Xlib headers define many trivially named objects which can later cause
name collision problems when only cogl.h header is included in a program
or library. Xlib headers are now only included through including the
standalone header cogl-xlib.h.
https://bugzilla.gnome.org/show_bug.cgi?id=661174
Reviewed-by: Robert Bragg <robert@linux.intel.com>
It's useful to be able to query back the number of
point_samples_per_pixel that may have previously be chosen using
cogl_framebuffer_set_samples_per_pixel().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Since we've had several developers from admirable projects say they
would like to use Cogl but would really prefer not to pull in
gobject,gmodule and glib as extra dependencies we are investigating if
we can get to the point where glib is only an optional dependency.
Actually we feel like we only make minimal use of glib anyway, so it may
well be quite straightforward to achieve this.
This adds a --disable-glib configure option that can be used to disable
features that depend on glib.
Actually --disable-glib doesn't strictly disable glib at this point
because it's more helpful if cogl continues to build as we make
incremental progress towards this.
The first use of glib that this patch tackles is the use of
g_return_val_if_fail and g_return_if_fail which have been replaced with
equivalent _COGL_RETURN_VAL_IF_FAIL and _COGL_RETURN_IF_FAIL macros.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This factors out the CoglOnscreen code from cogl-framebuffer.c so we now
have cogl-onscreen.c, cogl-onscreen.h and cogl-onscreen-private.h.
Notably some of the functions pulled out are currently namespaced as
cogl_framebuffer but we know we are planning on renaming them to be in
the cogl_onscreen namespace; such as cogl_framebuffer_swap_buffers().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Currently features are represented as bits in a 32bit mask so we
obviously can't have more than 32 features with that approach. The new
approach is to use the COGL_FLAGS_ macros which lets us handle bitmasks
without a size limit and we change the public api to accept individual
feature enums instead of a mask. This way there is no limit on the
number of features we can add to Cogl.
Instead of using cogl_features_available() there is a new
cogl_has_feature() function and for checking multiple features there is
cogl_has_features() which takes a zero terminated vararg list of
features.
In addition to being able to check for individual features this also
adds a way to query all the features currently available via
cogl_foreach_feature() which will call a callback for each feature.
Since the new functions take an explicit context pointer there is also
no longer any ambiguity over when users can first start to query
features.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds support for multisample based rendering of onscreen windows
whereby multiple point samples per pixel can be requested and if the
hardware supports that it results in reduced aliasing (especially
considering the jagged edges of polygons)
Reviewed-by: Neil Roberts <neil@linux.intel.com>
When creating new onscreen framebuffers we need to take the
configuration in cogl terms and translate that into a configuration
applicable to any given winsys, e.g. an EGLConfig or a GLXFBConfig
or a PIXELFORMATDESCRIPTOR.
Also when we first create a context we typically have to do a very
similar thing because most OpenGL winsys APIs also associate a
framebuffer config with the context and all future configs need to be
compatible with that.
This patch introduces an internal CoglFramebufferConfig to wrap up some
of the configuration parameters that are common to CoglOnscreenTemplate
and to CoglFramebuffer so we aim to re-use code when dealing with the
above two problems.
This patch also aims to rework the winsys code so it can be more
naturally extended as we start adding more configureability to how
onscreen framebuffers are created.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Previously the EGL backend was directly prodding the width/height
members of the framebuffer structure when a configure notify event is
received. However this doesn't set the dirty flag for the viewport so
Cogl will continue using the wrong viewport y offset. The GLX backend
is already using an abstraction for updating the size which does set
the flag. This patch just makes the EGL backend also use that
abstraction.
As part of the on going, incremental effort to purge the non type safe
CoglHandle type from the Cogl API this patch tackles most of the
CoglHandle uses relating to textures.
We'd postponed making this change for quite a while because we wanted to
have a clearer understanding of how we wanted to evolve the texture APIs
towards Cogl 2.0 before exposing type safety here which would be
difficult to change later since it would imply breaking APIs.
