The tertiary-button-action (see bug 790028) is a place for g-c-c to store
the action which should be performed when a stylus' third button is pressed.
Pressing this button is signaled as a BTN_STYLUS3 event from the kernel or
X11 button 8.
https://bugzilla.gnome.org/show_bug.cgi?id=790033
Now that we have the list of supported modifiers from the monitor
manager (via the CRTCs to the primary planes), we can use this to inform
EGL it can use those modifiers to allocate the GBM surface with. Doing
so allows us to use tiling and compression for our scanout surfaces.
This requires the Mesa commit in:
Mesa 10.3 (08264e5dad4df448e7718e782ad9077902089a07) or
Mesa 10.2.7 (55d28925e6109a4afd61f109e845a8a51bd17652).
Otherwise Mesa closes the fd behind our back and re-importing will fail.
See FDO bug #76188 for details.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
Newer versions of GBM support buffer modifiers, including multi-plane
buffers. Use this new API to explicitly pull the information from GBM,
and feed it to drmModeAddFB2WithModifiers.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
The KMS IN_FORMATS blob property contains a structure defining which
format/modifier combinations are supported for each plane. Use this to
extract a list of acceptable modifiers to use for the primary plane for
XRGB8888, so we can ask EGL to allocate tiled/compressed buffers for
scanout when available.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
Using 800x600 as minimum logical size is very 4:3 thinking, while a lot of
modern devices are 16:9. The specific reason for this commit is to allow
1.5 scaling at mini-laptops (clamshell devices) with e.g. a 5.5"
1280x720 screen. Given that this device has a keyboard, one obviously
is not holding it very close to ones eyes and at 220 dpi that means the text
is too small at scale 1.0. For one real world example of such a device see:
https://en.wikipedia.org/wiki/GPD_Winhttps://bugzilla.gnome.org/show_bug.cgi?id=792765
The device orientation coming out of iio-sensor-proxy defines upright/normal
as the direction in which the picture is displayed on the LCD panel without
any rotation. This is necessary for accelerometer rotation to work properly
in desktop environments which are not aware of panel-orientation issues.
This means that we need to correct the logical-monitor-config / user-visible
rotation for the panel-orientation when we get rotation info from
iio-sensor-proxy.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Just like we swap the x and y resolution of the monitor modes when
the panel-orientation requires 90 or 270 degree rotation to compensate,
we should do the same for the width and height in mm of the monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
If a monitor's max resolution is a portrait resolution, then assume it is
a native portrait monitor and add portrait versions of the common modes.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Even if the logical_monitor config does not have an active transform,
we might still be doing a transform under the hood to compensate for
panel-orientation. Check for this and fall back to the sw cursor if this
is the case.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
If a LCD panel has a non normal orientation (mounted upside-down or 90
degrees rotated) then the kernel will report touchscreen coordinates with
the origin matching the native (e.g. upside down) coordinates of the panel.
Since we transparently rotate the image on the panel to correct for the
non normal panel-orientation, we must apply the same transform to input
coordinates to keep the aligned.
https://bugzilla.gnome.org/show_bug.cgi?id=782294
Some x86 clamshell design devices use portrait tablet LCD panels while
they should use a landscape panel, resoluting in a 90 degree rotated
picture.
Newer kernels detect this and rotate the fb console in software to
compensate. These kernels also export their knowledge of the LCD panel
orientation vs the casing in a "panel orientation" drm_connector property.
This commit adds support to mutter for reading the "panel orientation"
and transparently (from a mutter consumer's pov) fixing this by applying
a (hidden) rotation transform to compensate for the panel orientation.
Related: https://bugs.freedesktop.org/show_bug.cgi?id=94894https://bugzilla.gnome.org/show_bug.cgi?id=782294
We only counted configured monitors and whether the config was
applicable (could be assigned), howeverwe didn't include disabled
monitors when comparing. This could caused incorrect configurations to
be applied when trying to use the previous configuration.
One scenario where this happened was one a system with one laptop
screen and one external monitor that was hot plugged some point after
start up. When the laptop lid was closed, the 'previous configuration'
being the configuration where only the laptop panel was enabled, passed
'is-complete' check as the number of configured monitors were correct,
and the configuration was applicable.
Avoid this issue by simply comparing the configuration key of the
previous configuration and the configuration key of the current state.
This correctly identifies a laptop panel with the lid closed as
inaccessible, thus doesn't incorrectly revert to the previous
configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
When deriving the list of disabled monitors when creating new monitors
configs, don't include the laptop panel if the lid is currently closed,
as we consider the laptop panel nonexistent when the laptop lid is
closed when it comes to configuration.
