Currently a buffer use count always reaches zero before it is replaced.
This is due to the fact that at the point a new buffer is attached, the
last potential user releases it (the stage) since the currently
displayed frame has a composited copy of the buffer.
This may however change, if a buffer is scanned out directly, meaning it
should not be released until the page flip callback is invoked.
Prepare for this by making the buffer reference a heap allocated struct,
enabling us to keep a pointer to it longer than the buffer is attached.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/798
There is a race where an output can be used as a fullscreen target, but
it has already been removed due to a hotplug. Handle this gracefully by
ignoring said output in such situations.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1120
After popup placement rules have gone through the constraints engine has
ended up resulting in an actual move, pass the window configuration down
the path using relative coordinates, as that is what the next layer
(xdg-shell implementation) actually cares about.
In the future, this will also be helpful when the configured position is
not against the current state of the parent.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/705
The vfunc is not called when a surface commits its state, but when the
state is applied. Make this clearer by changing the name to
"apply_state" (and "pre_apply_state").
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
This changes how asynchronous window configuration works. Prior to this
commit, it worked by MetaWindowWayland remembering the last
configuration it sent, then when the Wayland client got back to it, it
tried to figure out whether it was a acknowledgment of the configuration
or not, and finish the move. This failed if the client had acknowledged
a configuration older than the last one sent, and it had hacks to
somewhat deal with wl_shell's lack of configuration serial numbers.
This commits scraps that and makes the MetaWindowWayland take ownership
of sent configurations, including generating serial numbers. The
wl_shell implementation is changed to emulate serial numbers (assuming
each commit acknowledges the last sent configure event). Each
configuration sent to the client is kept around until the client one. At
this point, the position used for that particular configuration is used
when applying the acknowledged state, meaning cases where we have
already sent a new configuration when the client acknowledges a previous
one, we'll still use the correct position for the window.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
The name didn't communicate it was about surface state, and it somewhat
confusingly had the name "pending" in it, which could be confused with
the fact that while it's used to collect pending state, it's also used
to cache previously committed pending state.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
With the eventual aim of exposing the internals of MetaWaylandSurface
outside of meta-wayland-surface.c, make users of the pending state use a
helper to fetch it. While at it, rename the struct field to something
more descriptive.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
The intention of meta_window_wayland_move_resize() is to finish a
move-resize requested previously, e.g. by a state change, or a
interactive resize. Make the function name carry this intention, by
renaming it to meta_window_wayland_finish_move_resize().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/907
For the most part, a MetaWindow is expected to live roughly as long as
the associated wl_surface, give or take asynchronous API discrepancies.
The exception to this rule is handling of reparenting when decorating or
undecorating a window, when a MetaWindow on X11 is made to survive the
unmap/map cycle. The fact that this didn't hold on Wayland caused
various issues, such as a feedback loop where the X11 window kept being
remapped. By making the MetaWindow lifetime for Xwayland windows being
the same as they are on plain X11, we remove the different semantics
here, which seem to lower the risk of hitting the race condition causing
the feedback loop mentioned above.
What this commit do is separate MetaWindow lifetime handling between
native Wayland windows and Xwayland windows. Wayland windows are handled
just as they were, i.e. unmanaged together as part of the wl_surface
destruction; while during the Xwayland wl_surface destruction, the
MetaWindow <-> MetaWaylandSurface association is simply broken.
Related: https://gitlab.freedesktop.org/xorg/xserver/issues/740
Fixes: https://gitlab.gnome.org/GNOME/mutter/issues/762https://gitlab.gnome.org/GNOME/mutter/merge_requests/774
On X11, if a window cannot be maximized because its minimum size is
already larger than the output size, a request to maximize will be
ignored.
On Wayland, however, we would still honor the maximize request and
switch the window state to maximized, without actually moving the window
which leads to weird visual effects, as the window end up being
maximized in-place.
To avoid this, make sure the window has the maximize functionality
available prior to change its state in xdg-shell `set_maximized`
request.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/463
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
As with xdg-toplevel proper, a legacy xdg-toplevel can be unmanaged by
the compositor without the client knowing about it, meaning the client
may still send updates and make requests. Handle this gracefully by
ignoring them. The client needs to reassign the surface the legacy
xdg-toplevel role again, if it wants to remap the same surface, meaning
all state would be reset anyway.
Closes: https://gitlab.gnome.org/GNOME/mutter/issues/240
A toplevel window can be unmanaged without the client knowing it (e.g. a
modal dialog being unmapped together with its parent. When this has
happened, take frame callbacks queued on a commit and cache them on the
generic surface queue. If the toplevel is to be remapped because the
surface was reassigned the toplevel role, the cached frame callbacks
will be queued on the surface actor and dispatched accordingly.
https://gitlab.gnome.org/GNOME/mutter/issues/240
Currently xdg-shell applies a geometry set with set_window_geometry
unconditionally. But the specification requires:
> When applied, the effective window geometry will be
> the set window geometry clamped to the bounding rectangle of the
> combined geometry of the surface of the xdg_surface and the
> associated subsurfaces.
This is especially important to implement viewporter and
transformation.
After 20176d03, the Wayland backend only synchronizes with the
compositor after a geometry was set, and it was different from
the current geometry.
That commit was mistakenly comparing the geometry before chaining
up, which would yield a false negative on the case where the
client didn't call set_geometry() before commit().
Fix that by caching the old geometry locally, chain up (and thus
apply the new geometry rectangle), then comparing the old and
current geometry rectangles.
Fixes https://gitlab.gnome.org/GNOME/mutter/issues/150
The current implementation of the XdgSurface v6 protocol does not check
if the window changed before calling meta_window_wayland_move_resize().
The problem with this approach is that calling this function is a costly
operation since we enter the compositor side. In GNOME Shell case, it is
in JavaScript, which triggers a GJS trampoline. Calling this function on
every mouse movement is naturally as terrible as it could be - and is
exactly what happens now.
This commit adds the necessary checks to only call move_resize() when
the window actually changed, or when it needs to be updated.
https://bugzilla.gnome.org/show_bug.cgi?id=780292
Issue: #78