The basic idea that we are steering towards now is that CoglTexture
can be considered to be the most primitive interface we have for any
object representing a texture. The texture interface would provide
roughly these methods:
cogl_texture_get_width
cogl_texture_get_height
cogl_texture_can_repeat
cogl_texture_can_mipmap
cogl_texture_generate_mipmap;
cogl_texture_get_format
cogl_texture_set_region
cogl_texture_get_region
Besides the texture interface we will then start to expose types
corresponding to specific texture types: CoglTexture2D,
CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and
CoglTexturePixmapX11.
We will then also expose an interface for the high-level texture types
we have (such as CoglTexture2DSlice, CoglSubTexture and
CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an
additional interface that lets you iterate a virtual region of a meta
texture and get mappings of primitive textures to sub-regions of that
virtual region. Internally we already have this kind of abstraction for
dealing with sliced texture, sub-textures and atlas textures in a
consistent way, so this will just make that abstraction public. The aim
here is to clarify that there is a difference between primitive textures
(CoglTexture2D/3D) and some of the other high-level textures, and also
enable developers to implement primitives that can support meta textures
since they can only be used with the cogl_rectangle API currently.
The thing that's not so clean-cut with this are the texture constructors
we have currently; such as cogl_texture_new_from_file which no longer
make sense when CoglTexture is considered to be an interface. These
will basically just become convenient factory functions and it's just a
bit unusual that they are within the cogl_texture namespace. It's worth
noting here that all the texture type APIs will also have their own type
specific constructors so these functions will only be used for the
convenience of being able to create a texture without really wanting to
know the details of what type of texture you need. Longer term for 2.0
we may come up with replacement names for these factory functions or the
other thing we are considering is designing some asynchronous factory
functions instead since it's so often detrimental to application
performance to be blocked waiting for a texture to be uploaded to the
GPU.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
If the user doesn't explicitly pass an onscreen template then instead of
leaving display->onscreen_template as NULL we now instantiate a template
ourselves. This simplifies winsys code that might want to refer to the
template since it needn't first check for a NULL pointer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Cogl aims to consistently put the origin of 2D objects at the top-left
instead of the bottom left as OpenGL does, but there was an oversight
and the experimental cogl_framebuffer_swap_region API was accepting
coordinates relative to the bottom left. Cogl will now flip the user's
given rectangles to be relative to the bottom of the framebufffer before
sending them to APIs like glXCopySubBuffer and glBlitFramebuffer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
If the display has been setup up, we should destroy the underlying
objects that the winsys has created. This can be done by calling the
winsys->destroy_display() function in _free.
Then, in that function, and for the NULL and GDL EGL platform we can
destroy the surface we have created in the setup_display() function
(through create_context()).
This allows to have clutter create a "dummy" display in
cogl_renderer_check_onscreen_template(), then free it, then recreate the
context and the surface that will be the final ones.
https://bugzilla.gnome.org/show_bug.cgi?id=655355
If we are being called without any GDL specific call (either the plane
we want to render to or the swap chain length) we can provide sane
defaults to still be able to create a context and a surface.
https://bugzilla.gnome.org/show_bug.cgi?id=655355
The egl winsys has a few code paths depending on the platform we are
compiling for. The GDL platform needs those defined as well.
A few tweaks were needed here and there to make it compile again.
https://bugzilla.gnome.org/show_bug.cgi?id=655355
When passing the EGL_NATIVE_PIXMAP_KHR target to eglCreateImage the
EGL_KHR_image_pixmap extension explicitly states that EGL_NO_CONTEXT
must also be passed so we are now careful to do this.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Previously, _cogl_get_proc_address had a fallback to resolve the
symbol using g_module_open(NULL) to get the symbol from anywhere in
the address space. The EGL backend ends up using this on some drivers
because eglGetProcAddress isn't meant to return a pointer for core
functions. This causes problems if something in the process is linking
against a different GL library, for example Cairo may be linking
against libGL itself. In this case it may end up resolving symbols
from the GL library even if GLES is being used.
