/*
* Cogl
*
* An object oriented GL/GLES Abstraction/Utility Layer
*
* Copyright (C) 2007,2008,2009 Intel Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see .
*
*
*/
#if !defined(__COGL_H_INSIDE__) && !defined(CLUTTER_COMPILATION)
#error "Only can be included directly."
#endif
#ifndef __COGL_PIPELINE_H__
#define __COGL_PIPELINE_H__
G_BEGIN_DECLS
#include
#include
/**
* SECTION:cogl-pipeline
* @short_description: Functions for creating and manipulating the GPU
* pipeline
*
* Cogl allows creating and manipulating objects representing the full
* configuration of the GPU pipeline. In simplified terms the GPU
* pipeline takes primitive geometry as the input, it first performs
* vertex processing, allowing you to deform your geometry, then
* rasterizes that (turning it from pure geometry into fragments) then
* performs fragment processing including depth testing and texture
* mapping. Finally it blends the result with the framebuffer.
*/
typedef struct _CoglPipeline CoglPipeline;
#define COGL_PIPELINE(OBJECT) ((CoglPipeline *)OBJECT)
/**
* CoglPipelineFilter:
* @COGL_PIPELINE_FILTER_NEAREST: Measuring in manhatten distance from the,
* current pixel center, use the nearest texture texel
* @COGL_PIPELINE_FILTER_LINEAR: Use the weighted average of the 4 texels
* nearest the current pixel center
* @COGL_PIPELINE_FILTER_NEAREST_MIPMAP_NEAREST: Select the mimap level whose
* texel size most closely matches the current pixel, and use the
* %COGL_PIPELINE_FILTER_NEAREST criterion
* @COGL_PIPELINE_FILTER_LINEAR_MIPMAP_NEAREST: Select the mimap level whose
* texel size most closely matches the current pixel, and use the
* %COGL_PIPELINE_FILTER_LINEAR criterion
* @COGL_PIPELINE_FILTER_NEAREST_MIPMAP_LINEAR: Select the two mimap levels
* whose texel size most closely matches the current pixel, use
* the %COGL_PIPELINE_FILTER_NEAREST criterion on each one and take
* their weighted average
* @COGL_PIPELINE_FILTER_LINEAR_MIPMAP_LINEAR: Select the two mimap levels
* whose texel size most closely matches the current pixel, use
* the %COGL_PIPELINE_FILTER_LINEAR criterion on each one and take
* their weighted average
*
* Texture filtering is used whenever the current pixel maps either to more
* than one texture element (texel) or less than one. These filter enums
* correspond to different strategies used to come up with a pixel color, by
* possibly referring to multiple neighbouring texels and taking a weighted
* average or simply using the nearest texel.
*/
typedef enum {
COGL_PIPELINE_FILTER_NEAREST = 0x2600,
COGL_PIPELINE_FILTER_LINEAR = 0x2601,
COGL_PIPELINE_FILTER_NEAREST_MIPMAP_NEAREST = 0x2700,
COGL_PIPELINE_FILTER_LINEAR_MIPMAP_NEAREST = 0x2701,
COGL_PIPELINE_FILTER_NEAREST_MIPMAP_LINEAR = 0x2702,
COGL_PIPELINE_FILTER_LINEAR_MIPMAP_LINEAR = 0x2703
} CoglPipelineFilter;
/* NB: these values come from the equivalents in gl.h */
/**
* CoglPipelineWrapMode:
* @COGL_PIPELINE_WRAP_MODE_REPEAT: The texture will be repeated. This
* is useful for example to draw a tiled background.
* @COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE: The coordinates outside the
* range 0→1 will sample copies of the edge pixels of the
* texture. This is useful to avoid artifacts if only one copy of
* the texture is being rendered.
* @COGL_PIPELINE_WRAP_MODE_AUTOMATIC: Cogl will try to automatically
* decide which of the above two to use. For cogl_rectangle(), it
* will use repeat mode if any of the texture coordinates are
* outside the range 0→1, otherwise it will use clamp to edge. For
* cogl_polygon() it will always use repeat mode. For
* cogl_vertex_buffer_draw() it will use repeat mode except for
* layers that have point sprite coordinate generation enabled. This
* is the default value.
*
* The wrap mode specifies what happens when texture coordinates
* outside the range 0→1 are used. Note that if the filter mode is
* anything but %COGL_PIPELINE_FILTER_NEAREST then texels outside the
* range 0→1 might be used even when the coordinate is exactly 0 or 1
* because OpenGL will try to sample neighbouring pixels. For example
* if you are trying to render the full texture then you may get
* artifacts around the edges when the pixels from the other side are
* merged in if the wrap mode is set to repeat.
