When we disable the event retrieval, we now just disable the X11 event
source, not the event selection. We need to make that clear to
applications, especially compositors, which might expect complete
control over the selection.
XGetGeometry is a great piece of API, since it gets a lot of stuff that
are moderately *not* geometry related - the root window, and the depth
being two.
Since we have multiple conditions depending on the result of that call
we should split them up depending on the actual error - and each of them
should have a separate error message. This makes debugging simpler.
If we have XKB support then we should be using it to turn on the
detectable auto-repeat; this allows avoiding the peeking trick
that emulates it inside the event handling code.
Now that we have private, per-event platform data, we can start putting
it to good use. The first, most simple use is to store the key group
given the event's modifiers. Since we assume a modern X11, we use XKB
to retrieve it, or we simply fall back to 0 by default.
The data is exposed as a ClutterX11-specific function, within the
sanctioned clutter_x11_* namespace.
We might want pieces higher in the stack (like Mx) to handle XSettings
events as well, and swallowing them by removing them from the events
queue would make it impossible.
A typo in clutter-event.c meant that the wrong struct location could be
used for the input device of key events. Also, a typo in the X11 event
code meant that key-presses would come from the pointer device (releases
would still come from the keyboard device).
The pixmap handling of both of the texture pixmap actors in Clutter is
now removed and instead it just creates a CoglTexturePixmapX11. Both
actors are now equivalent so there is no need to choose between the
two.
The Clutter X11 backend now passes all events through
_cogl_xlib_handle_event. This function can now internally be hooked
with _cogl_xlib_add_filter. These are added to a list of callbacks
which are all called in turn by _cogl_xlib_handle_event. This is
intended to be used internally in Cogl by any parts that need to see
Xlib events.
Cogl now also has an internally exposed function to set a pointer to
the Xlib display. This is stored in a global variable. The Clutter X11
backend sets this.
_cogl_xlib_handle_event and _cogl_xlib_set_display can be removed once
Cogl gains a proper window system abstraction.
Use the XSETTINGS machinery to get notification from foreign
environments about settings that might interest Clutter itself - namely:
the default font name, the font DPI, and the Xft font options that can
be mapped on cairo_font_options_t.
The marshallers we use for the signals are declared in a private header,
and it stands to reason that they should also be hidden in the shared
object by using the common '_' prefix. We are also using some direct
g_cclosure_marshal_* symbol from GLib, instead of consistently use the
clutter_marshal_* symbol.
While this is totally fine (None is 0L and, in the pointer context, will
be converted in the right internal NULL representation, which could be a
value with some bits to 1), I believe it's clearer to use NULL instead
of None when we talk about pointers.
While this is totally fine (0 in the pointer context will be converted
in the right internal NULL representation, which could be a value with
some bits to 1), I believe it's clearer to use NULL in the pointer
context.
It seems that, in most case, it's more an overlook than a deliberate
choice to use FALSE/0 as NULL, eg. copying a _COGL_GET_CONTEXT (ctx, 0)
or a g_return_val_if_fail (cond, 0) from a function returning a
gboolean.
Whether events come from the main loop source or from
clutter_x11_handle_event(), we need to feed them to the backend
virtual handle_event function. This fixes problems with clients
using clutter_x11_handle_event() hanging because
GLXBufferSwapComplete events aren't received.
http://bugzilla.openedhand.com/show_bug.cgi?id=2101
ClutterX11TexturePixmap calls get_allocation_box() when queueing a
clipped redraw. If the allocation is not valid, and if we queue a
lot of redraws in response to a series of damage events, the net
result is that we spend all our time in a re-layout. We can
short-circuit this by checking if the actor has a valid allocation, and
if not, just queue a redraw - the actor will be allocated by the time it
is going to be painted.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
A new (internal only currently) API, _clutter_actor_queue_clipped_redraw
can be used to queue a redraw along with a clip rectangle in actor
coordinates. This clip rectangle propagates up to the stage and clutter
backend which may optionally use the information to optimize stage
redraws. The GLX backend in particular may scissor the next redraw to
the clip rectangle and use GLX_MESA_copy_sub_buffer to present the stage
subregion.
The intention is that any actors that can naturally determine the bounds
of updates should queue clipped redraws to reduce the cost of updating
small regions of the screen.
Notes:
» If GLX_MESA_copy_sub_buffer isn't available then the GLX backend
ignores any clip rectangles.
» queuing multiple clipped redraws will result in the bounding box of
each clip rectangle being used.
» If a clipped redraw has a height > 300 pixels then it's promoted into
a full stage redraw, so that the GPU doesn't end up blocking too long
waiting for the vsync to reach the optimal position to avoid tearing.
» Note: no empirical data was used to come up with this threshold so
we may need to tune this.
» Currently only ClutterX11TexturePixmap makes use of this new API. This
is done via a new "queue-damage-redraw" signal that is emitted when
the pixmap is updated. The default handler queues a clipped redraw
with the assumption that the pixmap is being painted as a rectangle
covering the actors transformed allocation. If you subclass
ClutterX11TexturePixmap and change how it's painted you now also
need to override the signal handler and queue your own redraw.
