Not calling libinput dispatch in the backend constructor defeats the
logic in post init as the device added events have not been processed
yet.
So instead of trying to guess the cursor initial visibility, simply
update it along when devices get added.
Additional benefit, we do not need to walk the all device list looking
for touchscreens anymore, we just need to check the device being added
since the current logic is to hide the cursor as soon as a touchscreen
is found.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1534
Otherwise we might run into a use-after-free and crash on (virtual)
device removal:
Invalid read of size 8
at clutter_input_device_get_device_type (clutter-input-device.c:811)
by update_last_device (meta-backend.c:1282)
by g_main_dispatch (gmain.c:3325)
by g_main_context_dispatch (gmain.c:4016)
by g_main_context_iterate.constprop.0 (gmain.c:4092)
by g_main_loop_run (gmain.c:4290)
by meta_run_main_loop (main.c:708)
by meta_run (main.c:723)
by main (main.c:550)
Address is 32 bytes inside a block of size 504 free'd
at free (vg_replace_malloc.c:538)
by g_type_free_instance (gtype.c:1939)
by clutter_event_free (clutter-event.c:1420)
by _clutter_stage_process_queued_events (clutter-stage.c:830)
by handle_frame_clock_before_frame (clutter-stage-view.c:1064)
by clutter_frame_clock_dispatch (clutter-frame-clock.c:405)
by frame_clock_source_dispatch (clutter-frame-clock.c:456)
by g_main_dispatch (gmain.c:3325)
by g_main_context_dispatch (gmain.c:4016)
by g_main_context_iterate.constprop.0 (gmain.c:4092)
by g_main_loop_run (gmain.c:4290)
by meta_run_main_loop (main.c:708)
by meta_run (main.c:723)
Block was alloc'd at
at malloc (vg_replace_malloc.c:307)
by g_malloc (gmem.c:106)
by g_slice_alloc (gslice.c:1025)
by g_slice_alloc0 (gslice.c:1051)
by g_type_create_instance (gtype.c:1839)
by g_object_new_internal (gobject.c:1939)
by g_object_new_valist (gobject.c:2264)
by g_object_new (gobject.c:1782)
by meta_input_device_native_new_virtual (meta-input-device-native.c:1365)
by meta_virtual_input_device_native_constructed (meta-virtual-input-device-native.c:705)
by g_object_new_internal (gobject.c:1979)
by g_object_new_valist (gobject.c:2264)
Suggested-by: Carlos Garnacho <carlosg@gnome.org>
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1529
Mutter still relies heavily on singletons such as its MetaBackend.
For that, the backend implementation has a meta_init_backend() function
which is called at startup from meta_init(), which creates the desired
backend and sets the singleton which is returned by meta_get_backend().
Unfortunately, that means that the backend is never actually freed, and
all the code from the backend finalize function never actually get
called.
Add a meta_release_backend() to free the backend singleton.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1438
We only want the panel autorotation to happen if the laptop has an
accelerometer, and is in tablet mode. Regular laptop mode should
lock the orientation, and let it be configured manually.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1311
Just because X11/XI uses a particular terminology doesn't mean we
have to use the same terms in our own API. The replacement terms
are in line with gtk@1c856a208, which seems a better precedent
for consistency.
Follow-up to commit 17417a82a5.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1425
When removing a device that has been just marked as the last in use, we may
try to notify that a NULL device is the last one.
This is not supported, as both update_last_device() and the clients of the
"::last-device-changed" signal are assuming that the last device is always
a valid ClutterInputDevice.
So let's avoid erroring, and stop the idle when clearing the current device.
Related to: https://gitlab.gnome.org/GNOME/mutter/-/issues/1345https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1371
Replace the default master clock with multiple frame clocks, each
driving its own stage view. As each stage view represents one CRTC, this
means we draw each CRTC with its own designated frame clock,
disconnected from all the others.
For example this means we when using the native backend will never need
to wait for one monitor to vsync before painting another, so e.g. having
a 144 Hz monitor next to a 60 Hz monitor, things including both Wayland
and X11 applications and shell UI will be able to render at the
corresponding monitor refresh rate.
This also changes a warning about missed frames when sending
_NETWM_FRAME_TIMINGS messages to a debug log entry, as it's expected
that we'll start missing frames e.g. when a X11 window (via Xwayland) is
exclusively within a stage view that was not painted, while another one
was, still increasing the global frame clock.
