/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */ /* * MetaShadowFactory: * * Create and cache shadow textures for abritrary window shapes * * Copyright (C) 2010 Red Hat, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. */ #include #include #include #include "meta-shadow-factory.h" #include "region-utils.h" /* This file implements blurring the shape of a window to produce a * shadow texture. The details are discussed below; a quick summary * of the optimizations we use: * * - If the window shape is along the lines of a rounded rectangle - * a rectangular center portion with stuff at the corners - then * the blur of this - the shadow - can also be represented as a * 9-sliced texture and the same texture can be used for different * size. * * - We use the fact that a Gaussian blur is separable to do a * 2D blur as 1D blur of the rows followed by a 1D blur of the * columns. * * - For better cache efficiency, we blur rows, transpose the image * in blocks, blur rows again, and then transpose back. * * - We approximate the 1D gaussian blur as 3 successive box filters. */ typedef struct _MetaShadowCacheKey MetaShadowCacheKey; struct _MetaShadowCacheKey { MetaWindowShape *shape; int radius; }; struct _MetaShadow { int ref_count; MetaShadowFactory *factory; MetaShadowCacheKey key; CoglHandle texture; CoglHandle material; int spread; int border_top; int border_right; int border_bottom; int border_left; }; struct _MetaShadowFactory { /* MetaShadowCacheKey => MetaShadow; the shadows are not referenced * by the factory, they are simply removed from the table when freed */ GHashTable *shadows; }; static guint meta_shadow_cache_key_hash (gconstpointer val) { const MetaShadowCacheKey *key = val; return 59 * key->radius + 67 * meta_window_shape_hash (key->shape); } static gboolean meta_shadow_cache_key_equal (gconstpointer a, gconstpointer b) { const MetaShadowCacheKey *key_a = a; const MetaShadowCacheKey *key_b = b; return (key_a->radius == key_b->radius && meta_window_shape_equal (key_a->shape, key_b->shape)); } MetaShadow * meta_shadow_ref (MetaShadow *shadow) { shadow->ref_count++; return shadow; } void meta_shadow_unref (MetaShadow *shadow) { shadow->ref_count--; if (shadow->ref_count == 0) { if (shadow->factory) { g_hash_table_remove (shadow->factory->shadows, &shadow->key); } meta_window_shape_unref (shadow->key.shape); cogl_handle_unref (shadow->texture); cogl_handle_unref (shadow->material); g_slice_free (MetaShadow, shadow); } } /** * meta_shadow_paint: * @window_x: x position of the region to paint a shadow for * @window_y: y position of the region to paint a shadow for * @window_width: actual width of the region to paint a shadow for * @window_height: actual height of the region to paint a shadow for * * Paints the shadow at the given position, for the specified actual * size of the region. (Since a #MetaShadow can be shared between * different sizes with the same extracted #MetaWindowShape the * size needs to be passed in here.) */ void meta_shadow_paint (MetaShadow *shadow, int window_x, int window_y, int window_width, int window_height, guint8 opacity) { float texture_width = cogl_texture_get_width (shadow->texture); float texture_height = cogl_texture_get_height (shadow->texture); int i, j; cogl_material_set_color4ub (shadow->material, opacity, opacity, opacity, opacity); cogl_set_source (shadow->material); if (window_width + 2 * shadow->spread == shadow->border_left && window_height + 2 * shadow->spread == shadow->border_top) { /* The non-scaled case - paint with a single rectangle */ cogl_rectangle_with_texture_coords (window_x - shadow->spread, window_y - shadow->spread, window_x + window_width + shadow->spread, window_y + window_height + shadow->spread, 0.0, 0.0, 1.0, 1.0); } else { float src_x[4]; float src_y[4]; float dest_x[4]; float dest_y[4]; src_x[0] = 0.0; src_x[1] = shadow->border_left / texture_width; src_x[2] = (texture_width - shadow->border_right) / texture_width; src_x[3] = 1.0; src_y[0] = 0.0; src_y[1] = shadow->border_top / texture_height; src_y[2] = (texture_height - shadow->border_bottom) / texture_height; src_y[3] = 1.0; dest_x[0] = window_x - shadow->spread; dest_x[1] = window_x - shadow->spread + shadow->border_left; dest_x[2] = window_x + window_width + shadow->spread - shadow->border_right; dest_x[3] = window_x + window_width + shadow->spread; dest_y[0] = window_y - shadow->spread; dest_y[1] = window_y - shadow->spread + shadow->border_top; dest_y[2] = window_y + window_height + shadow->spread - shadow->border_bottom; dest_y[3] = window_y + window_height + shadow->spread; for (j = 0; j < 3; j++) for (i = 0; i < 3; i++) cogl_rectangle_with_texture_coords (dest_x[i], dest_y[j], dest_x[i + 1], dest_y[j + 1], src_x[i], src_y[j], src_x[i + 1], src_y[j + 1]); } } /** * meta_shadow_get_bounds: * @shadow: a #MetaShadow * @window_x: x position of the region to paint a shadow for * @window_y: y position of the region to paint a shadow for * @window_width: actual width of the region to paint a shadow for * @window_height: actual height of the region to paint a shadow for * * Computes the bounds of the pixels that will be affected by * meta_shadow_paints() */ void meta_shadow_get_bounds (MetaShadow *shadow, int window_x, int window_y, int window_width, int window_height, cairo_rectangle_int_t *bounds) { bounds->x = window_x - shadow->spread; bounds->y = window_x - shadow->spread; bounds->width = window_width + 2 * shadow->spread; bounds->height = window_width + 2 * shadow->spread; } MetaShadowFactory * meta_shadow_factory_new (void) { MetaShadowFactory *factory; factory = g_slice_new0 (MetaShadowFactory); factory->shadows = g_hash_table_new (meta_shadow_cache_key_hash, meta_shadow_cache_key_equal); return factory; } void meta_shadow_factory_free (MetaShadowFactory *factory) { GHashTableIter iter; gpointer key, value; /* Detach from the shadows in the table so we won't try to * remove them when they freed. */ g_hash_table_iter_init (&iter, factory->shadows); while (g_hash_table_iter_next (&iter, &key, &value)) { MetaShadow *shadow = key; shadow->factory = NULL; } g_hash_table_destroy (factory->shadows); g_slice_free (MetaShadowFactory, factory); } MetaShadowFactory * meta_shadow_factory_get_default (void) { static MetaShadowFactory *factory; if (factory == NULL) factory = meta_shadow_factory_new (); return factory; } /* We emulate a 1D Gaussian blur by using 3 consecutive box blurs; * this produces a result that's within 3% of the original and can be * implemented much faster for large filter sizes because of the * efficiency of implementation of a box blur. Idea and formula * for choosing the box blur size come from: * * http://www.w3.org/TR/SVG/filters.html#feGaussianBlurElement * * The 2D blur is then done by blurring the rows, flipping the * image and blurring the columns. (This is possible because the * Gaussian kernel is separable - it's the product of a horizontal * blur and a vertical blur.) */ static int get_box_filter_size (int radius) { return (int)(0.5 + radius * (0.75 * sqrt(2*M_PI))); } /* The "spread" of the filter is the number of pixels from an original * pixel that it's blurred image extends. (A no-op blur that doesn't * blur would have a spread of 0.) See comment in blur_rows() for why the * odd and even cases are different */ static int get_shadow_spread (int radius) { int d = get_box_filter_size (radius); if (d % 2 == 1) return 3 * (d / 2); else return 3 * (d / 2) - 1; } /* This applies a single box blur pass to a horizontal range of pixels; * since the box blur has the same weight for all pixels, we can * implement an efficient sliding window algorithm where we add * in pixels coming into the window from the right and remove * them when they leave the windw to the left. * * d is the filter width; for even d shift indicates how the blurred * result is aligned with the original - does ' x ' go to ' yy' (shift=1) * or 'yy ' (shift=-1) */ static void blur_xspan (guchar *row, guchar *tmp_buffer, int row_width, int x0, int x1, int d, int shift) { int offset; int sum = 0; int i; if (d % 2 == 1) offset = d / 2; else offset = (d - shift) / 2; /* All the conditionals in here look slow, but the branches will * be well predicted and there are enough different possibilities * that trying to write this as a series of unconditional loops * is hard and not an obvious win. The main slow down here seems * to be the integer division for pixel; one possible optimization * would be to accumulate into two 16-bit integer buffers and * only divide down after all three passes. (SSE parallel implementation * of the divide step is possible.) */ for (i = x0 - d + offset; i < x1 + offset; i++) { if (i >= 0 && i < row_width) sum += row[i]; if (i >= x0 + offset) { if (i >= d) sum -= row[i - d]; tmp_buffer[i - offset] = (sum + d / 2) / d; } } memcpy(row + x0, tmp_buffer + x0, x1 - x0); } static void blur_rows (cairo_region_t *convolve_region, int x_offset, int y_offset, guchar *buffer, int buffer_width, int buffer_height, int d) { int i, j; int n_rectangles; guchar *tmp_buffer; tmp_buffer = g_malloc (buffer_width); n_rectangles = cairo_region_num_rectangles (convolve_region); for (i = 0; i < n_rectangles; i++) { cairo_rectangle_int_t rect; cairo_region_get_rectangle (convolve_region, i, &rect); for (j = y_offset + rect.y; j < y_offset + rect.y + rect.height; j++) { guchar *row = buffer + j * buffer_width; int x0 = x_offset + rect.x; int x1 = x0 + rect.width; /* We want to produce a symmetric blur that spreads a pixel * equally far to the left and right. If d is odd that happens * naturally, but for d even, we approximate by using a blur * on either side and then a centered blur of size d + 1. * (techique also from the SVG specification) */ if (d % 2 == 1) { blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 0); blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 0); blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 0); } else { blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, 1); blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d, -1); blur_xspan (row, tmp_buffer, buffer_width, x0, x1, d + 1, 0); } } } g_free (tmp_buffer); } /* Swaps width and height. Either swaps in-place and returns the original * buffer or allocates a new buffer, frees the original buffer and returns * the new buffer. */ static guchar * flip_buffer (guchar *buffer, int width, int height) { /* Working in blocks increases cache efficiency, compared to reading * or writing an entire column at once */ #define BLOCK_SIZE 16 if (width == height) { int i0, j0; for (j0 = 0; j0 < height; j0 += BLOCK_SIZE) for (i0 = 0; i0 <= j0; i0 += BLOCK_SIZE) { int max_j = MIN(j0 + BLOCK_SIZE, height); int max_i = MIN(i0 + BLOCK_SIZE, width); int i, j; if (i0 == j0) { for (j = j0; j < max_j; j++) for (i = i0; i < j; i++) { guchar tmp = buffer[j * width + i]; buffer[j * width + i] = buffer[i * width + j]; buffer[i * width + j] = tmp; } } else { for (j = j0; j < max_j; j++) for (i = i0; i < max_i; i++) { guchar tmp = buffer[j * width + i]; buffer[j * width + i] = buffer[i * width + j]; buffer[i * width + j] = tmp; } } } return buffer; } else { guchar *new_buffer = g_malloc (height * width); int i0, j0; for (i0 = 0; i0 < width; i0 += BLOCK_SIZE) for (j0 = 0; j0 < height; j0 += BLOCK_SIZE) { int max_j = MIN(j0 + BLOCK_SIZE, height); int max_i = MIN(i0 + BLOCK_SIZE, width); int i, j; for (i = i0; i < max_i; i++) for (j = j0; j < max_j; j++) new_buffer[i * height + j] = buffer[j * width + i]; } g_free (buffer); return new_buffer; } #undef BLOCK_SIZE } static CoglHandle make_shadow (cairo_region_t *region, int radius) { int d = get_box_filter_size (radius); int spread = get_shadow_spread (radius); CoglHandle result; cairo_rectangle_int_t extents; cairo_region_t *row_convolve_region; cairo_region_t *column_convolve_region; guchar *buffer; int buffer_width; int buffer_height; int n_rectangles, j, k; cairo_region_get_extents (region, &extents); buffer_width = extents.width + 2 * spread; buffer_height = extents.height + 2 * spread; /* Round up so we have aligned rows/columns */ buffer_width = (buffer_width + 3) & ~3; buffer_height = (buffer_height + 3) & ~3; /* Square buffer allows in-place swaps, which are roughly 70% faster, but we * don't want to over-allocate too much memory. */ if (buffer_height < buffer_width && buffer_height > (3 * buffer_width) / 4) buffer_height = buffer_width; if (buffer_width < buffer_height && buffer_width > (3 * buffer_height) / 4) buffer_width = buffer_height; buffer = g_malloc0 (buffer_width * buffer_height); /* Blurring with multiple box-blur passes is fast, but (especially for * large shadow sizes) we can improve efficiency by restricting the blur * to the region that actually needs to be blurred. */ row_convolve_region = meta_make_border_region (region, spread, 0, FALSE); column_convolve_region = meta_make_border_region (region, spread, spread, TRUE); /* Step 1: unblurred image */ n_rectangles = cairo_region_num_rectangles (region); for (k = 0; k < n_rectangles; k++) { cairo_rectangle_int_t