It tried to add a (implicitly casted) float to a uint64_t, and due to
floating point precision issues resulted in timestamps intended to be
in the future to actually be in the past. Fix this by first casting the
delay to an uint64_t, then add it to the time stamp.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
DPMS is configured from a bit all over the place: via D-Bus, via X11 and
when reading the current KMS state. Each of these places did it slightly
differently, directly poking at the field in MetaMonitorManager.
To make things a bit more managable, move the field into a new
MetaMonitorManagerPrivate, and add helpers to get and set the current
value. Prior to this, there were for example situations where the DPMS
setting was changed, but without signal listeners being notified about
it.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
Prefixes use an abbreviated form of the module or section being changed.
For example, changes to MetaBackend/meta-backend.c are prefixed with
`backend:` and generic changes to src/x11/ are prefixed `x11:`.
This extra nit picking check is meant to avoid using non-abbreviated
prefixes, e.g. `MetaBackend:`, or `meta-backend:`, other prefixes are
Currently consisting of only a "blacklist".
https://gitlab.gnome.org/GNOME/mutter/merge_requests/519
The 'underscan' property is a drm connector property, not a CRTC
property, so we would never find it. We also didn't advertise support
for the feature, meaning even if it was on the CRTC, Settings wouldn't
know about it.
Fix this by moving the property to where it belongs: in MetaOutputKms,
and properly advertise support for it if the property is found.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/507
In a multi-monitor setup there is a separate paint run for each monitor.
If an actor doesn't intersect the first monitor painted then it is culled
out for that monitor to save time. Unfortunately this would mean
`clutter_actor_paint` was setting `is_dirty = FALSE` before the actor had
yet been painted on any monitor.
This meant that effects like `ClutterOffscreenEffect` were not receiving
the flag `CLUTTER_EFFECT_PAINT_ACTOR_DIRTY` when they should have, and
so would rightfully think they don't need to do a full internal
invalidation. So `ClutterOffscreenEffect`, and probably other effects,
did not repaint correctly unless on the first monitor in the list.
The fix is to simply avoid setting `is_dirty = FALSE` on those paint
runs where the actor has been culled out (`clutter_actor_continue_paint`
wasn't called). It is only safe to clear the flag after
`clutter_actor_continue_paint` has been called at least once per stage
paint.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/1049https://gitlab.gnome.org/GNOME/mutter/merge_requests/511
Commit 8e9184b6 added filtering to avoid image jaggies when downscaling
but used `LINEAR_MIPMAP_NEAREST`. In some situations this could lead to
GL choosing a single lower resolution mipmap and then upscaling it, hence
slightly blurry.
We don't want to revert that change since it avoids aliasing jaggies, so
let's use `LINEAR_MIPMAP_LINEAR` instead. This provides the highest quality
filtering that GL can do and avoids the situation of GL using a single
mipmap that's lower resolution than the screen. Now it will blend that one
with the next mipmap which is higher resolution than the screen. This still
avoids jaggies but also maintains 1px resolution.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/1105https://gitlab.gnome.org/GNOME/mutter/merge_requests/505
clutter_input_device_get_physical_size was just used for device mapping
heuristics in MetaInputMapper. It now started using the info from udev
on for both backends, so this means this clutter API is no longer
necessary.
https://gitlab.gnome.org/GNOME/mutter/issues/514
Use the ID_INPUT_WIDTH_MM/ID_INPUT_HEIGHT_MM udev properties to figure out
absolute input devices' physical size. This works across both backends, and
requires less moving pieces to have it get the right results.
Concretely, fixes size detection on X11/libinput, which makes touchscreen
mapping go wrong.
https://gitlab.gnome.org/GNOME/mutter/issues/514
Enabling keyboard accessibility features on Wayland from the keyboard
was wrongly assumed to be controlled by the "togglekeys" setting,
whereas it should be simply controlled by the "enable" setting.
As "togglekeys" is off by default and doesn't have a UI option to
enable, that would prevent turning on or off the keyboard accessibility
features using the keyboard.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/501
Meson 0.50.0 made passing an absolute path to install_headers()'
subdir keyword a fatal error. This means we have to track both
relative (to includedir) paths for header subdirs and absolute
paths for generated headers now :-(
https://gitlab.gnome.org/GNOME/mutter/merge_requests/492
If an intersection is empty, the (x, y) coordinates are undefined, so
just use the work area and in-progress constrained window rect when
sliding according to the SLIDE_X or SLIDE_Y custom placement rule.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
When check_only is TRUE, the constraint should not be applied, just
checked. We failed to comply here when a placed transient window was
to be moved together with its parent, updating the window position
directly even if check_only was TRUE.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
If a client maps a persistent popup with a placement rule, then resizes
the parent window so that the popup ends up outside of the parent,
unmanage the popup and log a warning about the client being buggy.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
When a parent window is moved, attached windows (attached modal dialogs
or popups) is moved with it. This is problematic when such a window
hasn't been shown yet (e.g. a popup that has been configured but not
shown), as it'll mean we try to constrain an empty window. Avoid this
issue by not trying to auto-move empty windows.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/496
Currently, it is assumed that if querying the EGL_TEXTURE_FORMAT of a
Wayland buffer succeeds it is an EGLImage. However, this assumption will no
longer hold on upcoming versions of the NVIDIA EGL Wayland driver which
will include support for querying this attribute for EGLStream buffers as
well. Hence, we need to check if buffers are EGLStreams first.
Fixes#488https://gitlab.gnome.org/GNOME/mutter/merge_requests/477
Fixes condition duplicated:
/* If a contains b, just remove b */
if (meta_rectangle_contains_rect (a, b))
{
delete_me = other;
}
/* If b contains a, just remove a */
else if (meta_rectangle_contains_rect (a, b))
{
delete_me = compare;
}
Closes https://gitlab.gnome.org/GNOME/mutter/issues/480
Traditionally visual alerts were implemented by flashing the focus
window's frame. As that only works for windows that we decorate,
flashing the whole window was added as a fallback for client-decorated
windows.
However that introduces some confusing inconsistency, better to just
always flash the entire window.
https://gitlab.gnome.org/GNOME/mutter/issues/491
When commit 91c6a144da synced shadows with Adwaita, it removed the
shadow completely from attached modal dialogs. However Adwaita uses
the same shadow for all dialogs (modal or not), so do the same here.
https://gitlab.gnome.org/GNOME/mutter/issues/490
The app menu always was a GNOME-only thing, so after it was removed this
cycle, assuming that it is not displayed by the environment is a better
default.
https://gitlab.gnome.org/GNOME/mutter/issues/493
As it was originally reported on
https://bugzilla.gnome.org/show_bug.cgi?id=779234#c0, the hottest path was
convert_ubyte() in mesa. Reverting this shows no trace of those hot paths,
nor any higher than usual CPU activity.
As the improvements at the time were real, I can only conclude that pixel
conversion was happening somewhere further the pipeline, and swizzling just
helped indirectly. That got eventually fixed, so swizzling just stayed to
cause grief. And lots it caused.
Time to bin this, it seems.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/486
The function finish_cb can be called as a result of a call to ca_context_cancel
in cancelled_cb. This will result in a deadlock because, as per documentation,
g_cancellable_disconnect cannot be called inside the cancellable handler.
It is possible to detect if the call to finish_cb is caused by ca_context_cancel
checking if error_code == CA_ERROR_CANCELED. To avoid the deadlock we should
call g_signal_handler_disconnect instead g_cancellable_disconnect if this is the
case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/474