*
* Since: 2.0
*/
/* GL_ALWAYS is just used here as a value that is known not to clash
* with any valid GL wrap modes
*
* XXX: keep the values in sync with the CoglPipelineWrapModeInternal
* enum so no conversion is actually needed.
*/
typedef enum {
COGL_PIPELINE_WRAP_MODE_REPEAT = 0x2901,
COGL_PIPELINE_WRAP_MODE_CLAMP_TO_EDGE = 0x812F,
COGL_PIPELINE_WRAP_MODE_AUTOMATIC = 0x0207
} CoglPipelineWrapMode;
/* NB: these values come from the equivalents in gl.h */
/**
* cogl_pipeline_new:
*
* Allocates and initializes a default simple pipeline that will color
* a primitive white.
*
* Return value: a pointer to a new #CoglPipeline
*/
CoglPipeline *
cogl_pipeline_new (void);
/**
* cogl_pipeline_copy:
* @source: a #CoglPipeline object to copy
*
* Creates a new pipeline with the configuration copied from the
* source pipeline.
*
* We would strongly advise developers to always aim to use
* cogl_pipeline_copy() instead of cogl_pipeline_new() whenever there will
* be any similarity between two pipelines. Copying a pipeline helps Cogl
* keep track of a pipelines ancestry which we may use to help minimize GPU
* state changes.
*
* Returns: a pointer to the newly allocated #CoglPipeline
*
* Since: 2.0
*/
CoglPipeline *
cogl_pipeline_copy (CoglPipeline *source);
/**
* cogl_is_pipeline:
* @handle: A CoglHandle
*
* Gets whether the given handle references an existing pipeline object.
*
* Return value: %TRUE if the handle references a #CoglPipeline,
* %FALSE otherwise
*/
gboolean
cogl_is_pipeline (CoglHandle handle);
/**
* cogl_pipeline_set_color:
* @pipeline: A #CoglPipeline object
* @color: The components of the color
*
* Sets the basic color of the pipeline, used when no lighting is enabled.
*
* Note that if you don't add any layers to the pipeline then the color
* will be blended unmodified with the destination; the default blend
* expects premultiplied colors: for example, use (0.5, 0.0, 0.0, 0.5) for
* semi-transparent red. See cogl_color_premultiply().
*
* The default value is (1.0, 1.0, 1.0, 1.0)
*
* Since: 2.0
*/
void
cogl_pipeline_set_color (CoglPipeline *pipeline,
const CoglColor *color);
/**
* cogl_pipeline_set_color4ub:
* @pipeline: A #CoglPipeline object
* @red: The red component
* @green: The green component
* @blue: The blue component
* @alpha: The alpha component
*
* Sets the basic color of the pipeline, used when no lighting is enabled.
*
* The default value is (0xff, 0xff, 0xff, 0xff)
*
* Since: 2.0
*/
void
cogl_pipeline_set_color4ub (CoglPipeline *pipeline,
guint8 red,
guint8 green,
guint8 blue,
guint8 alpha);
/**
* cogl_pipeline_set_color4f:
* @pipeline: A #CoglPipeline object
* @red: The red component
* @green: The green component
* @blue: The blue component
* @alpha: The alpha component
*
* Sets the basic color of the pipeline, used when no lighting is enabled.
*
* The default value is (1.0, 1.0, 1.0, 1.0)
*
* Since: 2.0
*/
void
cogl_pipeline_set_color4f (CoglPipeline *pipeline,
float red,
float green,
float blue,
float alpha);
/**
* cogl_pipeline_get_color:
* @pipeline: A #CoglPipeline object
* @color: (out): The location to store the color
*
* Retrieves the current pipeline color.
*
* Since: 2.0
*/
void
cogl_pipeline_get_color (CoglPipeline *pipeline,
CoglColor *color);
/**
* cogl_pipeline_set_ambient:
* @pipeline: A #CoglPipeline object
* @ambient: The components of the desired ambient color
*
* Sets the pipeline's ambient color, in the standard OpenGL lighting
* model. The ambient color affects the overall color of the object.
*
* Since the diffuse color will be intense when the light hits the surface
* directly, the ambient will be most apparent where the light hits at a
* slant.
