This adds a test which creates two offscreen framebuffers, one with
just an alpha component texture and the other will a full RGBA
texture. The bit sizes of both framebuffers are then checked to verify
that they either have or haven't got bits for the RGB components.
The test currently fails because the framebuffer functions don't bind
the framebuffer before querying so they just query whichever
framebuffer happened to be used last.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 7ca01373efe908efc9f18f2cb7f4a51c274ef677)
This adds a conformance test which renders a rectangle texture using
the two wrap modes clamp-to-edge and repeat. It then verifies that the
correct region of the texture is drawn for the texture coordinates
that are > 1.0.
The test currently always fails. The cogl_framebuffer_draw_rectangle
function is documented to always take normalized texture coordinates
regardless of the coordinate system of the texture. This works
correctly if all of the texture coordinates are in the range [0.0,1.0]
because cogl-primitives uses a different code path in that case.
However if the multiple-quad code path is taken then the coordinates
actually need to un-normalized for it to work.
There is a comment in cogl_meta_texture_foreach_in_region() which
implies that the incoming coordinates should always be normalized.
The documentation for the callback says that the resulting sub-texture
coordinates will always be in the coordinate system of the low-level
texture. However it doesn't work out like this because the meta
texture function uses the span iterating function which always returns
normalized coordinates. It looks like there needs to be some more
conversions going on somewhere.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit d2059bb32b8015060e10f41dbbb68d4230b47ddb)
Consistent with how we lazily allocate framebuffers this patch allows us
to instantiate textures but still specify constraints and requirements
before allocating storage so that we can be sure to allocate the most
appropriate/efficient storage.
This adds a cogl_texture_allocate() function that is analogous to
cogl_framebuffer_allocate() which can optionally be called to explicitly
allocate storage and catch any errors. If this function isn't used
explicitly then Cogl will implicitly ensure textures are allocated
before the storage is needed.
It is generally recommended to rely on lazy storage allocation or at
least perform explicit allocation as late as possible so Cogl can be
fully informed about the best way to allocate storage.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 1fa7c0f10a8a03043e3c75cb079a49625df098b7)
Note: This reverts the cogl_texture_rectangle_new_with_size API change
that dropped the CoglError argument and keeps the semantics of
allocating the texture immediately. This is because Mutter currently
uses this API so we will probably look at updating this later once
we have a corresponding Mutter patch prepared. The other API changes
were kept since they only affected experimental api.
Previously when make test is run it would say ‘fail’ in lower case
letters for both tests that are known bugs we need to fix and for
drivers that can't run the test. This makes it too easy to lose track
of bugs.
To fix this, the ADD_TEST macro has now been changed to take two sets
of flags instead of just one. The first specifies the requirements for
the test to run at all. The second specifies the set of flags required
to run without any known failures. The table in the test report now
says ‘n/a’ instead of ‘fail’ for tests that don't match the feature
requirements.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 723f8d4402e7b2ef3a71f51bb29b10d1c0ec8d81)
The tests that were using GLSL or 3D textures were directly printing
“Skipped” and then reporting success. Instead of doing this they now
just try to continue without checking for the feature but the
appropriate test requirement flag is now set in test-conform-main so
the table of results will correctly display that is a failure.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit b8f918e44b243a5fa36d5f382a90bebb0de0728f)
This renames the global ctx and fb variables to test_ctx and test_fb
respectively in line with the names use on the master branch. This is to
make it easier to cherry pick patches from master.
This adds a small test case which maps a sub region of a small
attribute buffer and replaces the texture coordinates of one of the
vertices. The vertices are then drawn and the correct colours are
checked.
There is now a new test requirement for the
COGL_FEATURE_ID_MAP_BUFFER_FOR_WRITE feature which this test requires.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 22183265b021dd038338b4398056c0a1eae77edb)
This adds a new CoglDriver for GL 3 called COGL_DRIVER_GL3. When
requested, the GLX, EGL and SDL2 winsyss will set the necessary
attributes to request a forward-compatible core profile 3.1 context.
That means it will have no deprecated features.
To simplify the explosion of checks for specific combinations of
context->driver, many of these conditionals have now been replaced
with private feature flags that are checked instead. The GL and GLES
drivers now initialise these private feature flags depending on which
driver is used.
The fixed function backends now explicitly check whether the fixed
function private feature is available which means the GL3 driver will
fall back to always using the GLSL progend. Since Rob's latest patches
the GLSL progend no longer uses any fixed function API anyway so it
should just work.
The driver is currently lower priority than COGL_DRIVER_GL so it will
not be used unless it is specificly requested. We may want to change
this priority at some point because apparently Mesa can make some
memory savings if a core profile context is used.
