/* * Clutter COGL * * A basic GL/GLES Abstraction/Utility Layer * * Authored By Matthew Allum * * Copyright (C) 2007 OpenedHand * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ #ifdef HAVE_CONFIG_H #include "config.h" #endif #include "cogl.h" #include "cogl-internal.h" #include "cogl-context.h" #include #include #define _COGL_MAX_BEZ_RECURSE_DEPTH 16 /* these are defined in the particular backend(float in gl vs fixed in gles)*/ void _cogl_path_clear_nodes (); void _cogl_path_add_node (ClutterFixed x, ClutterFixed y); void _cogl_path_fill_nodes (); void _cogl_path_stroke_nodes (); void _cogl_rectangle (gint x, gint y, guint width, guint height); void _cogl_rectanglex (ClutterFixed x, ClutterFixed y, ClutterFixed width, ClutterFixed height); void cogl_rectangle (gint x, gint y, guint width, guint height) { _cogl_rectangle (x, y, width, height); } void cogl_rectanglex (ClutterFixed x, ClutterFixed y, ClutterFixed width, ClutterFixed height) { _cogl_rectanglex (x, y, width, height); } void cogl_path_fill (void) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); if (ctx->path_nodes_size == 0) return; _cogl_path_fill_nodes(); } void cogl_path_stroke (void) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); if (ctx->path_nodes_size == 0) return; _cogl_path_stroke_nodes(); } void cogl_path_move_to (ClutterFixed x, ClutterFixed y) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); /* FIXME: handle multiple contours maybe? */ /* at the moment, a move_to is an implicit instruction to create * a new path. */ _cogl_path_clear_nodes (); _cogl_path_add_node (x, y); ctx->path_start.x = x; ctx->path_start.y = y; ctx->path_pen = ctx->path_start; } void cogl_path_rel_move_to (ClutterFixed x, ClutterFixed y) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); cogl_path_move_to (ctx->path_pen.x + x, ctx->path_pen.y + y); } void cogl_path_line_to (ClutterFixed x, ClutterFixed y) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); _cogl_path_add_node (x, y); ctx->path_pen.x = x; ctx->path_pen.y = y; } void cogl_path_rel_line_to (ClutterFixed x, ClutterFixed y) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); cogl_path_line_to (ctx->path_pen.x + x, ctx->path_pen.y + y); } void cogl_path_close (void) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); _cogl_path_add_node (ctx->path_start.x, ctx->path_start.y); ctx->path_pen = ctx->path_start; } void cogl_path_line (ClutterFixed x1, ClutterFixed y1, ClutterFixed x2, ClutterFixed y2) { cogl_path_move_to (x1, y1); cogl_path_line_to (x2, y2); } void cogl_path_polyline (ClutterFixed *coords, gint num_points) { gint c = 0; cogl_path_move_to (coords[0], coords[1]); for (c = 1; c < num_points; ++c) cogl_path_line_to (coords[2*c], coords[2*c+1]); } void cogl_path_polygon (ClutterFixed *coords, gint num_points) { cogl_path_polyline (coords, num_points); cogl_path_close (); } void cogl_path_rectangle (ClutterFixed x, ClutterFixed y, ClutterFixed width, ClutterFixed height) { cogl_path_move_to (x, y); cogl_path_line_to (x + width, y); cogl_path_line_to (x + width, y + height); cogl_path_line_to (x, y + height); cogl_path_close (); } static void _cogl_path_arc (ClutterFixed center_x, ClutterFixed center_y, ClutterFixed radius_x, ClutterFixed radius_y, ClutterAngle angle_1, ClutterAngle angle_2, ClutterAngle angle_step, guint move_first) { ClutterAngle a = 0x0; ClutterAngle temp = 0x0; ClutterFixed cosa = 0x0; ClutterFixed sina = 0x0; ClutterFixed px = 0x0; ClutterFixed py = 0x0; /* Fix invalid angles */ if (angle_1 == angle_2 || angle_step == 0x0) return; if (angle_step < 0x0) angle_step = -angle_step; if (angle_2 < angle_1) { temp = angle_1; angle_1 = angle_2; angle_2 = temp; } /* Walk the arc by given step */ for (a = angle_1; a < angle_2; a += angle_step) { cosa = clutter_cosi (a); sina = clutter_sini (a); px = center_x + CFX_MUL (cosa, radius_x); py = center_y + CFX_MUL (sina, radius_y); if (a == angle_1 && move_first) cogl_path_move_to (px, py); else cogl_path_line_to (px, py); } } void cogl_path_arc (ClutterFixed center_x, ClutterFixed center_y, ClutterFixed radius_x, ClutterFixed radius_y, ClutterAngle angle_1, ClutterAngle angle_2) { ClutterAngle angle_step = 10; /* it is documented that a move to is needed to create a freestanding * arc */ _cogl_path_arc (center_x, center_y, radius_x, radius_y, angle_1, angle_2, angle_step, 0 /* no move */); } void cogl_path_arc_rel (ClutterFixed center_x, ClutterFixed center_y, ClutterFixed radius_x, ClutterFixed radius_y, ClutterAngle angle_1, ClutterAngle angle_2, ClutterAngle angle_step) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); _cogl_path_arc (ctx->path_pen.x + center_x, ctx->path_pen.y + center_y, radius_x, radius_y, angle_1, angle_2, angle_step, 0 /* no move */); } void cogl_path_ellipse (ClutterFixed center_x, ClutterFixed center_y, ClutterFixed radius_x, ClutterFixed radius_y) { ClutterAngle angle_step = 10; /* FIXME: if shows to be slow might be optimized * by mirroring just a quarter of it */ _cogl_path_arc (center_x, center_y, radius_x, radius_y, 0, CLUTTER_ANGLE_FROM_DEG(360), angle_step, 1 /* move first */); cogl_path_close(); } void cogl_path_round_rectangle (ClutterFixed x, ClutterFixed y, ClutterFixed width, ClutterFixed height, ClutterFixed radius, ClutterAngle arc_step) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); ClutterFixed inner_width = width - (radius << 1); ClutterFixed inner_height = height - (radius << 1); cogl_path_move_to (x, y + radius); cogl_path_arc_rel (radius, 0, radius, radius, CLUTTER_ANGLE_FROM_DEG (180), CLUTTER_ANGLE_FROM_DEG (270), arc_step); cogl_path_line_to (ctx->path_pen.x + inner_width, ctx->path_pen.y); cogl_path_arc_rel (0, radius, radius, radius, CLUTTER_ANGLE_FROM_DEG (-90), CLUTTER_ANGLE_FROM_DEG (0), arc_step); cogl_path_line_to (ctx->path_pen.x, ctx->path_pen.y + inner_height); cogl_path_arc_rel (-radius, 0, radius, radius, CLUTTER_ANGLE_FROM_DEG (0), CLUTTER_ANGLE_FROM_DEG (90), arc_step); cogl_path_line_to (ctx->path_pen.x - inner_width, ctx->path_pen.y); cogl_path_arc_rel (0, -radius, radius, radius, CLUTTER_ANGLE_FROM_DEG (90), CLUTTER_ANGLE_FROM_DEG (180), arc_step); cogl_path_close (); } static void _cogl_path_bezier3_sub (CoglBezCubic *cubic) { CoglBezCubic cubics[_COGL_MAX_BEZ_RECURSE_DEPTH]; CoglBezCubic *cleft; CoglBezCubic *cright; CoglBezCubic *c; CoglFixedVec2 dif1; CoglFixedVec2 dif2; CoglFixedVec2 mm; CoglFixedVec2 c1; CoglFixedVec2 c2; CoglFixedVec2 c3; CoglFixedVec2 c4; CoglFixedVec2 c5; gint cindex; /* Put first curve on stack */ cubics[0] = *cubic; cindex = 0; while (cindex >= 0) { c = &cubics[cindex]; #define CFX_MUL2(x) ((x) << 1) #define CFX_MUL3(x) (((x) << 1) + (x)) #define CFX_SQ(x) CFX_MUL (x, x) /* Calculate distance of control points from their * counterparts on the line between end points */ dif1.x = CFX_MUL3 (c->p2.x) - CFX_MUL2 (c->p1.x) - c->p4.x; dif1.y = CFX_MUL3 (c->p2.y) - CFX_MUL2 (c->p1.y) - c->p4.y; dif2.x = CFX_MUL3 (c->p3.x) - CFX_MUL2 (c->p4.x) - c->p1.x; dif2.y = CFX_MUL3 (c->p3.y) - CFX_MUL2 (c->p4.y) - c->p1.y; if (dif1.x < 0) dif1.x = -dif1.x; if (dif1.y < 0) dif1.y = -dif1.y; if (dif2.x < 0) dif2.x = -dif2.x; if (dif2.y < 0) dif2.y = -dif2.y; #undef CFX_MUL2 #undef CFX_MUL3 #undef CFX_SQ /* Pick the greatest of two distances */ if (dif1.x < dif2.x) dif1.x = dif2.x; if (dif1.y < dif2.y) dif1.y = dif2.y; /* Cancel if the curve is flat enough */ if (dif1.x + dif1.y <= CFX_ONE || cindex == _COGL_MAX_BEZ_RECURSE_DEPTH-1) { /* Add subdivision point (skip last) */ if (cindex == 0) return; _cogl_path_add_node (c->p4.x, c->p4.y); --cindex; continue; } /* Left recursion goes on top of stack! */ cright = c; cleft = &cubics[++cindex]; /* Subdivide into 2 sub-curves */ c1.x = ((c->p1.x + c->p2.x) >> 1); c1.y = ((c->p1.y + c->p2.y) >> 1); mm.x = ((c->p2.x + c->p3.x) >> 1); mm.y = ((c->p2.y + c->p3.y) >> 1); c5.x = ((c->p3.x + c->p4.x) >> 1); c5.y = ((c->p3.y + c->p4.y) >> 1); c2.x = ((c1.x + mm.x) >> 1); c2.y = ((c1.y + mm.y) >> 1); c4.x = ((mm.x + c5.x) >> 1); c4.y = ((mm.y + c5.y) >> 1); c3.x = ((c2.x + c4.x) >> 1); c3.y = ((c2.y + c4.y) >> 1); /* Add left recursion to stack */ cleft->p1 = c->p1; cleft->p2 = c1; cleft->p3 = c2; cleft->p4 = c3; /* Add right recursion to stack */ cright->p1 = c3; cright->p2 = c4; cright->p3 = c5; cright->p4 = c->p4; } } void cogl_path_curve_to (ClutterFixed x1, ClutterFixed y1, ClutterFixed x2, ClutterFixed y2, ClutterFixed x3, ClutterFixed y3) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); CoglBezCubic cubic; /* Prepare cubic curve */ cubic.p1 = ctx->path_pen; cubic.p2.x = x1; cubic.p2.y = y1; cubic.p3.x = x2; cubic.p3.y = y2; cubic.p4.x = x3; cubic.p4.y = y3; /* Run subdivision */ _cogl_path_bezier3_sub (&cubic); /* Add last point */ _cogl_path_add_node (cubic.p4.x, cubic.p4.y); ctx->path_pen = cubic.p4; } void cogl_rel_curve_to (ClutterFixed x1, ClutterFixed y1, ClutterFixed x2, ClutterFixed y2, ClutterFixed x3, ClutterFixed y3) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); cogl_path_curve_to (ctx->path_pen.x + x1, ctx->path_pen.y + y2, ctx->path_pen.x + x2, ctx->path_pen.y + y2, ctx->path_pen.x + x3, ctx->path_pen.y + y3); } /* If second order beziers were needed the following code could * be re-enabled: */ #if 0 static void _cogl_path_bezier2_sub (CoglBezQuad *quad) { CoglBezQuad quads[_COGL_MAX_BEZ_RECURSE_DEPTH]; CoglBezQuad *qleft; CoglBezQuad *qright; CoglBezQuad *q; CoglFixedVec2 mid; CoglFixedVec2 dif; CoglFixedVec2 c1; CoglFixedVec2 c2; CoglFixedVec2 c3; gint qindex; /* Put first curve on stack */ quads[0] = *quad; qindex = 0; /* While stack is not empty */ while (qindex >= 0) { q = &quads[qindex]; /* Calculate distance of control point from its * counterpart on the line between end points */ mid.x = ((q->p1.x + q->p3.x) >> 1); mid.y = ((q->p1.y + q->p3.y) >> 1); dif.x = (q->p2.x - mid.x); dif.y = (q->p2.y - mid.y); if (dif.x < 0) dif.x = -dif.x; if (dif.y < 0) dif.y = -dif.y; /* Cancel if the curve is flat enough */ if (dif.x + dif.y <= CFX_ONE || qindex == _COGL_MAX_BEZ_RECURSE_DEPTH - 1) { /* Add subdivision point (skip last) */ if (qindex == 0) return; _cogl_path_add_node (q->p3.x, q->p3.y); --qindex; continue; } /* Left recursion goes on top of stack! */ qright = q; qleft = &quads[++qindex]; /* Subdivide into 2 sub-curves */ c1.x = ((q->p1.x + q->p2.x) >> 1); c1.y = ((q->p1.y + q->p2.y) >> 1); c3.x = ((q->p2.x + q->p3.x) >> 1); c3.y = ((q->p2.y + q->p3.y) >> 1); c2.x = ((c1.x + c3.x) >> 1); c2.y = ((c1.y + c3.y) >> 1); /* Add left recursion onto stack */ qleft->p1 = q->p1; qleft->p2 = c1; qleft->p3 = c2; /* Add right recursion onto stack */ qright->p1 = c2; qright->p2 = c3; qright->p3 = q->p3; } } void cogl_path_curve2_to (ClutterFixed x1, ClutterFixed y1, ClutterFixed x2, ClutterFixed y2) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); CoglBezQuad quad; /* Prepare quadratic curve */ quad.p1 = ctx->path_pen; quad.p2.x = x1; quad.p2.y = y1; quad.p3.x = x2; quad.p3.y = y2; /* Run subdivision */ _cogl_path_bezier2_sub (&quad); /* Add last point */ _cogl_path_add_node (quad.p3.x, quad.p3.y); ctx->path_pen = quad.p3; } void cogl_rel_curve2_to (ClutterFixed x1, ClutterFixed y1, ClutterFixed x2, ClutterFixed y2) { _COGL_GET_CONTEXT (ctx, NO_RETVAL); cogl_path_curve2_to (ctx->path_pen.x + x1, ctx->path_pen.y + y2, ctx->path_pen.x + x2, ctx->path_pen.y + y2); } #endif