*
* The default value is (0.2, 0.2, 0.2, 1.0)
*
* Since: 2.0
*/
void
cogl_pipeline_set_ambient (CoglPipeline *pipeline,
const CoglColor *ambient);
/**
* cogl_pipeline_get_ambient:
* @pipeline: A #CoglPipeline object
* @ambient: The location to store the ambient color
*
* Retrieves the current ambient color for @pipeline
*
* Since: 2.0
*/
void
cogl_pipeline_get_ambient (CoglPipeline *pipeline,
CoglColor *ambient);
/**
* cogl_pipeline_set_diffuse:
* @pipeline: A #CoglPipeline object
* @diffuse: The components of the desired diffuse color
*
* Sets the pipeline's diffuse color, in the standard OpenGL lighting
* model. The diffuse color is most intense where the light hits the
* surface directly - perpendicular to the surface.
*
* The default value is (0.8, 0.8, 0.8, 1.0)
*
* Since: 2.0
*/
void
cogl_pipeline_set_diffuse (CoglPipeline *pipeline,
const CoglColor *diffuse);
/**
* cogl_pipeline_get_diffuse:
* @pipeline: A #CoglPipeline object
* @diffuse: The location to store the diffuse color
*
* Retrieves the current diffuse color for @pipeline
*
* Since: 2.0
*/
void
cogl_pipeline_get_diffuse (CoglPipeline *pipeline,
CoglColor *diffuse);
/**
* cogl_pipeline_set_ambient_and_diffuse:
* @pipeline: A #CoglPipeline object
* @color: The components of the desired ambient and diffuse colors
*
* Conveniently sets the diffuse and ambient color of @pipeline at the same
* time. See cogl_pipeline_set_ambient() and cogl_pipeline_set_diffuse().
*
* The default ambient color is (0.2, 0.2, 0.2, 1.0)
*
* The default diffuse color is (0.8, 0.8, 0.8, 1.0)
*
* Since: 2.0
*/
void
cogl_pipeline_set_ambient_and_diffuse (CoglPipeline *pipeline,
const CoglColor *color);
/**
* cogl_pipeline_set_specular:
* @pipeline: A #CoglPipeline object
* @specular: The components of the desired specular color
*
* Sets the pipeline's specular color, in the standard OpenGL lighting
* model. The intensity of the specular color depends on the viewport
* position, and is brightest along the lines of reflection.
*
* The default value is (0.0, 0.0, 0.0, 1.0)
*
* Since: 2.0
*/
void
cogl_pipeline_set_specular (CoglPipeline *pipeline,
const CoglColor *specular);
/**
* cogl_pipeline_get_specular:
* @pipeline: A #CoglPipeline object
* @specular: The location to store the specular color
*
* Retrieves the pipelines current specular color.
*
* Since: 2.0
*/
void
cogl_pipeline_get_specular (CoglPipeline *pipeline,
CoglColor *specular);
/**
* cogl_pipeline_set_shininess:
* @pipeline: A #CoglPipeline object
* @shininess: The desired shininess; must be >= 0.0
*
* Sets the shininess of the pipeline, in the standard OpenGL lighting
* model, which determines the size of the specular highlights. A
* higher @shininess will produce smaller highlights which makes the
* object appear more shiny.
*
* The default value is 0.0
*
* Since: 2.0
*/
void
cogl_pipeline_set_shininess (CoglPipeline *pipeline,
float shininess);
/**
* cogl_pipeline_get_shininess:
* @pipeline: A #CoglPipeline object
*
* Retrieves the pipelines current emission color.
*
* Return value: The pipelines current shininess value
*
* Since: 2.0
*/
float
cogl_pipeline_get_shininess (CoglPipeline *pipeline);
/**
* cogl_pipeline_set_emission:
* @pipeline: A #CoglPipeline object
* @emission: The components of the desired emissive color
*
* Sets the pipeline's emissive color, in the standard OpenGL lighting
* model. It will look like the surface is a light source emitting this
* color.
*
* The default value is (0.0, 0.0, 0.0, 1.0)
*
* Since: 2.0
*/
void
cogl_pipeline_set_emission (CoglPipeline *pipeline,
const CoglColor *emission);
/**
* cogl_pipeline_get_emission:
* @pipeline: A #CoglPipeline object
* @emission: The location to store the emission color
*
* Retrieves the pipelines current emission color.
*
* Since: 2.0
*/
void
cogl_pipeline_get_emission (CoglPipeline *pipeline,
CoglColor *emission);
/**
* CoglPipelineAlphaFunc:
* @COGL_PIPELINE_ALPHA_FUNC_NEVER: Never let the fragment through.
