We used to have wayland-specific paths for this in src/wayland, now we
have ClutterKeymap that we can rely on in order to do state tracking,
and can do this all on src/backend domain.
This accomodates the feature in common code, so will work on both
Wayland and X11.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/590
The intention with KMS abstraction is to hide away accessing the drm
functions behind an API that allows us to have different kind of KMS
implementations, including legacy non-atomic and atomic. The intention
is also that the code interacting with the drm device should be able to
be run in a different thread than the main thread. This means that we
need to make sure that all drm*() API usage must only occur from within
tasks that eventually can be run in the dedicated thread.
The idea here is that MetaKms provides a outward facing API other places
of mutter can use (e.g. MetaGpuKms and friends), while MetaKmsImpl is
an internal implementation that only gets interacted with via "tasks"
posted via the MetaKms object. These tasks will in the future
potentially be run on the dedicated KMS thread. Initially, we don't
create any new threads.
Likewise, MetaKmsDevice is a outward facing representation of a KMS
device, while MetaKmsImplDevice is the corresponding implementation,
which only runs from within the MetaKmsImpl tasks.
This commit only moves opening and closing the device to this new API,
while leaking the fd outside of the impl enclosure, effectively making
the isolation for drm*() calls pointless. This, however, is necessary to
allow gradual porting of drm interaction, and eventually the file
descriptor in MetaGpuKms will be removed. For now, it's harmless, since
everything still run in the main thread.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
It is already handled by the monitor-updated-internal signal handler in
meta-cursor-renderer-native.c, which will always be called indirectly
by resuming the monitor manager.
While at it, remove a useless comment.
https://gitlab.gnome.org/GNOME/mutter/issues/77
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
And use the old "native" backend for both X11 and Wayland. This will
allow us to share fixes between implementations without having to delve
into the XSync X11 extension code.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Get rid of some technical dept by removing the support in the native
backend for drawing the the whole stage to one large framebuffer.
Previously the only way to disable stage views was to set the
MUTTER_STAGE_VIEWS environment variable to 0; doing that now will cause
the native backend to fail to initialize.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Pass the backend to a new factory function, and keep a pointer to the
monitor manager, which is accessed elsewhere in the same file instead of
fetching the singleton. The HW cursor initialization part is also made
more obvious, without depending on seemingly irrelevant clutter
features.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Move finding, opening and managment of the KMS file descriptor to
MetaMonitorManagerKms. This means that the monitor manager creation can
now fail, both if more than one GPU with connectors is discovered, or
if finding or opening the primary GPU fails.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
The error was printed, then dropped, eventually resulting in another
generic error being printed. Lets just propogate the error all the way
up instead.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
The reverted commit seems to cause
https://bugzilla.gnome.org/show_bug.cgi?id=787240 for some reason. Lets
be safe and revert it for now, as the code freeze is just around the
corner.
This partly (it doesn't reintroduce a whitespace issue) reverts commit
dbc63430d8.
Add API to get the layout group (layout index) currently active. In the
native backend this is done by fetching the state directly from the
evdev backend; on X11 this works by listening for XkbStateNotify
events, caching the layout group value.
https://bugzilla.gnome.org/show_bug.cgi?id=786408
When suspending (i.e. VT switching away, the GDM gnome-shell instance
gets hidden, or changing user), destroy the onscreen and offscreen
monitor framebuffers. When resuming, the stage views and framebuffers
will be recreated anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=786299
We manually scaled pointer motions when they travel over a scaled
monitor. When a stage view of a monitor is also scaled, in practice this
meant we scaled twice. Avoid this by only manually scaling the pointer
motion when stage views are not scaled.
https://bugzilla.gnome.org/show_bug.cgi?id=765011
Let the backend implementations create their own input settings
backend, as is done with other backend specific special purpose
backends. Also use the macro for declaring the GType.
https://bugzilla.gnome.org/show_bug.cgi?id=782152
Quick motions can come across as too fast (or slow) if it crosses outputs
with different scales. If this happens, rebuild the motion delta applying
the scale that applies to each logical monitor the pointer is crossing.