The laptop panel connector(s) will either way be appropriately disabled
anyway, as the field listing disabled monitors in the configuration do
not affect actual CRTC/connector assignments.
https://bugzilla.gnome.org/show_bug.cgi?id=788915
Commit b1a0bf891 broke the previous logic that we would only fallback
to the root cursor if 1) windows are not interactable or 2) no window
cursor is currently set (i.e. not hovering over any window). Now it
will set up the root cursor if it's NULL, which breaks clients
explicitly setting an invisible cursor. This commit restaurates the
previous behavior.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
This function is supposedly not failable, so just move the theme_dirty
flag clearing to the beginning of the function. Protects against cases
where requesting a cursor image may result in it being loaded and set
as a texture, which emits ::texture-changed, which may end up requesting
the cursor image again.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
As wayland implements the cursor role, it consists of a persistent
MetaCursorSprite that gets the backing texture changed. This is
inconvenient for the places using MetaCursorTracker to track cursor
changes, as they actually track MetaCursorSprites.
This signal will be used to trigger emission of
MetaCursorTracker::cursor-changed, which will make users able to
update accordingly.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
Just like X11/XFixes behaves, the current cursor is not affected
by its visibility, so it can be queried while invisible (possibly
to be replaced).
For this, keep an extra effective_cursor pointer that will be
either equal to displayed_cursor (maybe a bit of a misnomer now)
or NULL if the cursor is invisible. The MetaCursorRenderer
management is tied to the former, and the ::cursor-changed signal
emission to the latter.
https://bugzilla.gnome.org/show_bug.cgi?id=754806
We must emit ::dnd-leave to pair the ::dnd-enter that shall be
emitted whenever the plugin grab begins, otherwise we leave
listeners unable to clean up if the plugin begins and ends a
grab while there is an ongoing DnD operation.
https://bugzilla.gnome.org/show_bug.cgi?id=784545
Proprietary drivers such as ARM Mali export EGL_KHR_platform_gbm instead
of EGL_MESA_platform_gbm. As such, GBM platform check should be done for
both MESA and non-MESA drivers.
https://bugzilla.gnome.org/show_bug.cgi?id=780668
Bluetooth mouse usually goes in sleep state after a timeout, when that
happen the mouse is disconnected and on_device_removed function is
called. Before the patch if a touch device is available the
on_device_removed function hide the cursor. The issue is that the cursor
does not reappear once the bluetooth mouse is reconnected because
MetaBackend::current_device_id is not invalidated when on_device_removed
was called.
The patch set MetaBackend::current_device_id to 0 if the current device
is removed. This will make update_last_device to be triggered as soon as
another input device is used or the bluetooth mouse reconnect, as
consequence that the cursor reappear. The id 0 is never given to devices
and can safely used as undefine id.
https://bugzilla.gnome.org/show_bug.cgi?id=761067
The DRM properties container must be destroyed with
drmModeFreeObjectProperties, and the connectors must be freed on every
caller. Also make it sure that gbm_device structs are destroyed with the
MetaRendererNativeGpuData that owns them.
https://bugzilla.gnome.org/show_bug.cgi?id=789984
On some architectures, including both GLES3/gl3.h GL/gl.h will cause
compilation issues due to incompatible type definitions. To avoid
running into that issue while building on other architectures, make
sure we haven't included GL/gl.h by accident.
https://bugzilla.gnome.org/show_bug.cgi?id=788695
The org.gnome.desktop.peripherals.trackball.scroll-wheel-emulation-button
setting contains buttons X11-style. Work out the BTN evcode that applies
to it when applying the setting on the libinput device.
https://bugzilla.gnome.org/show_bug.cgi?id=787804
Check that if there are multiple modes with the same ID (resolution,
refresh rate and handled flags) we correctly add the preferred mode to
the list of monitor modes.
https://bugzilla.gnome.org/show_bug.cgi?id=789153
When generating MetaMonitorMode's, prefer CRTC modes that has the same
set of flags as the preferred mode. This not only is probably a better
set of configurable modes, but it'll guarantee that the preferred mode
is added.
This fixes a crash when the preferred mode was not the first mode with
the same resolution, refresh rate and set of handled modes.
https://bugzilla.gnome.org/show_bug.cgi?id=789153
Under X11 we can only ever have the same scale configured on all
monitors. In order to use e.g. scale 2 when there is a HiDPI monitor
connected, we must not disallow it because there is a monitor that does
not support scale 2. Thus we must show the same scale for every monitor
and monitor mode, even though it might result in a bad experience.
Do this by iterating through all the monitors adding all supported
scales by the preferred mode, combining all the supported scales. This
supported scales list is then used for all monitor and modes no matter
what.
https://bugzilla.gnome.org/show_bug.cgi?id=788901
Adding an internal signal and use it to update the internal state before
emitting "monitors-changed" which will be repeated by the screen to the world.
https://bugzilla.gnome.org/show_bug.cgi?id=788860
Don't use MAX(logical monitor scales) to determine the UI scaling
factor, just use the primary logical monitor. That's where the shell UI
will most likely be.
https://bugzilla.gnome.org/show_bug.cgi?id=788820