This patch removes the fallback. The EGL version now has its own
fallback instead which passes the existing libgl_module from the
renderer to g_module_symbol so that it should only get symbols from
that library or its dependency chain. The GLX and WGL winsys only call
glXGetProcAddress and wglGetProcAddress. The stub winsys does however
continue using the global symbol lookup.
The internal _cogl_get_proc_address function has been renamed to
_cogl_renderer_get_proc_address because it needs a connected renderer
to work so it could be considered to be a renderer method. The pointer
to the renderer is passed down to the winsys backends so that it can
use the data attached to the renderer to get the module pointers.
https://bugzilla.gnome.org/show_bug.cgi?id=655412
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This makes sure the egl winsys frees the private egl_tex_pixmap state if
in _cogl_winsys_texture_pixmap_x11_create if there is a failure to
create an EGLImage.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The _cogl_context_check_gl_version function is meant to be called once
Cogl has a GL context so that it can check whether the context found
is supported by Cogl. However, only the stub winsys was calling this
and it was doing it before Cogl had a chance to retrieve the function
pointer for glString so it would just crash. This patch combines the
two functions into one so that _cogl_context_update_features returns a
gboolean and a GError. Then it can just check the context itself.
https://bugzilla.gnome.org/show_bug.cgi?id=654440
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The GL or GLES library is now dynamically loaded by the CoglRenderer
so that it can choose between GL, GLES1 and GLES2 at runtime. The
library is loaded by the renderer because it needs to be done before
calling eglInitialize. There is a new environment variable called
COGL_DRIVER to choose between gl, gles1 or gles2.
The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have
been changed so that they don't assume the ifdefs are mutually
exclusive. They haven't been removed entirely so that it's possible to
compile the GLES backends without the the enums from the GL headers.
When using GLX the winsys additionally dynamically loads libGL because
that also contains the GLX API. It can't be linked in directly because
that would probably conflict with the GLES API if the EGL is
selected. When compiling with EGL support the library links directly
to libEGL because it doesn't contain any GL API so it shouldn't have
any conflicts.
When building for WGL or OSX Cogl still directly links against the GL
API so there is a #define in config.h so that Cogl won't try to dlopen
the library.
Cogl-pango previously had a #ifdef to detect when the GL backend is
used so that it can sneakily pass GL_QUADS to
cogl_vertex_buffer_draw. This is now changed so that it queries the
CoglContext for the backend. However to get this to work Cogl now
needs to export the _cogl_context_get_default symbol and cogl-pango
needs some extra -I flags to so that it can include
cogl-context-private.h
Instead of storing all of the feature function pointers in the driver
specific data of the CoglContext they are now all stored directly in
CoglContext. There is a single header containing the description of
the functions which gets included by cogl-context.h. There is a single
function in cogl-feature-private.c to check for all of these
functions.
The name of the function pointer variables have been changed from
ctx->drv.pf_glWhatever to just ctx->glWhatever.
The feature flags that get set when an extension is available are now
separated from the table of extensions. This is necessary because
different extensions can mean different things on GLES and GL. For
example, having access to glMapBuffer implies read and write support
on GL but only write support on GLES. The flags are instead set in the
driver specific init function by checking whether the function
pointers were successfully resolved.
