_return_if_fail (width >= 0.0f); /* If the volume is currently empty then only the origin is * currently valid */ if (pv->is_empty) pv->vertices[1] = pv->vertices[3] = pv->vertices[4] = pv->vertices[0]; if (!pv->is_axis_aligned) _clutter_paint_volume_axis_align (pv); right_xpos = pv->vertices[0].x + width; /* Move the right vertices of the paint box relative to the * origin... */ pv->vertices[1].x = right_xpos; /* pv->vertices[2].x = right_xpos; NB: updated lazily */ /* pv->vertices[5].x = right_xpos; NB: updated lazily */ /* pv->vertices[6].x = right_xpos; NB: updated lazily */ pv->is_complete = FALSE; _clutter_paint_volume_update_is_empty (pv); } /** * clutter_paint_volume_get_width: * @pv: a #ClutterPaintVolume * * Retrieves the width of the volume's, axis aligned, bounding box. * * In other words; this takes into account what actor's coordinate * space @pv belongs too and conceptually fits an axis aligned box * around the volume. It returns the size of that bounding box as * measured along the x-axis. * * If, for example, [method@Actor.get_transformed_paint_volume] * is used to transform a 2D child actor that is 100px wide, 100px * high and 0px deep into container coordinates then the width might * not simply be 100px if the child actor has a 3D rotation applied to * it. * * Remember: if [method@Actor.get_transformed_paint_volume] is * used then a transformed child volume will be defined relative to the * ancestor container actor and so a 2D child actor can have a 3D * bounding volume. * * There are no accuracy guarantees for the reported width, * except that it must always be greater than, or equal to, the * actor's width. This is because actors may report simple, loose * fitting paint volumes for efficiency. * Return value: the width, in units of @pv's local coordinate system. */ gfloat clutter_paint_volume_get_width (const ClutterPaintVolume *pv) { g_return_val_if_fail (pv != NULL, 0.0); if (pv->is_empty) return 0; else if (!pv->is_axis_aligned) { ClutterPaintVolume tmp; float width; _clutter_paint_volume_copy_static (pv, &tmp); _clutter_paint_volume_axis_align (&tmp); width = tmp.vertices[1].x - tmp.vertices[0].x; clutter_paint_volume_free (&tmp); return width; } else return pv->vertices[1].x - pv->vertices[0].x; } /** * clutter_paint_volume_set_height: * @pv: a #ClutterPaintVolume * @height: the height of the paint volume, in pixels * * Sets the height of the paint volume. The height is measured along * the y axis in the actor coordinates that @pv is associated with. */ void clutter_paint_volume_set_height (ClutterPaintVolume *pv, gfloat height) { gfloat height_ypos; g_return_if_fail (pv != NULL); g_return_if_fail (height >= 0.0f); /* If the volume is currently empty then only the origin is * currently valid */ if (pv->is_empty) pv->vertices[1] = pv->vertices[3] = pv->vertices[4] = pv->vertices[0]; if (!pv->is_axis_aligned) _clutter_paint_volume_axis_align (pv); height_ypos = pv->vertices[0].y + height; /* Move the bottom vertices of the paint box relative to the * origin... */ /* pv->vertices[2].y = height_ypos; NB: updated lazily */ pv->vertices[3].y = height_ypos; /* pv->vertices[6].y = height_ypos; NB: updated lazily */ /* pv->vertices[7].y = height_ypos; NB: updated lazily */ pv->is_complete = FALSE; _clutter_paint_volume_update_is_empty (pv); } /** * clutter_paint_volume_get_height: * @pv: a #ClutterPaintVolume * * Retrieves the height of the volume's, axis aligned, bounding box. * * In other words; this takes into account what actor's coordinate * space @pv belongs too and conceptually fits an axis aligned box * around the volume. It returns the size of that bounding box as * measured along the y-axis. * * If, for example, [method@Actor.get_transformed_paint_volume] * is used to transform a 2D child actor that is 100px wide, 100px * high and 0px deep into