/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */
/*
* Copyright (C) 2015 Red Hat
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see .
*
* Written by:
* Jonas Ådahl
*/
#include "config.h"
#include "core/meta-border.h"
#include
static inline float
meta_vector2_cross_product (const MetaVector2 a,
const MetaVector2 b)
{
return a.x * b.y - a.y * b.x;
}
static inline MetaVector2
meta_vector2_add (const MetaVector2 a,
const MetaVector2 b)
{
return (MetaVector2) {
.x = a.x + b.x,
.y = a.y + b.y,
};
}
static inline MetaVector2
meta_vector2_multiply_constant (const float c,
const MetaVector2 a)
{
return (MetaVector2) {
.x = c * a.x,
.y = c * a.y,
};
}
gboolean
meta_line2_intersects_with (const MetaLine2 *line1,
const MetaLine2 *line2,
MetaVector2 *intersection)
{
MetaVector2 p = line1->a;
MetaVector2 r = meta_vector2_subtract (line1->b, line1->a);
MetaVector2 q = line2->a;
MetaVector2 s = meta_vector2_subtract (line2->b, line2->a);
float rxs;
float sxr;
float t;
float u;
/*
* The line (p, r) and (q, s) intersects where
*
* p + t r = q + u s
*
* Calculate t:
*
* (p + t r) × s = (q + u s) × s
* p × s + t (r × s) = q × s + u (s × s)
* p × s + t (r × s) = q × s
* t (r × s) = q × s - p × s
* t (r × s) = (q - p) × s
* t = ((q - p) × s) / (r × s)
*
* Using the same method, for u we get:
*
* u = ((p - q) × r) / (s × r)
*/
rxs = meta_vector2_cross_product (r, s);
sxr = meta_vector2_cross_product (s, r);
/* If r × s = 0 then the lines are either parallel or collinear. */
if (fabsf (rxs) < FLT_MIN)
return FALSE;
t = meta_vector2_cross_product (meta_vector2_subtract (q, p), s) / rxs;
u = meta_vector2_cross_product (meta_vector2_subtract (p, q), r) / sxr;
/* The lines only intersect if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. */
if (t < 0.0 || t > 1.0 || u < 0.0 || u > 1.0)
return FALSE;
*intersection = meta_vector2_add (p, meta_vector2_multiply_constant (t, r));
return TRUE;
}
gboolean
meta_border_is_horizontal (MetaBorder *border)
{
return border->line.a.y == border->line.b.y;
}
gboolean
meta_border_is_blocking_directions (MetaBorder *border,
MetaBorderMotionDirection directions)
{
if (meta_border_is_horizontal (border))
{
if ((directions & (META_BORDER_MOTION_DIRECTION_POSITIVE_Y |
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y)) == 0)
return FALSE;
}
else
{
if ((directions & (META_BORDER_MOTION_DIRECTION_POSITIVE_X |
META_BORDER_MOTION_DIRECTION_NEGATIVE_X)) == 0)
return FALSE;
}
return (~border->blocking_directions & directions) != directions;
}
unsigned int
meta_border_get_allows_directions (MetaBorder *border)
{
return ~border->blocking_directions &
(META_BORDER_MOTION_DIRECTION_POSITIVE_X |
META_BORDER_MOTION_DIRECTION_POSITIVE_Y |
META_BORDER_MOTION_DIRECTION_NEGATIVE_X |
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}
void
meta_border_set_allows_directions (MetaBorder *border, unsigned int directions)
{
border->blocking_directions =
~directions & (META_BORDER_MOTION_DIRECTION_POSITIVE_X |
META_BORDER_MOTION_DIRECTION_POSITIVE_Y |
META_BORDER_MOTION_DIRECTION_NEGATIVE_X |
META_BORDER_MOTION_DIRECTION_NEGATIVE_Y);
}