In GL 3, getting the combined extensions string with glGetString is
deprecated so this patch changes it to use glGetStringi to build up an
array of extensions instead. _cogl_context_get_gl_extensions now
returns this array instead of trying to return a const string. The
caller is expected to free the array.
Some issues with this patch:
• GL 3 does not support GL_ALPHA format textures. We should probably
make this a feature flag or something. Cogl uses this to render text
which currently just throws a GL error and breaks so it's pretty
important to do something about this before considering the GL3
driver to be stable.
• GL 3 doesn't support client side vertex buffers. This probably
doesn't matter because CoglBuffer won't normally use malloc'd
buffers if VBOs are available, but it might but worth making
malloc'd buffers a private feature and forcing it not to use them.
• GL 3 doesn't support the default vertex array object. This patch
just makes it create and bind a single non-default vertex array
object which gets used just like the normal default object. Ideally
it would be good to use vertex array objects properly and attach
them to a CoglPrimitive to cache the state.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
(cherry picked from commit 66c9db993595b3a22e63f4c201ea468bc9b88cb6)
Although we use GLib internally in Cogl we would rather not leak GLib
api through Cogl's own api, except through explicitly namespaced
cogl_glib_ / cogl_gtype_ feature apis.
One of the benefits we see to not leaking GLib through Cogl's public API
is that documentation for Cogl won't need to first introduce the Glib
API to newcomers, thus hopefully lowering the barrier to learning Cogl.
This patch provides a Cogl specific typedef for reporting runtime errors
which by no coincidence matches the typedef for GError exactly. If Cogl
is built with --enable-glib (default) then developers can even safely
assume that a CoglError is a GError under the hood.
This patch also enforces a consistent policy for when NULL is passed as
an error argument and an error is thrown. In this case we log the error
and abort the application, instead of silently ignoring it. In common
cases where nothing has been implemented to handle a particular error
and/or where applications are just printing the error and aborting
themselves then this saves some typing. This also seems more consistent
with language based exceptions which usually cause a program to abort if
they are not explicitly caught (which passing a non-NULL error signifies
in this case)
Since this policy for NULL error pointers is stricter than the standard
GError convention, there is a clear note in the documentation to warn
developers that are used to using the GError api.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit b068d5ea09ab32c37e8c965fc8582c85d1b2db46)
Note: Since we can't change the Cogl 1.x api the patch was changed to
not rename _error_quark() functions to be _error_domain() functions and
although it's a bit ugly, instead of providing our own CoglError type
that's compatible with GError we simply #define CoglError to GError
unless Cogl is built with glib disabled.
Note: this patch does technically introduce an API break since it drops
the cogl_error_get_type() symbol generated by glib-mkenum (Since the
CoglError enum was replaced by a CoglSystemError enum) but for now we
are assuming that this will not affect anyone currently using the Cogl
API. If this does turn out to be a problem in practice then we would be
able to fix this my manually copying an implementation of
cogl_error_get_type() generated by glib-mkenum into a compatibility
source file and we could also define the original COGL_ERROR_ enums for
compatibility too.
Note: another minor concern with cherry-picking this patch to the 1.14
branch is that an api scanner would be lead to believe that some APIs
have changed, and for example the gobject-introspection parser which
understands the semantics of GError will not understand the semantics of
CoglError. We expect most people that have tried to use
gobject-introspection with Cogl already understand though that it is not
well suited to generating bindings of the Cogl api anyway and we aren't
aware or anyone depending on such bindings for apis involving GErrors.
(GnomeShell only makes very-very minimal use of Cogl via the gjs
bindings for the cogl_rectangle and cogl_color apis.)
The main reason we have cherry-picked this patch to the 1.14 branch
even given the above concerns is that without it it would become very
awkward for us to cherry-pick other beneficial patches from master.
This adds a new renderer constraint enum:
COGL_RENDERER_CONSTRAINT_SUPPORTS_GLES2_CONTEXT
that can be used by applications to ensure the renderer they connect to
has support for creating a GLES2 context via cogl_gles2_context_new().
The cogl-gles2-context and cogl-gles2-gears examples and the conformance
tests have been updated to use this constraint.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit ed61463d7194354b26624e8014859f0fbfc06a12)
The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
Removing CoglHandle has been an on going goal for quite a long time now
and finally this patch removes the last remaining uses of the CoglHandle
type and the cogl_handle_ apis.
Since the big remaining users of CoglHandle were the cogl_program_ and
cogl_shader_ apis which have replaced with the CoglSnippets api this
patch removes both of these apis.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 6ed3aaf4be21d605a1ed3176b3ea825933f85cf0)
Since the original patch was done after removing deprecated API
this back ported patch doesn't affect deprecated API and so
actually this cherry-pick doesn't remove all remaining use of
CoglHandle as it did for the master branch of Cogl.