Addititonally, this also requires the X11 window actor to schedule
timeouts for _NET_WM_FRAME_DRAWN/_NET_WM_FRAME_TIMINGS event emitting,
if the actor wasn't on any stage views, as now we'll only get the frame
callbacks on actors when they actually were painted, while in the past,
we'd invoke that vfunc when anything was painted.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/903
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/3https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1285
Move Wayland support (i.e. the MetaWaylandCompositor object) made to be
part of the backend. This is due to the fact that it is needed by the
backend initialization, e.g. the Wayland EGLDisplay server support.
The backend is changed to be more involved in Wayland and clutter
initialization, so that the parts needed for clutter initialization
happens before clutter itself initialization happens, and the rest
happens after. This simplifies the setup a bit, as clutter and Wayland
init now happens as part of the backend initialization.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1218
Inhibiting remote access means any current remote access session is
terminated, and no new ones can be created, until remote access is
uninhibited. The inhibitation is ref counted, meaning there can be more
than one inhibitor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1212
This class sits between ClutterInputDevice and the backend implementations,
it will be the despositary of features we need across both backends, but
don't need to offer through Clutter's API.
As a first thing to have there, add a getter for a WacomDevice. This is
something scattered across and somewhat inconsistent (eg. different places
of the code create wacom devices for different device types). Just make it
here for all devices, so users can pick.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1109
Just go ATM through backend checks, and looking up directly the
native event data, pretty much like the rest of the places do that...
Eventually would be nice to have this information in ClutterEvent,
but let's not have it clutter the MetaBackend class.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/852
This is inspired by 98892391d7 where the usage of
`g_signal_handler_disconnect()` without resetting the corresponding
handler id later resulted in a bug. Using `g_clear_signal_handler()`
makes sure we avoid similar bugs and is almost always the better
alternative. We use it for new code, let's clean up the old code to
also use it.
A further benefit is that it can get called even if the passed id is
0, allowing us to remove a lot of now unnessecary checks, and the fact
that `g_clear_signal_handler()` checks for the right type size, forcing us
to clean up all places where we used `guint` instead of `gulong`.
No functional changes intended here and all changes should be trivial,
thus bundled in one big commit.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/940
We used to have wayland-specific paths for this in src/wayland, now we
have ClutterKeymap that we can rely on in order to do state tracking,
and can do this all on src/backend domain.
This accomodates the feature in common code, so will work on both
Wayland and X11.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/590
MetaProfiler is not built when -Dprofiler=false, and that
breaks the build since MetaBackend unconditionally imports
and uses it.
Fix that by wrapping MetaProfiler in compile-time checks.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/603
We rely on the frame clock to compress input events, thus if the frame
clock stops, input events are not dispatched. At the same time, there
is no reason to redraw at a full frame rate, as nothing will be
presented anyway, so slow down to 10Hz (compared to the most common
60Hz). Note that we'll only actually reach 10Hz if there is an active
animation being displayed, which won't happen e.g. if there is a screen
shield in the way.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
Don't schedule redraws when being headless; there is nothing to draw so
don't attempt to draw. This also makes a flaky test become non-flaky, as
it previously spuriously got warnings due to windows being "painted"
when headless but lacking frame timings, as nothing was actually
painted.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/170
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
Add API to let GNOME Shell have the ability to get notified about remote
access sessions (remote desktop, remote control and screen cast), and
with a way to close them.
This is done by adding an abstraction above the remote desktop and
screen cast session objects, to avoid exposing their objects to outside
of mutter. Doing that would result in external parts holding references
to the objects, complicating their lifetimes. By using separate wrapper
objects, we avoid this issue all together.
Monitor whether UPower is running ourselves. That allows us to keep the
same value for "lid-is-closed" throughout the process of UPower
restarting, preventing unwanted monitor re-configuration through the process.
Fixes another screen black out when UPower restarts and the laptop lid
is closed.
Rather than handle UpClient in both MetaBackend (to reset the idletime
when the lid is opened), and in MetaMonitorManager and
MetaMonitorConfigManager (to turn the screen under the lid on/off
depending on its status), move the ability to get the lid status from
UPower or mock it in one place, in MetaBackend.
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
As a follow up to the patch from a95cbd0a, we need to make sure
that the pointer is out of the way as well when monitors changed,
since that's the event that will prevail in some cases. Besides,
this is also consistent with what the code before a95cbd0a was,
which initialized the pointer position in the same way both in
this case and in the real_post_init() function.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157
Centering the pointer at startup causes undesired behaviour if
it ends up hovering over reactive elements, that might react
to that positioning, causing confusion. This is the case of
the login dialog when a list of different users is shown, as
centering the pointer at startup in that case will get the
user in the center of the screen pre-selected, which is not
the expected behaviour (i.e. pre-selecting the first one).
Fix this by simply moving the pointer out of the way, close
to the bottom-right corner, during initialization.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157