* @COGL_PIPELINE_ALPHA_FUNC_LESS: Let the fragment through if the incoming
* alpha value is less than the reference alpha value
* @COGL_PIPELINE_ALPHA_FUNC_EQUAL: Let the fragment through if the incoming
* alpha value equals the reference alpha value
* @COGL_PIPELINE_ALPHA_FUNC_LEQUAL: Let the fragment through if the incoming
* alpha value is less than or equal to the reference alpha value
* @COGL_PIPELINE_ALPHA_FUNC_GREATER: Let the fragment through if the incoming
* alpha value is greater than the reference alpha value
* @COGL_PIPELINE_ALPHA_FUNC_NOTEQUAL: Let the fragment through if the incoming
* alpha value does not equal the reference alpha value
* @COGL_PIPELINE_ALPHA_FUNC_GEQUAL: Let the fragment through if the incoming
* alpha value is greater than or equal to the reference alpha value.
* @COGL_PIPELINE_ALPHA_FUNC_ALWAYS: Always let the fragment through.
*
* Alpha testing happens before blending primitives with the framebuffer and
* gives an opportunity to discard fragments based on a comparison with the
* incoming alpha value and a reference alpha value. The #CoglPipelineAlphaFunc
* determines how the comparison is done.
*/
typedef enum {
COGL_PIPELINE_ALPHA_FUNC_NEVER = 0x0200,
COGL_PIPELINE_ALPHA_FUNC_LESS = 0x0201,
COGL_PIPELINE_ALPHA_FUNC_EQUAL = 0x0202,
COGL_PIPELINE_ALPHA_FUNC_LEQUAL = 0x0203,
COGL_PIPELINE_ALPHA_FUNC_GREATER = 0x0204,
COGL_PIPELINE_ALPHA_FUNC_NOTEQUAL = 0x0205,
COGL_PIPELINE_ALPHA_FUNC_GEQUAL = 0x0206,
COGL_PIPELINE_ALPHA_FUNC_ALWAYS = 0x0207
} CoglPipelineAlphaFunc;
/* NB: these values come from the equivalents in gl.h */
/**
* cogl_pipeline_set_alpha_test_function:
* @pipeline: A #CoglPipeline object
* @alpha_func: A @CoglPipelineAlphaFunc constant
* @alpha_reference: A reference point that the chosen alpha function uses
* to compare incoming fragments to.
*
* Before a primitive is blended with the framebuffer, it goes through an
* alpha test stage which lets you discard fragments based on the current
* alpha value. This function lets you change the function used to evaluate
* the alpha channel, and thus determine which fragments are discarded
* and which continue on to the blending stage.
*
* The default is %COGL_PIPELINE_ALPHA_FUNC_ALWAYS
*
* Since: 2.0
*/
void
cogl_pipeline_set_alpha_test_function (CoglPipeline *pipeline,
CoglPipelineAlphaFunc alpha_func,
float alpha_reference);
/**
* cogl_pipeline_get_alpha_test_function:
* @pipeline: A #CoglPipeline object
*
* Return value: The alpha test function of @pipeline.
*
* Since: 2.0
*/
CoglPipelineAlphaFunc
cogl_pipeline_get_alpha_test_function (CoglPipeline *pipeline);
/**
* cogl_pipeline_get_alpha_test_reference:
* @pipeline: A #CoglPipeline object
*
* Return value: The alpha test reference value of @pipeline.
*
* Since: 2.0
*/
float
cogl_pipeline_get_alpha_test_reference (CoglPipeline *pipeline);
/**
* cogl_pipeline_set_blend:
* @pipeline: A #CoglPipeline object
* @blend_string: A Cogl blend string
* describing the desired blend function.
* @error: return location for a #GError that may report lack of driver
* support if you give separate blend string statements for the alpha
* channel and RGB channels since some drivers, or backends such as
* GLES 1.1, don't support this feature. May be %NULL, in which case a
* warning will be printed out using GLib's logging facilities if an
* error is encountered.
*
* If not already familiar; please refer here
* for an overview of what blend strings are, and their syntax.
*
* Blending occurs after the alpha test function, and combines fragments with
* the framebuffer.
* Currently the only blend function Cogl exposes is ADD(). So any valid
* blend statements will be of the form:
*
* |[
* <channel-mask>=ADD(SRC_COLOR*(<factor>), DST_COLOR*(<factor>))
* ]|
*
* This is the list of source-names usable as blend factors:
*
* SRC_COLOR: The color of the in comming fragment
* DST_COLOR: The color of the framebuffer
* CONSTANT: The constant set via cogl_pipeline_set_blend_constant()
*
*
* The source names can be used according to the
* color-source and factor syntax,
* so for example "(1-SRC_COLOR[A])" would be a valid factor, as would
* "(CONSTANT[RGB])"
*
* These can also be used as factors:
*
* 0: (0, 0, 0, 0)
* 1: (1, 1, 1, 1)
* SRC_ALPHA_SATURATE_FACTOR: (f,f,f,1) where f = MIN(SRC_COLOR[A],1-DST_COLOR[A])
*
*
* Remember; all color components are normalized to the range [0, 1]
* before computing the result of blending.