https://bugzilla.gnome.org/show_bug.cgi?id=778119
To allow for more natural pointer movements from relative pointer
devices (e.g. mouse, touchpad, tablet tool in relative mode, etc), scale
the relative motion from libinput with the scale of the monitor. In
effect, this means that the pointer movement is twice as fast (physical
movement vs numbers of pixels passed) as before, but it also means that
the same physical movement crosses the distance in a GUI no matter if
it is on a HiDPI monitor or not.
https://bugzilla.gnome.org/show_bug.cgi?id=778119
When mutter is paused (i.e. not the DRM master), stop listening on
hotplug events. Instead read the current state and set modes when
resumed.
This avoids a race condition in the drm API which currently only
manages to properly deal with one application querying the EDID state
at the same time when there are multiple mutter instances running at
the same time (e.g. gnome-shell driving gdm at the same time as
gnome-shell as the session instance).
https://bugzilla.gnome.org/show_bug.cgi?id=779837
Instead of storing the logical monitors in an array and having users
either look up them in the array given an index or iterate using
indices, put it in a GList, and use GList iterators when iterating and
alternative API where array indices were previously used.
This allows for more liberty regarding the type of the logical monitor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Change meta_monitor_manager_get_logical_monitor_at() to use floats,
replace users of meta_monitor_manager_get_monitor_at_point() to use the
API that returns a logical monitor and remove the now unused function.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The method used for getting the current logical monitor (the monitor
where the pointer cursor is currently at) depends on the backend type,
so move that logic to the corresponding backends.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Let the backend initialize the cursor tracker, and change all call
sites to get the cursor tracker from the backend instead of from the
screen. It wasn't associated with the screen anyway, so the API was
missleading.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation for further refactorizations, rename the MetaMonitorInfo
struct to MetaLogicalMonitor. Eventually, part of MetaLogicalMonitor
will be split into a MetaMonitor type.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Initialize the GError pointer used when creating the renderer. If an
error occurs, the error is expected to be NULL, otherwise it'll
misinterpreted as already set.
https://bugzilla.gnome.org/show_bug.cgi?id=773629
Add support for drawing a stage using multiple framebuffers each making
up one part of the stage. This works by the stage backend
(ClutterStageWindow) providing a list of views which will be for
splitting up the stage in different regions.
A view layout, for now, is a set of rectangles. The stage window (i.e.
stage "backend" will use this information when drawing a frame, using
one framebuffer for each view. The scene graph is adapted to explictly
take a view when painting the stage. It will use this view, its
assigned framebuffer and layout to offset and clip the drawing
accordingly.
This effectively removes any notion of "stage framebuffer", since each
stage now may consist of multiple framebuffers. Therefore, API
involving this has been deprecated and made no-ops; namely
clutter_stage_ensure_context(). Callers are now assumed to either
always use a framebuffer reference explicitly, or push/pop the
framebuffer of a given view where the code has not yet changed to use
the explicit-buffer-using cogl API.
Currently only the nested X11 backend supports this mode fully, and the
per view framebuffers are all offscreen. Upon frame completion, it'll
blit each view's framebuffer onto the onscreen framebuffer before
swapping.
Other backends (X11 CM and native/KMS) are adapted to manage a
full-stage view. The X11 CM backend will continue to use this method,
while the native/KMS backend will be adopted to use multiple view
drawing.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
The stage resizing was placed in the generic backend, which was only
run on certain configurations (when running nested or using the native
backend). This commits makes the resizing more explicit thus more
obvious.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Absorb the CoglRendererKMS struct into MetaRendererNative. The gbm
device initialization is moved earlier so that the renderer fails to
initialize if the gbm device creation failed.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
MetaRenderer is meant to be the object responsible for rendering the
scene graph. It will contain the logic related to the cogl winsys
backend, the clutter backend, and the clutter stage window.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Introduce two new clutter backends: MetaClutterBackendX11 and
MetaClutterBackendNative. They are so far only wrap ClutterBackendX11
and ClutterBackendEglNative respectively, but the aim is to move things
from the original clutter backends when needed.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
If we rely on getting back an input event with the warped pointer
coordinates, we might draw a frame with the old coordinates if we warp
during the paint phase. Avoid that by moving the cursor immediately.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
The wp_pointer_constraints protocol is a protocol which enables clients
to manipulate the behavior of the pointer cursor associated with a seat.
