/* -*- mode: C; c-file-style: "gnu"; indent-tabs-mode: nil; -*- */ /* * Copyright (C) 2015 Red Hat * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * Written by: * Jonas Ådahl */ #include "config.h" #include "core/meta-border.h" #include static inline float meta_vector2_cross_product (const MetaVector2 a, const MetaVector2 b) { return a.x * b.y - a.y * b.x; } static inline MetaVector2 meta_vector2_add (const MetaVector2 a, const MetaVector2 b) { return (MetaVector2) { .x = a.x + b.x, .y = a.y + b.y, }; } static inline MetaVector2 meta_vector2_multiply_constant (const float c, const MetaVector2 a) { return (MetaVector2) { .x = c * a.x, .y = c * a.y, }; } gboolean meta_line2_intersects_with (const MetaLine2 *line1, const MetaLine2 *line2, MetaVector2 *intersection) { MetaVector2 p = line1->a; MetaVector2 r = meta_vector2_subtract (line1->b, line1->a); MetaVector2 q = line2->a; MetaVector2 s = meta_vector2_subtract (line2->b, line2->a); float rxs; float sxr; float t; float u; /* * The line (p, r) and (q, s) intersects where * * p + t r = q + u s * * Calculate t: * * (p + t r) × s = (q + u s) × s * p × s + t (r × s) = q × s + u (s × s) * p × s + t (r × s) = q × s * t (r × s) = q × s - p × s * t (r × s) = (q - p) × s * t = ((q - p) × s) / (r × s) * * Using the same method, for u we get: * * u = ((p - q) × r) / (s × r) */ rxs = meta_vector2_cross_product (r, s); sxr = meta_vector2_cross_product (s, r); /* If r × s = 0 then the lines are either parallel or collinear. */ if (fabsf (rxs) < FLT_MIN) return FALSE; t = meta_vector2_cross_product (meta_vector2_subtract (q, p), s) / rxs; u = meta_vector2_cross_product (meta_vector2_subtract (p, q), r) / sxr; /* The lines only intersect if 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1. */ if (t < 0.0 || t > 1.0 || u < 0.0 || u > 1.0) return FALSE; *intersection = meta_vector2_add (p, meta_vector2_multiply_constant (t, r)); return TRUE; } gboolean meta_border_is_horizontal (MetaBorder *border) { return border->line.a.y == border->line.b.y; } gboolean meta_border_is_blocking_directions (MetaBorder *border, MetaBorderMotionDirection directions) { if (meta_border_is_horizontal (border)) { if ((directions & (META_BORDER_MOTION_DIRECTION_POSITIVE_Y | META_BORDER_MOTION_DIRECTION_NEGATIVE_Y)) == 0) return FALSE; } else { if ((directions & (META_BORDER_MOTION_DIRECTION_POSITIVE_X | META_BORDER_MOTION_DIRECTION_NEGATIVE_X)) == 0) return FALSE; } return (~border->blocking_directions & directions) != directions; } unsigned int meta_border_get_allows_directions (MetaBorder *border) { return ~border->blocking_directions & (META_BORDER_MOTION_DIRECTION_POSITIVE_X | META_BORDER_MOTION_DIRECTION_POSITIVE_Y | META_BORDER_MOTION_DIRECTION_NEGATIVE_X | META_BORDER_MOTION_DIRECTION_NEGATIVE_Y); } void meta_border_set_allows_directions (MetaBorder *border, unsigned int directions) { border->blocking_directions = ~directions & (META_BORDER_MOTION_DIRECTION_POSITIVE_X | META_BORDER_MOTION_DIRECTION_POSITIVE_Y | META_BORDER_MOTION_DIRECTION_NEGATIVE_X | META_BORDER_MOTION_DIRECTION_NEGATIVE_Y); }