container coordinates then the height might * not simply be 100px if the child actor has a 3D rotation applied to * it. * * Remember: if [method@Actor.get_transformed_paint_volume] is * used then a transformed child volume will be defined relative to the * ancestor container actor and so a 2D child actor * can have a 3D bounding volume. * * There are no accuracy guarantees for the reported height, * except that it must always be greater than, or equal to, the actor's * height. This is because actors may report simple, loose fitting paint * volumes for efficiency. * * Return value: the height, in units of @pv's local coordinate system. */ gfloat clutter_paint_volume_get_height (const ClutterPaintVolume *pv) { g_return_val_if_fail (pv != NULL, 0.0); if (pv->is_empty) return 0; else if (!pv->is_axis_aligned) { ClutterPaintVolume tmp; float height; _clutter_paint_volume_copy_static (pv, &tmp); _clutter_paint_volume_axis_align (&tmp); height = tmp.vertices[3].y - tmp.vertices[0].y; clutter_paint_volume_free (&tmp); return height; } else return pv->vertices[3].y - pv->vertices[0].y; } /** * clutter_paint_volume_set_depth: * @pv: a #ClutterPaintVolume * @depth: the depth of the paint volume, in pixels * * Sets the depth of the paint volume. The depth is measured along * the z axis in the actor coordinates that @pv is associated with. */ void clutter_paint_volume_set_depth (ClutterPaintVolume *pv, gfloat depth) { gfloat depth_zpos; g_return_if_fail (pv != NULL); g_return_if_fail (depth >= 0.0f); /* If the volume is currently empty then only the origin is * currently valid */ if (pv->is_empty) pv->vertices[1] = pv->vertices[3] = pv->vertices[4] = pv->vertices[0]; if (!pv->is_axis_aligned) _clutter_paint_volume_axis_align (pv); depth_zpos = pv->vertices[0].z + depth; /* Move the back vertices of the paint box relative to the * origin... */ pv->vertices[4].z = depth_zpos; /* pv->vertices[5].z = depth_zpos; NB: updated lazily */ /* pv->vertices[6].z = depth_zpos; NB: updated lazily */ /* pv->vertices[7].z = depth_zpos; NB: updated lazily */ pv->is_complete = FALSE; pv->is_2d = depth ? FALSE : TRUE; _clutter_paint_volume_update_is_empty (pv); } /** * clutter_paint_volume_get_depth: * @pv: a #ClutterPaintVolume * * Retrieves the depth of the volume's, axis aligned, bounding box. * * In other words; this takes into account what actor's coordinate * space @pv belongs too and conceptually fits an axis aligned box * around the volume. It returns the size of that bounding box as * measured along the z-axis. * * If, for example, [method@Actor.get_transformed_paint_volume] * is used to transform a 2D child actor that is 100px wide, 100px * high and 0px deep into container coordinates then the depth might * not simply be 0px if the child actor has a 3D rotation applied to * it. * * Remember: if [method@Actor.get_transformed_paint_volume] is * used then the transformed volume will be defined relative to the * container actor and in container coordinates a 2D child actor * can have a 3D bounding volume. * * There are no accuracy guarantees for the reported depth, * except that it must always be greater than, or equal to, the actor's * depth. This is because actors may report simple, loose fitting paint * volumes for efficiency. * * Return value: the depth, in units of @pv's local coordinate system. */ gfloat clutter_paint_volume_get_depth (const ClutterPaintVolume *pv) { g_return_val_if_fail (pv != NULL, 0.0); if (pv->is_empty) return 0; else if (!pv->is_axis_aligned) { ClutterPaintVolume tmp; float depth; _clutter_paint_volume_copy_static (pv, &tmp); _clutter_paint_volume_axis_align (&tmp); depth = tmp.vertices[4].z - tmp.vertices[0].z; clutter_paint_volume_free (&tmp); return depth; } else return pv->vertices[4].z - pv->vertices[0].z; } /** * clutter_paint_volume_union: * @pv: The first #ClutterPaintVolume