/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */ /* * Copyright (C) 2017 Red Hat * Copyright (c) 2018 DisplayLink (UK) Ltd. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ #include "config.h" #include "backends/native/meta-gpu-kms.h" #include #include #include #include #include #include #include #include "backends/meta-crtc.h" #include "backends/meta-monitor-manager-private.h" #include "backends/meta-output.h" #include "backends/native/meta-backend-native.h" #include "backends/native/meta-crtc-kms.h" #include "backends/native/meta-kms-connector.h" #include "backends/native/meta-kms-device.h" #include "backends/native/meta-kms.h" #include "backends/native/meta-launcher.h" #include "backends/native/meta-output-kms.h" #include "meta-default-modes.h" typedef struct _MetaKmsSource { GSource source; gpointer fd_tag; MetaGpuKms *gpu_kms; } MetaKmsSource; typedef struct _MetaGpuKmsFlipClosureContainer { GClosure *flip_closure; MetaGpuKms *gpu_kms; MetaCrtc *crtc; } MetaGpuKmsFlipClosureContainer; struct _MetaGpuKms { MetaGpu parent; MetaKmsDevice *kms_device; uint32_t id; int fd; GSource *source; clockid_t clock_id; drmModeConnector **connectors; unsigned int n_connectors; gboolean resources_init_failed_before; }; G_DEFINE_TYPE (MetaGpuKms, meta_gpu_kms, META_TYPE_GPU) static gboolean kms_event_check (GSource *source) { MetaKmsSource *kms_source = (MetaKmsSource *) source; return g_source_query_unix_fd (source, kms_source->fd_tag) & G_IO_IN; } static gboolean kms_event_dispatch (GSource *source, GSourceFunc callback, gpointer user_data) { MetaKmsSource *kms_source = (MetaKmsSource *) source; meta_gpu_kms_wait_for_flip (kms_source->gpu_kms, NULL); return G_SOURCE_CONTINUE; } static GSourceFuncs kms_event_funcs = { NULL, kms_event_check, kms_event_dispatch }; static void get_crtc_drm_connectors (MetaGpu *gpu, MetaCrtc *crtc, uint32_t **connectors, unsigned int *n_connectors) { GArray *connectors_array = g_array_new (FALSE, FALSE, sizeof (uint32_t)); GList *l; for (l = meta_gpu_get_outputs (gpu); l; l = l->next) { MetaOutput *output = l->data; MetaCrtc *assigned_crtc; assigned_crtc = meta_output_get_assigned_crtc (output); if (assigned_crtc == crtc) { uint32_t connector_id; connector_id = meta_output_kms_get_connector_id (output); g_array_append_val (connectors_array, connector_id); } } *n_connectors = connectors_array->len; *connectors = (uint32_t *) g_array_free (connectors_array, FALSE); } gboolean meta_gpu_kms_apply_crtc_mode (MetaGpuKms *gpu_kms, MetaCrtc *crtc, int x, int y, uint32_t fb_id) { MetaGpu *gpu = meta_crtc_get_gpu (crtc); int kms_fd = meta_gpu_kms_get_fd (gpu_kms); uint32_t *connectors; unsigned int n_connectors; drmModeModeInfo *mode; get_crtc_drm_connectors (gpu, crtc, &connectors, &n_connectors); if (connectors) mode = crtc->current_mode->driver_private; else mode = NULL; if (drmModeSetCrtc (kms_fd, crtc->crtc_id, fb_id, x, y, connectors, n_connectors, mode) != 0) { if (mode) g_warning ("Failed to set CRTC mode %s: %m", crtc->current_mode->name); else g_warning ("Failed to disable CRTC"); g_free (connectors); return FALSE; } g_free (connectors); return TRUE; } static void invoke_flip_closure (GClosure *flip_closure, MetaGpuKms *gpu_kms, MetaCrtc *crtc, int64_t page_flip_time_ns) { GValue params[] = { G_VALUE_INIT, G_VALUE_INIT, G_VALUE_INIT, G_VALUE_INIT, }; g_value_init (¶ms[0], G_TYPE_POINTER); g_value_set_pointer (¶ms[0], flip_closure); g_value_init (¶ms[1], G_TYPE_OBJECT); g_value_set_object (¶ms[1], gpu_kms); g_value_init (¶ms[2], G_TYPE_OBJECT); g_value_set_object (¶ms[2], crtc); g_value_init (¶ms[3], G_TYPE_INT64); g_value_set_int64 (¶ms[3], page_flip_time_ns); g_closure_invoke (flip_closure, NULL, 4, params, NULL); } gboolean meta_gpu_kms_is_crtc_active (MetaGpuKms *gpu_kms, MetaCrtc *crtc) { MetaGpu *gpu = META_GPU (gpu_kms); MetaBackend *backend = meta_gpu_get_backend (gpu); MetaMonitorManager *monitor_manager = meta_backend_get_monitor_manager (backend); GList *l; gboolean connected_crtc_found; g_assert (meta_crtc_get_gpu (crtc) == META_GPU (gpu_kms)); if (meta_monitor_manager_get_power_save_mode (monitor_manager)) return FALSE; connected_crtc_found = FALSE; for (l = meta_gpu_get_outputs (gpu); l; l = l->next) { MetaOutput *output = l->data; MetaCrtc *assigned_crtc; assigned_crtc = meta_output_get_assigned_crtc (output); if (assigned_crtc == crtc) { connected_crtc_found = TRUE; break; } } if (!connected_crtc_found) return FALSE; return TRUE; } MetaGpuKmsFlipClosureContainer * meta_gpu_kms_wrap_flip_closure (MetaGpuKms *gpu_kms, MetaCrtc *crtc, GClosure *flip_closure) { MetaGpuKmsFlipClosureContainer *closure_container; closure_container = g_new0 (MetaGpuKmsFlipClosureContainer, 1); *closure_container = (MetaGpuKmsFlipClosureContainer) { .flip_closure = g_closure_ref (flip_closure), .gpu_kms = gpu_kms, .crtc = crtc }; return closure_container; } void meta_gpu_kms_flip_closure_container_free (MetaGpuKmsFlipClosureContainer *closure_container) { g_closure_unref (closure_container->flip_closure); g_free (closure_container); } gboolean meta_gpu_kms_flip_crtc (MetaGpuKms *gpu_kms, MetaCrtc *crtc, uint32_t fb_id, GClosure *flip_closure, GError **error) { MetaGpu *gpu = META_GPU (gpu_kms); MetaBackend *backend = meta_gpu_get_backend (gpu); MetaMonitorManager *monitor_manager = meta_backend_get_monitor_manager (backend); MetaGpuKmsFlipClosureContainer *closure_container; int kms_fd = meta_gpu_kms_get_fd (gpu_kms); uint32_t *connectors; unsigned int n_connectors; int ret = -1; g_assert (meta_crtc_get_gpu (crtc) == gpu); g_assert (monitor_manager); g_assert (meta_monitor_manager_get_power_save_mode (monitor_manager) == META_POWER_SAVE_ON); get_crtc_drm_connectors (gpu, crtc, &connectors, &n_connectors); g_assert (n_connectors > 0); g_free (connectors); g_assert (fb_id != 0); closure_container = meta_gpu_kms_wrap_flip_closure (gpu_kms, crtc, flip_closure); ret = drmModePageFlip (kms_fd, crtc->crtc_id, fb_id, DRM_MODE_PAGE_FLIP_EVENT, closure_container); if (ret != 0) { meta_gpu_kms_flip_closure_container_free (closure_container); g_set_error (error, G_IO_ERROR, g_io_error_from_errno (-ret), "drmModePageFlip failed: %s", g_strerror (-ret)); return FALSE; } return TRUE; } static int64_t timespec_to_nanoseconds (const struct timespec *ts) { const int64_t one_billion = 1000000000; return ((int64_t) ts->tv_sec) * one_billion + ts->tv_nsec; } static int64_t timeval_to_nanoseconds (const