This adds a function called cogl_matrix_is_identity that can determine
if a given matrix is an identity matrix or not.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
It has been overly cumbersome to work with the matrix code ever since we
pulled in the mesa code because we initially kept the mesa and the
original cogl code separate. We have made several updates to the mesa
code since integrating, and the coding style has changed a lot compared
to the original mesa code, so there's little point in keeping the two
files separate any longer.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
Instead of having everything in cogl-matrix-mesa.[ch] be in the
_math namespace this now puts them in the _cogl_matrix namespace
instead, in preparation for flattening cogl-matrix-mesa.[ch] into
cogl-matrix.[ch].
Signed-off-by: Neil Roberts <neil@linux.intel.com>
The aim is to flatten cogl-matrix-mesa.[ch] code back into
cogl-matrix.[ch] and removing cruft first makes sense. This removes
several un-used macros and vector related functions and also replaces
the use of doxygen style comment markup with the gtk-doc style we use
throughout the reset of cogl.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
Instead of having a separate GList for the children we can use the
linked list code from FreeBSD and store the list node directly in the
struct. That way we can avoid having a separate slice allocation for
the list node. It also means that we effectively have a pointer to the
list node given a pointer to the pipeline node. That means we can
unparent a pipeline without having to walk the entire list of
children. With this change there is no need to have the optimisation
to fast track a pipeline that only has one child which simplifies the
code somewhat.
With this patch we are removing a pointer and a gboolean from the
CoglPipeline struct and adding two pointers. On 32-bit architectures
this should end up exactly the same size because a gboolean is the
same size as a pointer. On 64-bit architectures I think it should end
up 4 bytes smaller because it also ends up removing two cases where a
pointer follows a gboolean which presumably would mean the compiler
would have to insert 4 bytes of padding to keep the pointer aligned to
8 bytes.
https://bugzilla.gnome.org/show_bug.cgi?id=652514
This modifies cogl-queue.h so that:-
- Everything is in a COGL_* namespace
- It assumes there is a typedef for all of the types instead of
requiring the code to use struct WhateverType.
- It doesn't contain any tabs
https://bugzilla.gnome.org/show_bug.cgi?id=652514
This directly copies in the header from the FreeBSD kernel for their
linked-list implementation. A later patch will modify it but this
patch is here so we can have a clear patch to show what the
changes are.
Using the list implementation from this header is beneficial as
opposed to using GList because it's possible to embed the list
pointers directly into another struct. This saves a separate
allocation and it also makes it possible to remove an item from the
list without having to iterate the entire list to find its list
node. The header provides four different list types: single and
doubley linked lists and each of them can either have a header with
pointers to the beginning and end or just to the beginning. Glib
effectively only provides single and doubley linked lists with a
pointer to the beginning or a doubley-linked list with a pointer to
both (GQueue).
https://bugzilla.gnome.org/show_bug.cgi?id=652514
The function declarations for the GL_OES_EGL_image extension were
using the wrong name for the GLeglImageOES type so it was getting
build errors when compiling for GLES.
This adds a cogl-win32-renderer.h for the win32 specific cogl-renderer
API instead of having #ifdef guards in cogl-renderer.h
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This updates the public wayland symbols to follow the pattern
cogl_wayland_blah instead of cogl_blah_wayland.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
we've got into a bit of a mess with how we name platform specific
symbols and files, so this is a first pass at trying to tidy that up.
All platform specific symbols should be named like
cogl_<platform>_symbol_name and similarly files should be named like
cogl-<platform>-filename.c
This patch tackles the X11 specific renderer/display APIs as a start.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds Xlib and Win32 typesafe replacements for
cogl_renderer_handle_native_event, cogl_renderer_add_native_filter,
cogl_renderer_remove_native_filter. The old functions are kept as an
implementation detail so we can share code.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
It used to be that we passed around NULL terminated arrays of
attributes, but since 3c1e83c7f we now explicitly pass an n_attributes
count instead. There were some leftovers of the old approach in the
cogl_vdraw_[indexed]_attributes functions and also there was an
off-by-one error with the n_attributes values passed on which was
causing crashes.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
When setting a NULL texture on a CoglPipeline we would also reset the
texture target to a dummy value of 0. Reseting the target also had the
effect of making fragends discard any associated program. In cases where
the NULL texture was only transient until a replacement texture could be
set we were re-running lots of redundant codegen and shader
compilations.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
There is a documented rule that layer changes should only be notified to
the fragend once; either as a pipeline change or as a layer change. When
the number of layers associated with a material changes then that should
get notified against the pipeline. All other layer changes get notified
against the layer.