Currently available constraints are locking the pointer to a static
position, and confining the pointer to a given region.
Currently locking is fully implemented, and confining is implemented for
rectangular confinement regions.
What else is lacking is less troublesome semantics for enabling the lock
or confinement; currently the only requirement implemented is that the
window that appears focused is the one that may aquire the lock.
This means that a pointer could be 'stolen' by creating a new window that
receives active focus, or when using focus-follows-mouse, a pointer
passes a window that has requested a lock. This semantics can be changed
and the protocol itself allows any semantics as seems fit.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
Add support for sending relative pointer motion deltas to clients who
request such events by creating wp_relative_pointer objects via
wp_relative_pointer_manager.
This currently implements the unstable version 1 from wayland-protocols.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
g_error() is the wrong thing to do when, for example, we can't find the
DRM device, since Mutter should just fail to start rather than reporting
a bug into automatic bug tracking systems. Rather than trying to decipher
which errors are "expected" and which not, just make all failure paths
in meta_launcher_new() return a GError out to the caller - which we make
exit(1).
https://bugzilla.gnome.org/show_bug.cgi?id=757311
This makes gnome-settings-daemon turn on the backlight and
gnome-shell's screen shield animate.
Note that on X sessions, gnome-settings-daemon uses the same upower
property to force an innocuous key event into the X server so that the
idle time gets reset since Xorg doesn't do this itself on lid events.
https://bugzilla.gnome.org/show_bug.cgi?id=749076
This seems nicer/tidier than the current X11 (center on the span of all
monitors) or native (so close to the activities corner it's hard not
to trigger it) platform behaviors.
This code also takes over the native-specific pointer warping that
happens when the pointer was over a removed output.
https://bugzilla.gnome.org/show_bug.cgi?id=746896
This function returns the monitor_info index corresponding to the given
coordinates, or -1 if none is found at that point. The native backend
has been changed in places where it could make use of this function.
https://bugzilla.gnome.org/show_bug.cgi?id=746896
The initial pointer position is set by clutter. At the moment it
is the point 16x16 on the screen. But this point is not always
in the visible area on monitors (the monotors can be arranged in
many different ways).
https://bugzilla.gnome.org/show_bug.cgi?id=745752
Otherwise the pointer might be "lost" outside the visible area. Note
that the constraining code only ensures the pointer doesn't leave the
visible area but if the pointer is already outside because the rug was
pulled under it then it doesn't do anything.
https://bugzilla.gnome.org/show_bug.cgi?id=745121
When running as a dispay server pointer barriers are a server side
feature and requires no client interaction of any sort. This patch
implements pointer barriers that can be used when running as a display
server on the native backend. Running as a display server using the X11
backend is currently not supported.
https://bugzilla.gnome.org/show_bug.cgi?id=706655
We need to tell clutter's evdev backend about the desktop's key repeat
settings so that our own key bindings event processing and
gnome-shell's chrome widgets get their fake key events for continuous
key press as they expect.
Note that the wayland frontend filters out these events and thus
wayland clients do not see them as specced.
https://bugzilla.gnome.org/show_bug.cgi?id=728055
We'll need this in the wayland frontend to send a modifiers event to
clients.
Note that on X11 this isn't needed because key events include the
group index encoded in modifier state. If we ever want to make the
wayland frontend work with the X11 backend we'll handle it then.
https://bugzilla.gnome.org/show_bug.cgi?id=736433
These methods allow us to set and get xkbcommon keymaps as well as
locking a specific layout in a layout group.
With this, we introduce dependencies on xkeyboard-config, xkbfile,
xkbcommon-x11 and a libX11 new enough to have xcb support.
https://bugzilla.gnome.org/show_bug.cgi?id=734301