Technically this is a semantic break, but it's assumed that no one
is currently doing this.
This still leaves a few unsolved issues with regards to optimizing sub
stage redraws that need to be addressed in further work so this can only
be considered a stepping stone a this point:
» Because we have no reliable way to determine if the painting of any
given actor is being modified any optimizations implemented using
_clutter_actor_queue_redraw_with_clip must be overridable by a
subclass, and technically must be opt-in for existing classes to avoid
a change in semantics. E.g. consider that a user connects to the paint
signal for ClutterTexture and paints a circle instead of a rectangle.
In this case any original logic to queue clipped redraws would be
incorrect.
» Currently only the implementation of an actor has enough information
with which to queue clipped redraws. E.g. It is not possible for
generic code in clutter-actor.c to queue a clipped redraw when hiding
an actor because actors have no way to report a "paint box". (remember
actors can draw outside their allocation and actors with depth may
also be projected outside of their allocation)
» The current plan is to add a actor_class->get_paint_cuboid()
virtual so actors can report a bounding cube for everything they
would draw in their current state and use that to queue clipped
redraws against the stage by projecting the paint cube into stage
coordinates.
» Our heuristics for promoting clipped redraws into full redraws to
avoid blocking the GPU while we wait for the vsync need improving:
» vsync issues aren't relevant for redirected/composited applications
so they should use different heuristics. In this case we instead
need to trade off the cost of blitting when using glXCopySubBuffer
vs promoting to a full redraw and flipping instead.
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
There is no need for us to check for low-level functions and header
files, especially since we haven't been checking the results until
now. This makes cross-compiling slightly more bearable.
The installed _HEADERS should be the public ones and the enumeration
types; repeating clutter-x11-texture-pixmap.h breaks with automake 1.11
and doesn't strictly make any sense.
http://bugzilla.openedhand.com/show_bug.cgi?id=2002
The DeviceManager class should be abstract in Clutter, and implemented
by each backend, as different backends will have different ways to
detect, initialize and list devices; the X11 backend alone has *two*
ways of dealing with devices.
This commit makes DeviceManager an abstract class and delegates the
device initialization and enumeration to per-backend sub-classes.
The responsible for creating the device manager is, obviously, the
backend singleton.
The X11 and Win32 backends have been updated to the new layout; the
Win32 backend has been updated blindly, so it might require additional
testing.
ConfigureNotify is delivered on window movements too, but there is no
need to queue a relayout on these as the viewport hasn't changed size.
Check for the window actually changing size on ConfigureNotify before
queueing a relayout.
This fixes laggy window movement when moving a window in response to
Clutter mouse motion events.
As well as manually setting the geometry size, we needed to queue a
relayout. This is what the ConfigureNotify handler would normally do,
but we don't get this event when using a foreign window (obviously).
This should fix resizing in things like gtk-clutter.
If we get into the resize function and it's a foreign window, set the
geometry size so that the allocate will set the backend size and call
glViewport.
Setting/unsetting fullscreen on a mapped or unmapped window now works
correctly.
If you unfullscreen a window that was initially full-screened, it will
unset the fullscreen hint and the WM will likely push the size down to
the largest valid size.
If the window was previously un-fullscreened, Clutter will restore the
previous size.
Fullscreening also now works if the WM switches the hint without the
application's knowledge (as happens when you resize a window to the size
of the screen, for example, with stock metacity).
When we resize, we relied on the stage's allocate to re-initialise the
GL viewport. Unfortunately, if we resized within Clutter, the new size
was cached before the window is actually resized, so glViewport wasn't
being called after resizing (some of the time, it's a race condition).
Change the way resizing works slightly so that we only resize when the
geometry size doesn't match our preferred size, and queue a relayout on
ConfigureNotify so the glViewport gets called.
Also change window creation slightly so that setting the size of a
window before it's realized works correctly.
If your OpenGL driver supports GLX_INTEL_swap_event that means when
glXSwapBuffers is called it returns immediatly and an XEvent is sent when
the actual swap has finished.
Clutter can use the events that notify swap completion as a means to
throttle rendering in the master clock without blocking the CPU and so it
should help improve the performance of CPU bound applications.
We want to set the default size without triggering the layout machinary,
so change the window creation process slightly so we start with a
640x480 window.
Due to the way the new sizing works, clutter stage must set its size in
init (to maintain old behaviour) and the properties on the X11 stage
must be initialised to 1x1 so that it actually goes ahead with the
resize.
Fixes stages that aren't user resizable and have no size set from
appearing at 1x1.
Calling clutter_actor_set_size in response to ConfigureNotify makes
setting the size of the stage racy - the most common result of which
seems to be that you can't set the stage dimensions to anything less
than 640x480.
Instead, add a first_allocation bit to the private structure of the X11
stage and force the first resize (necessary or the default stage will be
a 1x1 window).
Now that we have a minimum size getter on the stage object, change
get_geometry to actually always return the geometry. This fixes stages
that are set as user-resizable appearing at 1x1 size.
This will need changing in other back-ends too.