*
*
* Blend Strings/1
* Blend a non-premultiplied source over a destination with
* premultiplied alpha:
*
* "RGB = ADD(SRC_COLOR*(SRC_COLOR[A]), DST_COLOR*(1-SRC_COLOR[A]))"
* "A = ADD(SRC_COLOR, DST_COLOR*(1-SRC_COLOR[A]))"
*
*
*
*
* Blend Strings/2
* Blend a premultiplied source over a destination with
* premultiplied alpha
*
* "RGBA = ADD(SRC_COLOR, DST_COLOR*(1-SRC_COLOR[A]))"
*
*
*
* The default blend string is:
* |[
* RGBA = ADD (SRC_COLOR, DST_COLOR*(1-SRC_COLOR[A]))
* ]|
*
* That gives normal alpha-blending when the calculated color for the pipeline
* is in premultiplied form.
*
* Return value: %TRUE if the blend string was successfully parsed, and the
* described blending is supported by the underlying driver/hardware. If
* there was an error, %FALSE is returned and @error is set accordingly (if
* present).
*
* Since: 2.0
*/
gboolean
cogl_pipeline_set_blend (CoglPipeline *pipeline,
const char *blend_string,
GError **error);
/**
* cogl_pipeline_set_blend_constant:
* @pipeline: A #CoglPipeline object
* @constant_color: The constant color you want
*
* When blending is setup to reference a CONSTANT blend factor then
* blending will depend on the constant set with this function.
*
* Since: 2.0
*/
void
cogl_pipeline_set_blend_constant (CoglPipeline *pipeline,
const CoglColor *constant_color);
/**
* cogl_pipeline_set_point_size:
* @pipeline: a #CoglHandle to a pipeline.
* @point_size: the new point size.
*
* Changes the size of points drawn when %COGL_VERTICES_MODE_POINTS is
* used with the vertex buffer API. Note that typically the GPU will
* only support a limited minimum and maximum range of point sizes. If
* the chosen point size is outside that range then the nearest value
* within that range will be used instead. The size of a point is in
* screen space so it will be the same regardless of any
* transformations. The default point size is 1.0.
*
* Since: 2.0
*/
void
cogl_pipeline_set_point_size (CoglHandle pipeline,
float point_size);
/**
* cogl_pipeline_get_point_size:
* @pipeline: a #CoglHandle to a pipeline.
*
* Get the size of points drawn when %COGL_VERTICES_MODE_POINTS is
* used with the vertex buffer API.
*
* Return value: the point size of the pipeline.
*
* Since: 2.0
*/
float
cogl_pipeline_get_point_size (CoglHandle pipeline);
#define cogl_pipeline_get_color_mask cogl_pipeline_get_color_mask_EXP
/**
* cogl_pipeline_get_color_mask:
* @pipeline: a #CoglPipeline object.
*
* Gets the current #CoglColorMask of which channels would be written to the
* current framebuffer. Each bit set in the mask means that the
* corresponding color would be written.
*
* Returns: A #CoglColorMask
* Since: 1.8
* Stability: unstable
*/
CoglColorMask
cogl_pipeline_get_color_mask (CoglPipeline *pipeline);
#define cogl_pipeline_set_color_mask cogl_pipeline_set_color_mask_EXP
/**
* cogl_pipeline_set_color_mask:
* @pipeline: a #CoglPipeline object.
* @color_mask: A #CoglColorMask of which color channels to write to
* the current framebuffer.
*
* Defines a bit mask of which color channels should be written to the
* current framebuffer. If a bit is set in @color_mask that means that
* color will be written.
*
* Since: 1.8
* Stability: unstable
*/
void
cogl_pipeline_set_color_mask (CoglPipeline *pipeline,
CoglColorMask color_mask);
/**
* cogl_pipeline_get_user_program:
* @pipeline: a #CoglPipeline object.
*
* Queries what user program has been associated with the given
* @pipeline using cogl_pipeline_set_user_program().
*
* Return value: The current user program or %COGL_INVALID_HANDLE.
*
* Since: 2.0
*/
CoglHandle
cogl_pipeline_get_user_program (CoglPipeline *pipeline);
/**
* cogl_pipeline_set_user_program:
* @pipeline: a #CoglPipeline object.