_cogl_feature_check has been changed to assume the feature is
supported if any of the listed extensions are available instead of
requiring all of them. This makes it more convenient to specify
alternate names for the extension. Nothing else had previously listed
more than one name for an extension so this shouldn't cause any
problems.
instead of looking at the ctx->private_feature_flags to determine if
Cogl supports creating an EGLImage from a X Pixmap we now check the
renderer private features instead since these are what get setup in
check_egl_extensions. The conflicting flags defined in cogl-internal.h
should be removed since they are un-used.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
check_egl_extensions was mistakenly always ORing in the priv flags of
the first feature_data entry instead of referencing the i variable to
index into the array of feature data after determining that an extension
is available.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This updates the public wayland symbols to follow the pattern
cogl_wayland_blah instead of cogl_blah_wayland.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
we've got into a bit of a mess with how we name platform specific
symbols and files, so this is a first pass at trying to tidy that up.
All platform specific symbols should be named like
cogl_<platform>_symbol_name and similarly files should be named like
cogl-<platform>-filename.c
This patch tackles the X11 specific renderer/display APIs as a start.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds Xlib and Win32 typesafe replacements for
cogl_renderer_handle_native_event, cogl_renderer_add_native_filter,
cogl_renderer_remove_native_filter. The old functions are kept as an
implementation detail so we can share code.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds API to let you override the choice of Cogl's winsys backend.
Previously it was only possible to override the winsys using the
COGL_RENDERER environment variable, but it's useful for something like
Clutter to be able to control the winsys via API without needing
environment variable tricks. This also adds API to query back the
winsys chosen by Cogl, in case you don't set an explicit override.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds a _cogl_init function for Cogl that we expect to be the first
thing called before anything else is done with Cogl. It's not a public
API so it's expected that all entry points for Cogl that might be the
first function used should call _cogl_init().
We currently call _cogl_init() in these functions:
cogl_renderer_new
cogl_display_new
cogl_context_new
cogl_android_set_native_window
_cogl_init() can be called multiple times, and only the first call has
any affect.
For example _cogl_init() gives us a place check and parse the COGL_DEBUG
environment variable.
Since we don't have any need to parse command line arguments (we can
always get user configuration options from the environment) our init
function doesn't require argc/argv pointers.
By saying up front that we aren't interested in command line arguments
that means we can avoid the mess that is GOption based library
initialization which is extremely fragile due to its lack of dependency
tracking between modules.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This removes the redundant _cogl_xlib_trap/untrap_errors functions that
simply wrap equivalent functions in the _cogl_renderer_xlib namespace.
These were originally only required while the EGL winsys was being
handled in clutter and so there wasn't a CoglRenderer in all cases.
In the winsys vtable .xlib_get_visual_info and
.onscreen_x11_get_window_xid should be guarded by the
COGL_HAS_EGL_PLATFORM_POWERVR_X11_SUPPORT because they need to be there
if cogl is configured with --enable-xlib-egl-platform but not if just
configured with --enable-xlib.
This adds internal API to be able to wrap a wayland buffer as a
CoglTexture2D. There is a --enable-wayland-egl-server option to decide
if Cogl should support this feature and potentially any EGL based winsys
could support this through the EGL_KHR_image_base and
EGL_WL_bind_display extensions.
By using the EGL_KHR_image_base/pixmap extensions this adds support for
wrapping X11 pixmaps as CoglTexture2D textures. Clutter will
automatically take advantage of this if using the
ClutterX11TexturePixmap actor.
This adds an internal texture_2d constructor that can wrap an EGLImage
as a CoglTexture2D. The plan is to utilize this for texture-from-pixmap
support with EGL as well as creating textures from wayland buffers.
The native window type of the EGL/Android winsys is ANativeWinow*. The
Android NDK gives you a pointer to this ANativeWindow and you just need
to configure that window using the EGLConfig you are choosing when
creating the context.
This means you have to know the ANativeWindow* window before creating
the context. This is solved here by just having a global variable you
can set with cogl_android_set_native_window() before creating the
context. This is a bit ugly though, and it conceptually belongs to the
OnScreen creation to know which ANativeWindow* to use. This would need a
"lazy context creation" mechanism, waiting for the user to create the
OnScreen to initialize the GL context.