There was a mistake in the _cogl_pipeline_add/remove_layer_difference
functions, in that we weren't using the 'inc/dec_n_layers' boolean to
determine if the fragend should be notified of the change.
It was also noticed that the logic of _cogl_pipeline_prune_to_n_layers
would also break this rule, by failing to notify some changes at all.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds API to let you override the choice of Cogl's winsys backend.
Previously it was only possible to override the winsys using the
COGL_RENDERER environment variable, but it's useful for something like
Clutter to be able to control the winsys via API without needing
environment variable tricks. This also adds API to query back the
winsys chosen by Cogl, in case you don't set an explicit override.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This exposes experimental cogl_framebuffer APIs for getting and setting
a viewport without having to refer to the implicit CoglContext. It adds
the following experimental API:
cogl_framebuffer_set_viewport
cogl_framebuffer_get_viewport4fv
cogl_framebuffer_get_viewport_x
cogl_framebuffer_get_viewport_y
cogl_framebuffer_get_viewport_width
cogl_framebuffer_get_viewport_height
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds a _cogl_init function for Cogl that we expect to be the first
thing called before anything else is done with Cogl. It's not a public
API so it's expected that all entry points for Cogl that might be the
first function used should call _cogl_init().
We currently call _cogl_init() in these functions:
cogl_renderer_new
cogl_display_new
cogl_context_new
cogl_android_set_native_window
_cogl_init() can be called multiple times, and only the first call has
any affect.
For example _cogl_init() gives us a place check and parse the COGL_DEBUG
environment variable.
Since we don't have any need to parse command line arguments (we can
always get user configuration options from the environment) our init
function doesn't require argc/argv pointers.
By saying up front that we aren't interested in command line arguments
that means we can avoid the mess that is GOption based library
initialization which is extremely fragile due to its lack of dependency
tracking between modules.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds a --enable-profile option which enables uprof based profiling.
It was also necessary to fixup a CLUTTER_ENABLE_PROFILING #ifdef in
cogl-context.c to renamed COGL_ENABLE_PROFILING instead. By default Cogl
doesn't output uprof reports directly, instead it assumes a higher level
toolkit will output a report. If you want a report from Cogl you can
export COGL_PROFILE_OUTPUT_REPORT=1 before running your app.
The latest version of uprof can be fetched from:
git://github.com/rib/UProf.git
This explicitly renames the cogl-2.0 reference manual to
cogl-2.0-experimental and renames the cogl-2.0 pkg-config file to
cogl-2.0-experimental.pc. Hopefully this should avoid
miss-understandings.
This reverts commit 3d2564df8f.
Since 01e1260aa the 'near' and 'far' defines are now undef'd on
Windows so we no longer have to remember not to use them in Cogl code.
This allows to track the number of objects allocated by Cogl. The
results are displayed on the standard output by calling :
cogl_debug_print_instances ();
Signed-off-by: Lionel Landwerlin <lionel.g.landwerlin@linux.intel.com>
Signed-off-by: Neil Roberts <neil@linux.intel.com>
When validating a user pipeline before drawing with a CoglVertexBuffer
we sometimes find we have to make some overrides and we handle that by
creating a pipeline which is a weak copy of the user pipeline. The weak
pipeline gets associated with the original pipeline so if that pipeline
is used multiple times then we can re-use the same override pipeline and
skip validation. Because it's a weak pipeline we get notified when the
original material is destroyed or changed so we know our weak pipeline
is now invalid.