* @program: A #CoglHandle to a linked CoglProgram
*
* Associates a linked CoglProgram with the given pipeline so that the
* program can take full control of vertex and/or fragment processing.
*
* This is an example of how it can be used to associate an ARBfp
* program with a #CoglPipeline:
* |[
* CoglHandle shader;
* CoglHandle program;
* CoglPipeline *pipeline;
*
* shader = cogl_create_shader (COGL_SHADER_TYPE_FRAGMENT);
* cogl_shader_source (shader,
* "!!ARBfp1.0\n"
* "MOV result.color,fragment.color;\n"
* "END\n");
* cogl_shader_compile (shader);
*
* program = cogl_create_program ();
* cogl_program_attach_shader (program, shader);
* cogl_program_link (program);
*
* pipeline = cogl_pipeline_new ();
* cogl_pipeline_set_user_program (pipeline, program);
*
* cogl_set_source_color4ub (0xff, 0x00, 0x00, 0xff);
* cogl_rectangle (0, 0, 100, 100);
* ]|
*
* It is possibly worth keeping in mind that this API is not part of
* the long term design for how we want to expose shaders to Cogl
* developers (We are planning on deprecating the cogl_program and
* cogl_shader APIs in favour of a "snippet" framework) but in the
* meantime we hope this will handle most practical GLSL and ARBfp
* requirements.
*
* Also remember you need to check for either the
* %COGL_FEATURE_SHADERS_GLSL or %COGL_FEATURE_SHADERS_ARBFP before
* using the cogl_program or cogl_shader API.
*
* Since: 2.0
*/
void
cogl_pipeline_set_user_program (CoglPipeline *pipeline,
CoglHandle program);
/**
* cogl_pipeline_set_layer:
* @pipeline: A #CoglPipeline object
* @layer_index: the index of the layer
* @texture: a #CoglHandle for the layer object
*
* In addition to the standard OpenGL lighting model a Cogl pipeline may have
* one or more layers comprised of textures that can be blended together in
* order, with a number of different texture combine modes. This function
* defines a new texture layer.
*
* The index values of multiple layers do not have to be consecutive; it is
* only their relative order that is important.
*
* In the future, we may define other types of pipeline layers, such
* as purely GLSL based layers.
*
* Since: 2.0
*/
void
cogl_pipeline_set_layer_texture (CoglPipeline *pipeline,
int layer_index,
CoglHandle texture);
/**
* cogl_pipeline_remove_layer:
* @pipeline: A #CoglPipeline object
* @layer_index: Specifies the layer you want to remove
*
* This function removes a layer from your pipeline
*/
void
cogl_pipeline_remove_layer (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_combine:
* @pipeline: A #CoglPipeline object
* @layer_index: Specifies the layer you want define a combine function for
* @blend_string: A Cogl blend string
* describing the desired texture combine function.
* @error: A #GError that may report parse errors or lack of GPU/driver
* support. May be %NULL, in which case a warning will be printed out if an
* error is encountered.
*
* If not already familiar; you can refer
* here for an overview of what blend
* strings are and there syntax.
*
* These are all the functions available for texture combining:
*
* REPLACE(arg0) = arg0
* MODULATE(arg0, arg1) = arg0 x arg1
* ADD(arg0, arg1) = arg0 + arg1
* ADD_SIGNED(arg0, arg1) = arg0 + arg1 - 0.5
* INTERPOLATE(arg0, arg1, arg2) = arg0 x arg2 + arg1 x (1 - arg2)
* SUBTRACT(arg0, arg1) = arg0 - arg1
*
*
* DOT3_RGB(arg0, arg1) = 4 x ((arg0[R] - 0.5)) * (arg1[R] - 0.5) +
* (arg0[G] - 0.5)) * (arg1[G] - 0.5) +
* (arg0[B] - 0.5)) * (arg1[B] - 0.5))
*
*
*
*
* DOT3_RGBA(arg0, arg1) = 4 x ((arg0[R] - 0.5)) * (arg1[R] - 0.5) +
* (arg0[G] - 0.5)) * (arg1[G] - 0.5) +
* (arg0[B] - 0.5)) * (arg1[B] - 0.5))
*
*
*
*
* Refer to the
* color-source syntax for
* describing the arguments. The valid source names for texture combining
* are:
*
*
* TEXTURE
* Use the color from the current texture layer
*
*
* TEXTURE_0, TEXTURE_1, etc
* Use the color from the specified texture layer
*
*
* CONSTANT
* Use the color from the constant given with
* cogl_pipeline_set_layer_constant()
*
*
* PRIMARY
* Use the color of the pipeline as set with
* cogl_pipeline_set_color()
*
*
* PREVIOUS
* Either use the texture color from the previous layer, or
* if this is layer 0, use the color of the pipeline as set with
* cogl_pipeline_set_color()
*
*
*
*
* Layer Combine Examples
* This is effectively what the default blending is:
*
* RGBA = MODULATE (PREVIOUS, TEXTURE)
*
* This could be used to cross-fade between two images, using
* the alpha component of a constant as the interpolator. The constant
* color is given by calling cogl_pipeline_set_layer_constant.