When try_create_context() returns saying that it has to be run again to
try to create a context with an alternate configuration, it might not
have a GError set (and in fact it does not right now).
g_clear_error() handles that case where error is still NULL;
Early implementations provided only a GLES/egl.h while Khronos's
implementer guide now states EGL/egl.h is the One. Some implementations
keep a GLES/egl.h wrapper around EGL/egl.h for backward compatibility
while others provide EGL/egl.h only.
Also took the opportunity to factorize a bit this inclusion in
cogl-defines.h.
To support toolkits targeting wayland and using Cogl we allow toolkits
to be responsible for connecting to a wayland display and asking Cogl to
use the toolkit owned display and compositor object. Note: eventually
the plan is that wayland will allow retrospective querying of objects so
we won't need the foreign compositor API when Cogl can simply query it
from the foreign display.
The EGL API doesn't provide for a way to explicitly select a platform
when the driver can support multiple. Mesa allows selection using an
EGL_PLATFORM environment variable though so we set that to "wayland"
when we know that's what we want.
All of the winsys backends didn't handle cleaning up the CoglOnscreen
properly so that they would assert in cogl_onscreen_free because the
winsys pointer is never freed. They also didn't cope if deinit is
called before init (which will be the case if an onscreen is created
and freed without being allocated).
Some of the virtual functions in CoglWinsysVtable only need to be
implemented for specific backends or when a specific feature is
advertised. This splits the vtable struct into two commented sections
marking which are optional and which are required. Wherever an
optional function is used there is now a g_return_if_fail to ensure
there is an implementation.
Wayland now supports integration via standard eglSurfaces which makes it
possible to share more code with other EGL platforms. (though at some
point cogl-winsys-egl.c really needs to gain a more formal
CoglEGLPlatform abstraction so we can rein back on the amount of #ifdefs
we have.)
This extends cogl_onscreen_x11_set_foreign_xid to take a callback to a
function that details the event mask the Cogl requires the application
to select on foreign windows. This is required because Cogl, for
example, needs to track size changes of a window and may also in the
future want other notifications such as map/unmap.
Most applications wont need to use the foreign xwindow apis, but those
that do are required to pass a valid callback and update the event mask
of their window according to Cogl's requirements.
This adds Cogl API to show and hide onscreen framebuffers. We don't want
to go too far down the road of abstracting window system APIs with Cogl
since that would be out of its scope but the previous idea that we would
automatically map framebuffers on allocation except for those made from
foreign windows wasn't good enough. The problem is that we don't want to
make Clutter always create stages from foreign windows but with the
automatic map semantics then Clutter doesn't get an opportunity to
select for all the events it requires before mapping. This meant that we
wouldn't be delivered a mouse enter event for windows mapped underneath
the cursor which would break Clutters handling of button press events.
The GDL API is used for example on intel ce4100 (aka Sodaville) based
systems as a way to allocate memory that can be composited using the
platforms overlay hardware. This updates the Cogl EGL winsys and the
support in Clutter so we can continue to support these platforms.
So that we can dynamically select what winsys backend to use at runtime
we need to have some indirection to how code accesses the winsys instead
of simply calling _cogl_winsys* functions that would collide if we
wanted to compile more than one backend into Cogl.
This moves the GLX specific code from cogl-texture-pixmap-x11.c into
cogl-winsys-glx.c. If we want the winsys components to by dynamically
loadable then we can't have GLX code scattered outside of
cogl-winsys-glx.c. This also sets us up for supporting the
EGL_texture_from_pixmap extension which is almost identical to the
GLX_texture_from_pixmap extension.
As was recently done for the GLX window system code, this commit moves
the EGL window system code down from the Clutter backend code into a
Cogl winsys.
Note: currently the cogl/configure.ac is hard coded to only build the GLX
winsys so currently this is only available when building Cogl as part
of Clutter.
This tries to make the naming style of files under cogl/winsys/
consistent with other cogl source files. In particular private header
files didn't have a '-private' infix.