and destination for resulting * union * @another_pv: A second #ClutterPaintVolume to union with @pv * * Updates the geometry of @pv to encompass @pv and @another_pv. * * There are no guarantees about how precisely the two volumes * will be unioned. */ void clutter_paint_volume_union (ClutterPaintVolume *pv, const ClutterPaintVolume *another_pv) { ClutterPaintVolume aligned_pv; graphene_point3d_t min; graphene_point3d_t max; graphene_box_t another_box; graphene_box_t union_box; graphene_box_t box; g_return_if_fail (pv != NULL); g_return_if_fail (another_pv != NULL); /* Both volumes have to belong to the same local coordinate space */ g_return_if_fail (pv->actor == another_pv->actor); /* We special case empty volumes because otherwise we'd end up * calculating a bounding box that would enclose the origin of * the empty volume which isn't desired. */ if (another_pv->is_empty) return; if (pv->is_empty) { _clutter_paint_volume_set_from_volume (pv, another_pv); goto done; } if (!pv->is_axis_aligned) _clutter_paint_volume_axis_align (pv); _clutter_paint_volume_complete (pv); if (!another_pv->is_axis_aligned || !another_pv->is_complete) { _clutter_paint_volume_copy_static (another_pv, &aligned_pv); _clutter_paint_volume_axis_align (&aligned_pv); _clutter_paint_volume_complete (&aligned_pv); another_pv = &aligned_pv; } if (G_LIKELY (pv->is_2d)) graphene_box_init_from_points (&box, 4, pv->vertices); else graphene_box_init_from_points (&box, 8, pv->vertices); if (G_LIKELY (another_pv->is_2d)) graphene_box_init_from_points (&another_box, 4, another_pv->vertices); else graphene_box_init_from_points (&another_box, 8, another_pv->vertices); graphene_box_union (&box, &another_box, &union_box); graphene_box_get_min (&union_box, &min); graphene_box_get_max (&union_box, &max); graphene_point3d_init (&pv->vertices[0], min.x, min.y, min.z); graphene_point3d_init (&pv->vertices[1], max.x, min.y, min.z); graphene_point3d_init (&pv->vertices[3], min.x, max.y, min.z); graphene_point3d_init (&pv->vertices[4], min.x, min.y, max.z); if (pv->vertices[4].z == pv->vertices[0].z) pv->is_2d = TRUE; else pv->is_2d = FALSE; done: pv->is_empty = FALSE; pv->is_complete = FALSE; } /** * clutter_paint_volume_union_box: * @pv: a #ClutterPaintVolume * @box: a #ClutterActorBox to union to @pv * * Unions the 2D region represented by @box to a #ClutterPaintVolume. * * This function is similar to [method@PaintVolume.union], but it is * specific for 2D regions. */ void clutter_paint_volume_union_box (ClutterPaintVolume *pv, const ClutterActorBox *box) { ClutterPaintVolume volume; graphene_point3d_t origin; g_return_if_fail (pv != NULL); g_return_if_fail (box != NULL); _clutter_paint_volume_init_static (&volume, pv->actor); origin.x = box->x1; origin.y = box->y1; origin.z = 0.f; clutter_paint_volume_set_origin (&volume, &origin); clutter_paint_volume_set_width (&volume, box->x2 - box->x1); clutter_paint_volume_set_height (&volume, box->y2 - box->y1); clutter_paint_volume_union (pv, &volume); clutter_paint_volume_free (&volume); } /* The paint_volume setters only update vertices 0, 1, 3 and * 4 since the others can be drived from them. * * This will set pv->completed = TRUE; */ void _clutter_paint_volume_complete (ClutterPaintVolume *pv) { float dx_l2r, dy_l2r, dz_l2r; float dx_t2b, dy_t2b, dz_t2b; if (pv->is_empty) return; if (pv->is_complete) return; /* Find the vector that takes us from any vertex on the left face to * the corresponding vertex on the right face. */ dx_l2r = pv->vertices[1].x - pv->vertices[0].x; dy_l2r = pv->vertices[1].y - pv->vertices[0].y; dz_l2r = pv->vertices[1].z - pv->vertices[0].z; /* Find the vector that takes us from any vertex on the top face to * the corresponding vertex on the bottom face. */ dx_t2b = pv->vertices[3].x - pv->vertices[0].x; dy_t2b = pv->vertices[3].y - pv->vertices[0].y; dz_t2b = pv->vertices[3].z - pv->vertices[0].z; /* front-bottom-right */ pv->vertices[2].x = pv->vertices[3].x + dx_l2r; pv->vertices[2].y = pv->vertices[3].y + dy_l2r; pv->vertices[2].z = pv->vertices[3].z + dz_l2r; if (G_UNLIKELY (!pv->is_2d)) { /* back-top-right */ pv->vertices[5].x = pv->vertices[4].x + dx_l2r; pv->vertices[5].y = pv->vertices[4].y + dy_l2r; pv->vertices[5].z = pv->vertices[4].z + dz_l2r; /* back-bottom-right */ pv->vertices[6].x = pv->vertices[5].x + dx_t2b; pv->vertices[6].y = pv->vertices[5].y + dy_t2b; pv->vertices[6].z = pv->vertices[5].z + dz_t2b; /* back-bottom-left */ pv->vertices[7].x = pv->vertices[4].x + dx_t2b; pv->vertices[7].y = pv->vertices[4].y + dy_t2b; pv->vertices[7].z = pv->vertices[4].z + dz_t2b; } pv->is_complete = TRUE; } /* * _clutter_paint_volume_get_box: * @pv: a #ClutterPaintVolume * @box: a pixel aligned #ClutterActorBox * * Transforms a 3D paint volume into a 2D bounding box in the * same coordinate space as the 3D paint volume. * * To get an actors "paint box" you should first project * the paint volume into window coordinates before getting * the 2D bounding box. * * The coordinates of the returned box are not clamped to * integer pixel values; if you need them to be rounded to the * nearest integer pixel values, you can use the * clutter_actor_box_clamp_to_pixel() function. */ void _clutter_paint_volume_get_bounding_box (ClutterPaintVolume *pv, ClutterActorBox *box) { gfloat x_min, y_min, x_max, y_max; graphene_point3d_t *vertices; int count; gint i; g_return_if_fail (pv != NULL); g_return_if_fail (box != NULL); if (pv->is_empty) { box->x1 = box->x2 = pv->vertices[0].x; box->y1 = box->y2 = pv->vertices[0].y; return; } /* Updates the vertices we calculate lazily * (See ClutterPaintVolume typedef for more details) */ _clutter_paint_volume_complete (pv); vertices = pv->vertices; x_min = x_max = vertices[0].x; y_min = y_max = vertices[0].y; /* Most actors are 2D so we only have to look at the front 4 * vertices of the paint volume... */ if (G_LIKELY (pv->is_2d)) count = 4; else count = 8; for (i = 1; i < count; i++) { if (vertices[i].x < x_min) x_min = vertices[i].x; else if (vertices[i].x > x_max) x_max = vertices[i].x; if (vertices[i].y < y_min) y_min = vertices[i].y; else if (vertices[i].y > y_max) y_max = vertices[i].y; } box->x1 = x_min; box->y1 = y_min; box->x2 = x_max; box->y2 = y_max; } static void _clutter_paint_volume_project (ClutterPaintVolume *pv, const graphene_matrix_t *modelview, const graphene_matrix_t *projection, const float *viewport) { int transform_count; if (pv->is_empty) { /* Just transform the origin... */ _clutter_util_fully_transform_vertices (modelview, projection, viewport, pv->vertices, pv->vertices, 1); return; } /* All the vertices must be up to date, since after the projection * it won't be trivial to derive the other vertices. */ _clutter_paint_volume_complete (pv); /* Most actors are 2D so we only have to transform the front 4 * vertices of the paint volume... */ if (G_LIKELY (pv->is_2d)) transform_count = 4; else transform_count = 8; _clutter_util_fully_transform_vertices (modelview, projection, viewport, pv->vertices, pv->vertices, transform_count); pv->is_axis_aligned = FALSE; } void _clutter_paint_volume_transform (ClutterPaintVolume *pv, const graphene_matrix_t *matrix) { int transform_count; if (pv->is_empty) { gfloat w = 1; /* Just transform the origin */ cogl_graphene_matrix_project_point (matrix, &pv->vertices[0].x, &pv->vertices[0].y, &pv->vertices[0].z, &w); return; } /* All the vertices must be up to date, since after the transform * it won't be trivial to derive the other vertices. */ _clutter_paint_volume_complete (pv); /* Most actors are 2D so we only have to transform the front 4 * vertices of the paint volume... */ if (G_LIKELY (pv->is_2d)) transform_count = 4; else