*
* RGBA = INTERPOLATE (PREVIOUS, TEXTURE, CONSTANT[A])
*
*
*
* You can't give a multiplication factor for arguments as you can
* with blending.
*
* Return value: %TRUE if the blend string was successfully parsed, and the
* described texture combining is supported by the underlying driver and
* or hardware. On failure, %FALSE is returned and @error is set
*
* Since: 2.0
*/
gboolean
cogl_pipeline_set_layer_combine (CoglPipeline *pipeline,
int layer_index,
const char *blend_string,
GError **error);
/**
* cogl_pipeline_set_layer_combine_constant:
* @pipeline: A #CoglPipeline object
* @layer_index: Specifies the layer you want to specify a constant used
* for texture combining
* @constant: The constant color you want
*
* When you are using the 'CONSTANT' color source in a layer combine
* description then you can use this function to define its value.
*
* Since: 2.0
*/
void
cogl_pipeline_set_layer_combine_constant (CoglPipeline *pipeline,
int layer_index,
const CoglColor *constant);
/**
* cogl_pipeline_set_layer_matrix:
* @pipeline: A #CoglPipeline object
* @layer_index: the index for the layer inside @pipeline
* @matrix: the transformation matrix for the layer
*
* This function lets you set a matrix that can be used to e.g. translate
* and rotate a single layer of a pipeline used to fill your geometry.
*/
void
cogl_pipeline_set_layer_matrix (CoglPipeline *pipeline,
int layer_index,
const CoglMatrix *matrix);
/**
* cogl_pipeline_get_n_layers:
* @pipeline: A #CoglPipeline object
*
* Retrieves the number of layers defined for the given @pipeline
*
* Return value: the number of layers
*
* Since: 2.0
*/
int
cogl_pipeline_get_n_layers (CoglPipeline *pipeline);
/**
* cogl_pipeline_set_layer_filters:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @min_filter: the filter used when scaling a texture down.
* @mag_filter: the filter used when magnifying a texture.
*
* Changes the decimation and interpolation filters used when a texture is
* drawn at other scales than 100%.
*/
void
cogl_pipeline_set_layer_filters (CoglPipeline *pipeline,
int layer_index,
CoglPipelineFilter min_filter,
CoglPipelineFilter mag_filter);
/**
* cogl_pipeline_set_layer_point_sprite_coords_enabled:
* @pipeline: a #CoglHandle to a pipeline.
* @layer_index: the layer number to change.
* @enable: whether to enable point sprite coord generation.
* @error: A return location for a GError, or NULL to ignore errors.
*
* When rendering points, if @enable is %TRUE then the texture
* coordinates for this layer will be replaced with coordinates that
* vary from 0.0 to 1.0 across the primitive. The top left of the
* point will have the coordinates 0.0,0.0 and the bottom right will
* have 1.0,1.0. If @enable is %FALSE then the coordinates will be
* fixed for the entire point.
*
* This function will only work if %COGL_FEATURE_POINT_SPRITE is
* available. If the feature is not available then the function will
* return %FALSE and set @error.
*
* Return value: %TRUE if the function succeeds, %FALSE otherwise.
* Since: 2.0
*/
gboolean
cogl_pipeline_set_layer_point_sprite_coords_enabled (CoglPipeline *pipeline,
int layer_index,
gboolean enable,
GError **error);
/**
* cogl_pipeline_get_layer_point_sprite_coords_enabled:
* @pipeline: a #CoglHandle to a pipeline.
* @layer_index: the layer number to check.
*
* Gets whether point sprite coordinate generation is enabled for this
* texture layer.
*
* Return value: whether the texture coordinates will be replaced with
* point sprite coordinates.
*
* Since: 2.0
*/
gboolean
cogl_pipeline_get_layer_point_sprite_coords_enabled (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_get_layer_wrap_mode_s:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
*
* Returns the wrap mode for the 's' coordinate of texture lookups on this
* layer.
*
* Return value: the wrap mode for the 's' coordinate of texture lookups on
* this layer.