rect; cairo_region_get_rectangle (region, k, &rect); for (j = spread + rect.y; j < spread + rect.y + rect.height; j++) memset (buffer + buffer_width * j + spread + rect.x, 255, rect.width); } /* Step 2: blur rows */ blur_rows (row_convolve_region, spread, spread, buffer, buffer_width, buffer_height, d); /* Step 2: swap rows and columns */ buffer = flip_buffer (buffer, buffer_width, buffer_height); /* Step 3: blur rows (really columns) */ blur_rows (column_convolve_region, spread, spread, buffer, buffer_height, buffer_width, d); /* Step 3: swap rows and columns */ buffer = flip_buffer (buffer, buffer_height, buffer_width); result = cogl_texture_new_from_data (extents.width + 2 * spread, extents.height + 2 * spread, COGL_TEXTURE_NONE, COGL_PIXEL_FORMAT_A_8, COGL_PIXEL_FORMAT_ANY, buffer_width, buffer); cairo_region_destroy (row_convolve_region); cairo_region_destroy (column_convolve_region); g_free (buffer); return result; } /** * meta_shadow_factory_get_shadow: * @factory: a #MetaShadowFactory * @shape: the size-invariant shape of the window's region * @width: the actual width of the window's region * @width: the actual height of the window's region * @radius: the radius (gaussian standard deviation) of the shadow * * Gets the appropriate shadow object for drawing shadows for the * specified window shape. The region that we are shadowing is specified * as a combination of a size-invariant extracted shape and the size. * In some cases, the same shadow object can be shared between sizes; * in other cases a different shadow object is used for each size. * * Return value: (transfer full): a newly referenced #MetaShadow; unref with * meta_shadow_unref() */ MetaShadow * meta_shadow_factory_get_shadow (MetaShadowFactory *factory, MetaWindowShape *shape, int width, int height, int radius) { MetaShadowCacheKey key; MetaShadow *shadow; cairo_region_t *region; int spread; int border_top, border_right, border_bottom, border_left; gboolean cacheable; /* Using a single shadow texture for different window sizes only works * when there is a central scaled area that is greater than twice * the spread of the gaussian blur we are applying to get to the * shadow image. * ********* *********** * /----------\ *###########* *#############* * | | => **#*********#** => **#***********#** * | | **#** **#** **#** **#** * | | **#*********#** **#***********#** * \----------/ *###########* *#############* * ********** ************ * Original Blur Stretched Blur * * For smaller sizes, we create a separate shadow image for each size; * since we assume that there will be little reuse, we don't try to * cache such images but just recreate them. (Since the current cache * policy is to only keep around referenced shadows, there wouldn't * be any harm in caching them, it would just make the book-keeping * a bit tricker.) */ spread = get_shadow_spread (radius); meta_window_shape_get_borders (shape, &border_top, &border_right, &border_bottom, &border_left); cacheable = (border_top + 2 * spread + border_bottom <= height && border_left + 2 * spread + border_right <= width); if (cacheable) { key.shape = shape; key.radius = radius; shadow = g_hash_table_lookup (factory->shadows, &key); if (shadow) return meta_shadow_ref (shadow); } shadow = g_slice_new0 (MetaShadow); shadow->ref_count = 1; shadow->factory = factory; shadow->key.shape = meta_window_shape_ref (shape); shadow->key.radius = radius; shadow->spread = spread; if (cacheable) { shadow->border_top = border_top + 2 * spread; shadow->border_right += border_right + 2 * spread; shadow->border_bottom += border_bottom + 2 * spread; shadow->border_left += border_left + 2 * spread; region = meta_window_shape_to_region (shape, 2 * spread, 2 * spread); } else { /* In the non-scaled case, we put the entire shadow into the * upper-left-hand corner of the 9-slice */ shadow->border_top = height + 2 * spread; shadow->border_right = 0; shadow->border_bottom = 0; shadow->border_left = width + 2 * spread; region = meta_window_shape_to_region (shape, width - border_left - border_right, height - border_top - border_bottom); } shadow->texture = make_shadow (region, radius); shadow->material = cogl_material_new (); cogl_material_set_layer (shadow->material, 0, shadow->texture); cairo_region_destroy (region); if (cacheable) g_hash_table_insert (factory->shadows, &shadow->key, shadow); return shadow; }