transform_count = 8; cogl_graphene_matrix_transform_points (matrix, 3, sizeof (graphene_point3d_t), pv->vertices, sizeof (graphene_point3d_t), pv->vertices, transform_count); pv->is_axis_aligned = FALSE; } /* Given a paint volume that has been transformed by an arbitrary * modelview and is no longer axis aligned, this derives a replacement * that is axis aligned. */ static void _clutter_paint_volume_axis_align (ClutterPaintVolume *pv) { int count; int i; graphene_point3d_t origin; float max_x; float max_y; float max_z; g_return_if_fail (pv != NULL); if (pv->is_empty) return; if (G_LIKELY (pv->is_axis_aligned)) return; if (G_LIKELY (pv->vertices[0].x == pv->vertices[1].x && pv->vertices[0].y == pv->vertices[3].y && pv->vertices[0].z == pv->vertices[4].z)) { pv->is_axis_aligned = TRUE; return; } if (!pv->is_complete) _clutter_paint_volume_complete (pv); origin = pv->vertices[0]; max_x = pv->vertices[0].x; max_y = pv->vertices[0].y; max_z = pv->vertices[0].z; count = pv->is_2d ? 4 : 8; for (i = 1; i < count; i++) { if (pv->vertices[i].x < origin.x) origin.x = pv->vertices[i].x; else if (pv->vertices[i].x > max_x) max_x = pv->vertices[i].x; if (pv->vertices[i].y < origin.y) origin.y = pv->vertices[i].y; else if (pv->vertices[i].y > max_y) max_y = pv->vertices[i].y; if (pv->vertices[i].z < origin.z) origin.z = pv->vertices[i].z; else if (pv->vertices[i].z > max_z) max_z = pv->vertices[i].z; } pv->vertices[0] = origin; pv->vertices[1].x = max_x; pv->vertices[1].y = origin.y; pv->vertices[1].z = origin.z; pv->vertices[3].x = origin.x; pv->vertices[3].y = max_y; pv->vertices[3].z = origin.z; pv->vertices[4].x = origin.x; pv->vertices[4].y = origin.y; pv->vertices[4].z = max_z; pv->is_complete = FALSE; pv->is_axis_aligned = TRUE; if (pv->vertices[4].z == pv->vertices[0].z) pv->is_2d = TRUE; else pv->is_2d = FALSE; } /* * _clutter_actor_set_default_paint_volume: * @self: a #ClutterActor * @check_gtype: if not %G_TYPE_INVALID, match the type of @self against * this type * @volume: the #ClutterPaintVolume to set * * Sets the default paint volume for @self. * * This function should be called by #ClutterActor sub-classes that follow * the default assumption that their paint volume is defined by their * allocation. * * If @check_gtype is not %G_TYPE_INVALID, this function will check the * type of @self and only compute the paint volume if the type matches; * this can be used to avoid computing the paint volume for sub-classes * of an actor class * * Return value: %TRUE if the paint volume was set, and %FALSE otherwise */ gboolean _clutter_actor_set_default_paint_volume (ClutterActor *self, GType check_gtype, ClutterPaintVolume *volume) { ClutterActorBox box; if (check_gtype != G_TYPE_INVALID) { if (G_OBJECT_TYPE (self) != check_gtype) return FALSE; } /* calling clutter_actor_get_allocation_* can potentially be very * expensive, as it can result in a synchronous full stage relayout * and redraw */ if (!clutter_actor_has_allocation (self)) return FALSE; clutter_actor_get_allocation_box (self, &box); /* we only set the width and height, as the paint volume is defined * to be relative to the actor's modelview, which means that the * allocation's origin has already been applied */ clutter_paint_volume_set_width (volume, box.x2 - box.x1); clutter_paint_volume_set_height (volume, box.y2 - box.y1); return TRUE; } /** * clutter_paint_volume_set_from_allocation: * @pv: a #ClutterPaintVolume * @actor: a #ClutterActor * * Sets the #ClutterPaintVolume from the allocation of @actor. * * This function should be used when overriding the * [vfunc@Actor.get_paint_volume] by [class@Actor] sub-classes * that do not paint outside their allocation. * * A typical example is: * * ```c * static gboolean * my_actor_get_paint_volume (ClutterActor *self, * ClutterPaintVolume *volume) * { * return clutter_paint_volume_set_from_allocation (volume, self); * } * ``` * * Return value: %TRUE if the paint volume was successfully set, and %FALSE * otherwise */ gboolean clutter_paint_volume_set_from_allocation (ClutterPaintVolume *pv, ClutterActor *actor) { g_return_val_if_fail (pv != NULL, FALSE); g_return_val_if_fail (CLUTTER_IS_ACTOR (actor), FALSE); return _clutter_actor_set_default_paint_volume (actor, G_TYPE_INVALID, pv); } /* Currently paint volumes are defined relative to a given actor, but * in some cases it is desirable to be able to change the actor that * a volume relates too (For instance for ClutterClone actors where we * need to masquerade the source actors volume as the volume for the * clone). */ void _clutter_paint_volume_set_reference_actor (ClutterPaintVolume *pv, ClutterActor *actor) { g_return_if_fail (pv != NULL); pv->actor = actor; } ClutterCullResult _clutter_paint_volume_cull (ClutterPaintVolume *pv, const graphene_frustum_t *frustum) { int vertex_count; graphene_box_t box; if (pv->is_empty) return CLUTTER_CULL_RESULT_OUT; /* We expect the volume to already be transformed into eye coordinates */ g_return_val_if_fail (pv->is_complete == TRUE, CLUTTER_CULL_RESULT_IN); g_return_val_if_fail (pv->actor == NULL, CLUTTER_CULL_RESULT_IN); /* Most actors are 2D so we only have to transform the front 4 * vertices of the paint volume... */ if (G_LIKELY (pv->is_2d)) vertex_count = 4; else vertex_count = 8; graphene_box_init_from_points (&box, vertex_count, pv->vertices); if (graphene_frustum_intersects_box (frustum, &box)) return CLUTTER_CULL_RESULT_IN; else return CLUTTER_CULL_RESULT_OUT; } void _clutter_paint_volume_get_stage_paint_box (const ClutterPaintVolume *pv, ClutterStage *stage, ClutterActorBox *box) { ClutterPaintVolume projected_pv; graphene_matrix_t modelview; graphene_matrix_t projection; float viewport[4]; _clutter_paint_volume_copy_static (pv, &projected_pv); graphene_matrix_init_identity (&modelview); /* If the paint volume isn't already in eye coordinates... */ if (pv->actor) _clutter_actor_apply_relative_transformation_matrix (pv->actor, NULL, &modelview); _clutter_stage_get_projection_matrix (stage, &projection); _clutter_stage_get_viewport (stage, &viewport[0], &viewport[1], &viewport[2], &viewport[3]); _clutter_paint_volume_project (&projected_pv, &modelview, &projection, viewport); _clutter_paint_volume_get_bounding_box (&projected_pv, box); if (pv->is_2d && (!pv->actor || clutter_actor_get_z_position (pv->actor) == 0)) { /* If the volume/actor are perfectly 2D, take the bounding box as * good. We won't need to add any extra room for sub-pixel positioning * in this case. */ clutter_paint_volume_free (&projected_pv); clutter_round_to_256ths (&box->x1); clutter_round_to_256ths (&box->y1); clutter_round_to_256ths (&box->x2); clutter_round_to_256ths (&box->y2); box->x1 = floorf (box->x1); box->y1 = floorf (box->y1); box->x2 = ceilf (box->x2); box->y2 = ceilf (box->y2); return; } _clutter_actor_box_enlarge_for_effects (box); clutter_paint_volume_free (&projected_pv); } void _clutter_paint_volume_transform_relative (ClutterPaintVolume *pv, ClutterActor *relative_to_ancestor) { graphene_matrix_t matrix; ClutterActor *actor; actor = pv->actor; g_return_if_fail (actor != NULL); _clutter_paint_volume_set_reference_actor (pv, relative_to_ancestor); graphene_matrix_init_identity (&matrix); _clutter_actor_apply_relative_transformation_matrix (actor, relative_to_ancestor, &matrix); _clutter_paint_volume_transform (pv, &matrix); } void clutter_paint_volume_to_box (ClutterPaintVolume *pv, graphene_box_t *box) { int vertex_count; if (pv->is_empty) { graphene_box_init_from_box (box, graphene_box_empty ()); return; } _clutter_paint_volume_complete (pv); if (G_LIKELY (pv->is_2d)) vertex_count = 4; else vertex_count = 8; graphene_box_init_from_points (box, vertex_count, pv->vertices); }