*
* Since: 1.6
*/
CoglPipelineWrapMode
cogl_pipeline_get_layer_wrap_mode_s (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_wrap_mode_s:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for the 's' coordinate of texture lookups on this layer.
*
* Since: 2.0
*/
void
cogl_pipeline_set_layer_wrap_mode_s (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
/**
* cogl_pipeline_get_layer_wrap_mode_t:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
*
* Returns the wrap mode for the 't' coordinate of texture lookups on this
* layer.
*
* Return value: the wrap mode for the 't' coordinate of texture lookups on
* this layer.
*
* Since: 1.6
*/
CoglPipelineWrapMode
cogl_pipeline_get_layer_wrap_mode_t (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_wrap_mode_t:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for the 't' coordinate of texture lookups on this layer.
*
* Since: 2.0
*/
void
cogl_pipeline_set_layer_wrap_mode_t (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
/**
* cogl_pipeline_get_layer_wrap_mode_p:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
*
* Returns the wrap mode for the 'p' coordinate of texture lookups on this
* layer.
*
* Return value: the wrap mode for the 'p' coordinate of texture lookups on
* this layer.
*
* Since: 1.6
*/
CoglPipelineWrapMode
cogl_pipeline_get_layer_wrap_mode_p (CoglPipeline *pipeline,
int layer_index);
/**
* cogl_pipeline_set_layer_wrap_mode_p:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for the 'p' coordinate of texture lookups on
* this layer. 'p' is the third coordinate.
*
* Since: 2.0
*/
void
cogl_pipeline_set_layer_wrap_mode_p (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
/**
* cogl_pipeline_set_layer_wrap_mode:
* @pipeline: A #CoglPipeline object
* @layer_index: the layer number to change.
* @mode: the new wrap mode
*
* Sets the wrap mode for all three coordinates of texture lookups on
* this layer. This is equivalent to calling
* cogl_pipeline_set_layer_wrap_mode_s(),
* cogl_pipeline_set_layer_wrap_mode_t() and
* cogl_pipeline_set_layer_wrap_mode_p() separately.
*
* Since: 2.0
*/
void
cogl_pipeline_set_layer_wrap_mode (CoglPipeline *pipeline,
int layer_index,
CoglPipelineWrapMode mode);
#ifdef COGL_ENABLE_EXPERIMENTAL_API
/**
* cogl_pipeline_set_depth_state:
* @pipeline: A #CoglPipeline object
* @state: A #CoglDepthState struct
* @error: A #GError to report failures to setup the given @state.
*
* This commits all the depth state configured in @state struct to the
* given @pipeline. The configuration values are copied into the
* pipeline so there is no requirement to keep the #CoglDepthState
* struct around if you don't need it any more.
*
* Note: Since some platforms do not support the depth range feature
* it is possible for this function to fail and report an @error.
*
* Returns: TRUE if the GPU supports all the given @state else %FALSE
* and returns an @error.
*
* Since: 2.0
* Stability: Unstable
*/
gboolean
cogl_pipeline_set_depth_state (CoglPipeline *pipeline,
const CoglDepthState *state,
GError **error);
/**
* cogl_pipeline_get_depth_state
* @pipeline: A #CoglPipeline object
* @state: A destination #CoglDepthState struct
*
* Retrieves the current depth state configuration for the given
* @pipeline as previously set using cogl_pipeline_set_depth_state().
*
* Since: 2.0
* Stability: Unstable
*/
void
cogl_pipeline_get_depth_state (CoglPipeline *pipeline,
CoglDepthState *state_out);
/**
* CoglPipelineLayerCallback:
* @pipeline: The #CoglPipeline whos layers are being iterated
* @layer_index: The current layer index
* @user_data: The private data passed to cogl_pipeline_foreach_layer()
*
* The callback prototype used with cogl_pipeline_foreach_layer() for
* iterating all the layers of a @pipeline.
*
* Since: 2.0
* Stability: Unstable
*/
typedef gboolean (*CoglPipelineLayerCallback) (CoglPipeline *pipeline,
int layer_index,
void *user_data);
/**
* cogl_pipeline_foreach_layer:
* @pipeline: A #CoglPipeline object
* @callback: A #CoglPipelineLayerCallback to be called for each layer
* index
* @user_data: Private data that will be passed to the callback
*
* Iterates all the layer indices of the given @pipeline.
*
* Since: 2.0
* Stability: Unstable
*/
void
cogl_pipeline_foreach_layer (CoglPipeline *pipeline,
CoglPipelineLayerCallback callback,
void *user_data);
#endif /* COGL_ENABLE_EXPERIMENTAL_API */
G_END_DECLS
#endif /* __COGL_PIPELINE_H__ */