struct timeval *tv) { int64_t usec = ((int64_t) tv->tv_sec) * G_USEC_PER_SEC + tv->tv_usec; int64_t nsec = usec * 1000; return nsec; } static void page_flip_handler (int fd, unsigned int frame, unsigned int sec, unsigned int usec, void *user_data) { MetaGpuKmsFlipClosureContainer *closure_container = user_data; GClosure *flip_closure = closure_container->flip_closure; MetaGpuKms *gpu_kms = closure_container->gpu_kms; struct timeval page_flip_time = {sec, usec}; invoke_flip_closure (flip_closure, gpu_kms, closure_container->crtc, timeval_to_nanoseconds (&page_flip_time)); meta_gpu_kms_flip_closure_container_free (closure_container); } gboolean meta_gpu_kms_wait_for_flip (MetaGpuKms *gpu_kms, GError **error) { drmEventContext evctx; memset (&evctx, 0, sizeof evctx); evctx.version = 2; evctx.page_flip_handler = page_flip_handler; while (TRUE) { if (drmHandleEvent (gpu_kms->fd, &evctx) != 0) { struct pollfd pfd; int ret; if (errno != EAGAIN) { g_set_error_literal (error, G_IO_ERROR, G_IO_ERROR_FAILED, strerror (errno)); return FALSE; } pfd.fd = gpu_kms->fd; pfd.events = POLL_IN | POLL_ERR; do { ret = poll (&pfd, 1, -1); } while (ret == -1 && errno == EINTR); } else { break; } } return TRUE; } int meta_gpu_kms_get_fd (MetaGpuKms *gpu_kms) { return gpu_kms->fd; } uint32_t meta_gpu_kms_get_id (MetaGpuKms *gpu_kms) { return gpu_kms->id; } const char * meta_gpu_kms_get_file_path (MetaGpuKms *gpu_kms) { return meta_kms_device_get_path (gpu_kms->kms_device); } int64_t meta_gpu_kms_get_current_time_ns (MetaGpuKms *gpu_kms) { struct timespec ts; if (clock_gettime (gpu_kms->clock_id, &ts)) return 0; return timespec_to_nanoseconds (&ts); } void meta_gpu_kms_set_power_save_mode (MetaGpuKms *gpu_kms, uint64_t state) { GList *l; for (l = meta_gpu_get_outputs (META_GPU (gpu_kms)); l; l = l->next) { MetaOutput *output = l->data; meta_output_kms_set_power_save_mode (output, state); } } gboolean meta_gpu_kms_is_boot_vga (MetaGpuKms *gpu_kms) { MetaKmsDeviceFlag flags; flags = meta_kms_device_get_flags (gpu_kms->kms_device); return !!(flags & META_KMS_DEVICE_FLAG_BOOT_VGA); } gboolean meta_gpu_kms_is_platform_device (MetaGpuKms *gpu_kms) { MetaKmsDeviceFlag flags; flags = meta_kms_device_get_flags (gpu_kms->kms_device); return !!(flags & META_KMS_DEVICE_FLAG_PLATFORM_DEVICE); } static void free_resources (MetaGpuKms *gpu_kms) { unsigned i; for (i = 0; i < gpu_kms->n_connectors; i++) drmModeFreeConnector (gpu_kms->connectors[i]); g_free (gpu_kms->connectors); } static int compare_outputs (gconstpointer one, gconstpointer two) { const MetaOutput *o_one = one, *o_two = two; return strcmp (o_one->name, o_two->name); } static void meta_crtc_mode_destroy_notify (MetaCrtcMode *mode) { g_slice_free (drmModeModeInfo, mode->driver_private); } gboolean meta_drm_mode_equal (const drmModeModeInfo *one, const drmModeModeInfo *two) { return (one->clock == two->clock && one->hdisplay == two->hdisplay && one->hsync_start == two->hsync_start && one->hsync_end == two->hsync_end && one->htotal == two->htotal && one->hskew == two->hskew && one->vdisplay == two->vdisplay && one->vsync_start == two->vsync_start && one->vsync_end == two->vsync_end && one->vtotal == two->vtotal && one->vscan == two->vscan && one->vrefresh == two->vrefresh && one->flags == two->flags && one->type == two->type && strncmp (one->name, two->name, DRM_DISPLAY_MODE_LEN) == 0); } static guint drm_mode_hash (gconstpointer ptr) { const drmModeModeInfo *mode = ptr; guint hash = 0; /* * We don't include the name in the hash because it's generally * derived from the other fields (hdisplay, vdisplay and flags) */ hash ^= mode->clock; hash ^= mode->hdisplay ^ mode->hsync_start ^ mode->hsync_end; hash ^= mode->vdisplay ^ mode->vsync_start ^ mode->vsync_end; hash ^= mode->vrefresh; hash ^= mode->flags ^ mode->type; return hash; } MetaCrtcMode * meta_gpu_kms_get_mode_from_drm_mode (MetaGpuKms *gpu_kms, const drmModeModeInfo *drm_mode) { MetaGpu *gpu = META_GPU (gpu_kms); GList *l; for (l = meta_gpu_get_modes (gpu); l; l = l->next) { MetaCrtcMode *mode = l->data; if (meta_drm_mode_equal (drm_mode, mode->driver_private)) return mode; } g_assert_not_reached (); return NULL; } float meta_calculate_drm_mode_refresh_rate (const drmModeModeInfo *mode) { float refresh = 0.0; if (mode->htotal > 0 && mode->vtotal > 0) { /* Calculate refresh rate in milliHz first for extra precision. */ refresh = (mode->clock * 1000000LL) / mode->htotal; refresh += (mode->vtotal / 2); refresh /= mode->vtotal; if (mode->vscan > 1) refresh /= mode->vscan; refresh /= 1000.0; } return refresh; } static MetaCrtcMode * create_mode (const drmModeModeInfo *drm_mode, long mode_id) { MetaCrtcMode *mode; mode = g_object_new (META_TYPE_CRTC_MODE, NULL); mode->mode_id = mode_id; mode->name = g_strndup (drm_mode->name, DRM_DISPLAY_MODE_LEN); mode->width = drm_mode->hdisplay; mode->height = drm_mode->vdisplay; mode->flags = drm_mode->flags; mode->refresh_rate = meta_calculate_drm_mode_refresh_rate (drm_mode); mode->driver_private = g_slice_dup (drmModeModeInfo, drm_mode); mode->driver_notify = (GDestroyNotify) meta_crtc_mode_destroy_notify; return mode; } static MetaOutput * find_output_by_connector_id (GList *outputs, uint32_t connector_id) { GList *l; for (l = outputs; l; l = l->next) { MetaOutput *output = l->data; if (meta_output_kms_get_connector_id (output) == connector_id) return output; } return NULL; } static void setup_output_clones (MetaGpu *gpu) { GList *l; for (l = meta_gpu_get_outputs (gpu); l; l = l->next) { MetaOutput *output = l->data; GList *k; for (k = meta_gpu_get_outputs (gpu); k; k = k->next) { MetaOutput *other_output = k->data; if (other_output == output) continue; if (meta_output_kms_can_clone (output, other_output)) { output->n_possible_clones++; output->possible_clones = g_renew (MetaOutput *, output->possible_clones, output->n_possible_clones); output->possible_clones[output->n_possible_clones - 1] = other_output; } } } } static void init_connectors (MetaGpuKms *gpu_kms, drmModeRes *resources) { unsigned int i; gpu_kms->n_connectors = resources->count_connectors; gpu_kms->connectors = g_new (drmModeConnector *, gpu_kms->n_connectors); for (i = 0; i < gpu_kms->n_connectors; i++) { drmModeConnector *drm_connector; drm_connector = drmModeGetConnector (gpu_kms->fd, resources->connectors[i]); gpu_kms->connectors[i] = drm_connector; } } static void init_modes (MetaGpuKms *gpu_kms, drmModeRes *resources) { MetaGpu *gpu = META_GPU (gpu_kms); GHashTable *modes_table; GList *modes; GHashTableIter iter; drmModeModeInfo *drm_mode; unsigned int i; long mode_id; /* * Gather all modes on all connected connectors. */ modes_table = g_hash_table_new (drm_mode_hash, (GEqualFunc) meta_drm_mode_equal); for (i = 0; i < gpu_kms->n_connectors; i++) { drmModeConnector *drm_connector; drm_connector = gpu_kms->connectors[i]; if (drm_connector && drm_connector->connection == DRM_MODE_CONNECTED) { unsigned int j; for (j = 0; j < (unsigned int) drm_connector->count_modes; j++) g_hash_table_add (modes_table, &drm_connector->modes[j]); } } modes = NULL; g_hash_table_iter_init (&iter, modes_table); mode_id = 0; while (g_hash_table_iter_next (&iter, NULL, (gpointer *) &drm_mode)) { MetaCrtcMode *mode; mode = create_mode (drm_mode, (long) mode_id); modes = g_list_append (modes, mode); mode_id++; } g_hash_table_destroy (modes_table); for (i = 0; i < G_N_ELEMENTS (meta_default_landscape_drm_mode_infos); i++) { MetaCrtcMode *mode; mode = create_mode (&meta_default_landscape_drm_mode_infos[i], mode_id); modes = g_list_append (modes, mode); mode_id++; } for (i = 0; i < G_N_ELEMENTS (meta_default_portrait_drm_mode_infos); i++) { MetaCrtcMode *mode; mode = create_mode (&meta_default_portrait_drm_mode_infos[i], mode_id); modes = g_list_append (modes, mode); mode_id++; } meta_gpu_take_modes (gpu, modes); } static void init_crtcs (MetaGpuKms *gpu_kms) { MetaGpu *gpu = META_GPU (gpu_kms); MetaKmsDevice *kms_device = gpu_kms->kms_device; GList *l; GList *crtcs; crtcs = NULL; for (l = meta_kms_device_get_crtcs (kms_device); l; l = l->next) { MetaKmsCrtc *kms_crtc = l->data; MetaCrtc *crtc; crtc = meta_create_kms_crtc (gpu_kms, kms_crtc); crtcs = g_list_append (crtcs, crtc); } meta_gpu_take_crtcs (gpu, crtcs); } static void init_frame_clock (MetaGpuKms *gpu_kms) { uint64_t uses_monotonic; if (drmGetCap (gpu_kms->fd, DRM_CAP_TIMESTAMP_MONOTONIC, &uses_monotonic) != 0) uses_monotonic = 0; gpu_kms->clock_id = uses_monotonic ? CLOCK_MONOTONIC : CLOCK_REALTIME; } static void init_outputs (MetaGpuKms *gpu_kms) { MetaGpu *gpu = META_GPU (gpu_kms); GList *old_outputs; GList *outputs; unsigned int i; GList *l; old_outputs = meta_gpu_get_outputs (gpu); outputs = NULL; i = 0; for (l = meta_kms_device_get_connectors (gpu_kms->kms_device); l; l = l->next) { MetaKmsConnector *kms_connector = l->data; MetaOutput *output; MetaOutput *old_output; GError *error = NULL; drmModeConnector *connector; connector = gpu_kms->connectors[i++]; if (!connector || connector->connection != DRM_MODE_CONNECTED) continue; old_output = find_output_by_connector_id (old_outputs, meta_kms_connector_get_id (kms_connector)); output = meta_create_kms_output (gpu_kms, kms_connector, connector, old_output, &error); if (!output) { g_warning ("Failed to create KMS output: %s", error->message); g_error_free (error); } else { outputs = g_list_prepend (outputs, output); } } /* Sort the outputs for easier handling in MetaMonitorConfig */ outputs = g_list_sort (outputs, compare_outputs); meta_gpu_take_outputs (gpu, outputs); setup_output_clones (gpu); } static gboolean meta_kms_resources_init (MetaKmsResources *resources, int fd, GError **error) { drmModeRes *drm_resources; unsigned int i; drm_resources = drmModeGetResources (fd); if (!drm_resources) { g_set_error (error, G_IO_ERROR, G_IO_ERROR_FAILED, "Calling drmModeGetResources() failed"); return FALSE; } resources->resources = drm_resources; resources->n_encoders = (unsigned int) drm_resources->count_encoders; resources->encoders = g_new (drmModeEncoder *, resources->n_encoders); for (i = 0; i < resources->n_encoders; i++) resources->encoders[i] = drmModeGetEncoder (fd, drm_resources->encoders[i]); return TRUE; } static void meta_kms_resources_release (MetaKmsResources *resources) { unsigned int i; for (i = 0; i < resources->n_encoders; i++) drmModeFreeEncoder (resources->encoders[i]); g_free (resources->encoders); g_clear_pointer (&resources->resources, drmModeFreeResources); } static gboolean meta_gpu_kms_read_current (MetaGpu *gpu, GError **error) { MetaGpuKms *gpu_kms = META_GPU_KMS (gpu); MetaKmsResources resources; g_autoptr (GError) local_error = NULL; if (!meta_kms_resources_init (&resources, gpu_kms->fd, &local_error)) { if (!gpu_kms->resources_init_failed_before) { g_warning ("meta_kms_resources_init failed: %s, assuming we have no outputs", local_error->message); gpu_kms->resources_init_failed_before = TRUE; } return TRUE; } /* Note: we must not free the public structures (output, crtc, monitor mode and monitor info) here, they must be kept alive until the API users are done with them after we emit monitors-changed, and thus are freed by the platform-independent layer. */ free_resources (gpu_kms); init_connectors (gpu_kms, resources.resources); init_modes (gpu_kms, resources.resources); init_crtcs (gpu_kms); init_outputs (gpu_kms); init_frame_clock (gpu_kms); meta_kms_resources_release (&resources); return TRUE; } gboolean meta_gpu_kms_can_have_outputs (MetaGpuKms *gpu_kms) { return gpu_kms->n_connectors > 0; } MetaGpuKms * meta_gpu_kms_new (MetaBackendNative *backend_native, MetaKmsDevice *kms_device, GError **error) { GSource *source; MetaKmsSource *kms_source; MetaGpuKms *gpu_kms; int kms_fd; kms_fd = meta_kms_device_leak_fd (kms_device); gpu_kms = g_object_new (META_TYPE_GPU_KMS, "backend", backend_native, NULL); gpu_kms->kms_device = kms_device; gpu_kms->fd = kms_fd; meta_gpu_kms_read_current (META_GPU (gpu_kms), NULL); source = g_source_new (&kms_event_funcs, sizeof (MetaKmsSource)); kms_source = (MetaKmsSource *) source; kms_source->fd_tag = g_source_add_unix_fd (source, gpu_kms->fd, G_IO_IN | G_IO_ERR); kms_source->gpu_kms = gpu_kms; gpu_kms->source = source; g_source_attach (gpu_kms->source, NULL); return gpu_kms; } static void meta_gpu_kms_finalize (GObject *object) { MetaGpuKms *gpu_kms = META_GPU_KMS (object); g_source_destroy (gpu_kms->source); free_resources (gpu_kms); G_OBJECT_CLASS (meta_gpu_kms_parent_class)->finalize (object); } static void meta_gpu_kms_init (MetaGpuKms *gpu_kms) { static uint32_t id = 0; gpu_kms->fd = -1; gpu_kms->id = ++id; } static void meta_gpu_kms_class_init (MetaGpuKmsClass *klass) { GObjectClass *object_class = G_OBJECT_CLASS (klass); MetaGpuClass *gpu_class = META_GPU_CLASS (klass); object_class->finalize = meta_gpu_kms_finalize; gpu_class->read_current = meta_gpu_kms_read_current; }