This adds experimental 2.0 api replacements for the cogl_rectangle[_*]
functions that don't depend on having a current pipeline set on the
context via cogl_{set,push}_source() or having a current framebuffer set
on the context via cogl_push_framebuffer(). The aim for 2.0 is to switch
away from having a statefull context that affects drawing to having
framebuffer drawing apis that are explicitly passed a framebuffer and
pipeline.
To test this change several of the conformance tests were updated to use
this api instead of cogl_rectangle and
cogl_rectangle_with_texture_coords. Since it's quite laborious going
through all of the conformance tests the opportunity was taken to make
other clean ups in the conformance tests to replace other uses of
1.x api with experimental 2.0 api so long as that didn't affect what was
being tested.
This adds a conformance test which renders a texture point using a 2x2
texture with a different color for each texel. It then verifies that
each texel is mapped to the correct position on the point. The test is
currently failing.
The test requires the point sprite feature flag so this patch also
adds a TEST_REQUIREMENT_* flag for that.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This renames the TestRequirement enum to TestFlags and then adds a
TEST_KNOWN_FAILURE flag. The rename is because the new flag is not
really a requirement. If the flag is set then the test is assumed to
always fail.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This patch reworks our conformance testing framework because it seems
that glib's gtesting framework isn't really well suited to our use case.
For example we weren't able to test windows builds given the way we
were using it and also for each test we'd like to repeat the test
with several different environments so we can test important driver and
feature combinations.
This patch instead switches away to a simplified but custom approach for
running our unit tests. We hope that having a more bespoke setup will
enable us to easily extend it to focus on the details important to us.
Notable changes with this new approach are:
We can now run 'make test' for our mingw windows builds.
We've got rid of all the test-*report* make rules and we're just left
with 'make test'
'make test' now runs each test several times with different driver and
feature combinations checking the result for each run. 'make test' will
then output a concise table of all of the results.
The combinations tested are:
- OpenGL Fixed Function
- OpenGL ARBfp
- OpenGL GLSL
- OpenGL No NPOT texture support
- OpenGLES 2.0
- OpenGLES 2.0 No NPOT texture support
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The compare pixel function was a static function used internally by
the test_utils_check_* functions. It takes a pointer to a pixel in a
buffer read back from Cogl and compares it with an expected value.
This function could also be useful in tests wanting to check the data
returned from a call to cogl_texture_get_data so we should share it
with the rest of the tests.
https://bugzilla.gnome.org/show_bug.cgi?id=668913
Reviewed-by: Robert Bragg <robert@linux.intel.com>
When comparing a pixel, the comparison routines now allow each
component to be off by +/- 1. This is to compensate for varying
rounding across drivers.
https://bugzilla.gnome.org/show_bug.cgi?id=665723
Reviewed-by: Robert Bragg <robert@linux.intel.com>
For conformance tests that want to read back a region of pixels and
check they all have the same color we now have a test_utils_check_region
utility function for that.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Most of the conformance tests read a pixel value and assert that it
matches a known value. However they were all doing this with slightly
different methods. This adds a common test_utils_check_pixel function
which they now all use. The function takes an x and y coordinate and a
32-bit value representing the color. It is assumed that writing a
known color is most convenient as an 8 digit hex sequence which this
function allows. There is also a test_utils_check_pixel_rgb function
wrapper which takes the components as separate arguments. This is more
convenient when the expected color is also calculated by the test.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
When testing with COGL_DEBUG=disable-npot-textures all of the tests
would fail because the testing infrastructure itself ends up creating
a sliced texture and then trying to use it as a render target. This
just modifies test-utils to use 512x512 for the size of the texture.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This makes a start on porting the Cogl conformance tests that currently
still live in the Clutter repository to be standalone Cogl tests that no
longer require a ClutterStage.
The main thing is that this commit brings in is the basic testing
infrastructure we need, so now we can port more and more tests
incrementally.
Since the test suite wants a way to synchronize X requests/replies and
we can't simply call XSynchronize in the test-utils code before we know
if we are really running on X this adds a check for an environment
variable named "COGL_X11_SYNC" in cogl-xlib-renderer.c and if it's set
it forces XSynchronize (dpy, TRUE) to be called.
By default the conformance tests are run off screen. This makes the
tests run much faster and they also don't interfere with other work you
may want to do by constantly stealing focus. CoglOnscreen framebuffers
obviously don't get tested this way so it's important that the tests
also get run on screen every once in a while, especially if changes are
being made to CoglFramebuffer related code. On screen testing can be
enabled by setting COGL_TEST_ONSCREEN=1 in your environment.