When we get notified that the weak material is invalid we should unref
it, but instead we were just discarding our reference to it. This was
resulting in leaking weak materials and in some cases those materials
referenced textures which would then also be leaked.
The wrapper for the can_hardware_repeat had a cut and paste error so
it would call the wrong function on the child texture.
Many thanks to Owen Taylor for finding this bug.
The COGL_DEBUG=disable-texturing debug variable disables texturing in
the fixed function fragend by not bothering to enable the texture
targets. This wasn't working for the programmable fragends because the
texture targets don't need to be enabled to use them. This patch
modifies the two programmable backends to generate a constant value
for the texture lookups in the shader when the debug variable is
given.
Instead of using _cogl_xlib_add/remove_filter we now use
_cogl_renderer_add/remove_native_filter. The _cogl_xlib_add_filter API
was only required as a stop gap while EGL support was still in Clutter
because in that case we were using the stub winsys and didn't have a
CoglRenderer.
This removes the redundant _cogl_xlib_trap/untrap_errors functions that
simply wrap equivalent functions in the _cogl_renderer_xlib namespace.
These were originally only required while the EGL winsys was being
handled in clutter and so there wasn't a CoglRenderer in all cases.
In the winsys vtable .xlib_get_visual_info and
.onscreen_x11_get_window_xid should be guarded by the
COGL_HAS_EGL_PLATFORM_POWERVR_X11_SUPPORT because they need to be there
if cogl is configured with --enable-xlib-egl-platform but not if just
configured with --enable-xlib.
When iterating through all the possible window systems trying to find
one we can successfully connect we now associated the current winsys
vtable with the renderer before calling winsys->renderer_connect in case
the implementation calls some other Cogl API that expects to be able to
determine the current winsys. For example calling _cogl_get_proc_address
when querying winsys extensions as part of a successful connect will
need to get at the current winsys vtable.
This adds internal API to be able to wrap a wayland buffer as a
CoglTexture2D. There is a --enable-wayland-egl-server option to decide
if Cogl should support this feature and potentially any EGL based winsys
could support this through the EGL_KHR_image_base and
EGL_WL_bind_display extensions.
By using the EGL_KHR_image_base/pixmap extensions this adds support for
wrapping X11 pixmaps as CoglTexture2D textures. Clutter will
automatically take advantage of this if using the
ClutterX11TexturePixmap actor.
This adds an internal texture_2d constructor that can wrap an EGLImage
as a CoglTexture2D. The plan is to utilize this for texture-from-pixmap
support with EGL as well as creating textures from wayland buffers.
Instead of the stub winsys being a special case set of #ifdef'd code
used when COGL_HAS_FULL_WINSYS wasn't defined, the stub winsys now
implements a CoglWinsysVtable like all other winsys backends (it's just
that everything is a NOP). This way we can get rid of the
COGL_HAS_FULL_WINSYS define and also the stub winsys can be runtime
selected whereas before it was incompatible with all other winsys
backends.
Since we no longer have any xlib based backends in Clutter that depend
on the stub winsys in Cogl we can now remove all the special case code
we had for this in cogl-xlib.c
This exposes a CoglTexture2D typedef and adds the following experimental
API:
cogl_is_texture_2d
cogl_texture_2d_new_with_size
cogl_texture_2d_new_from_data
cogl_texture_2d_new_from_foreign
Since this is experimental API you need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h.
Note: With these new entrypoints we now expect a CoglContext pointer to
be passed in, instead of assuming there is a default context. The aim is
that for Cogl 2.0 we won't have a default context so this is a step in
that direction.
This validates that the viewport width and height arguments are positive
values in _cogl_framebuffer_set_viewport. In addition, just before
calling glViewport we also assert that something else hasn't gone amiss
and that the internal viewport width/height values we track are still
positive before passing to glViewport which generates an error for
negative values.
This reverts commit b2e41f1bfa.
We are backing out the quartz specific stub winsys since we can simply
use the generic stub winsys on quartz until we develop a standalone
winsys. Since we plan on removing all special cases for the stub winsys
by handling with a winsys vtable like all the others it's better if we
don't introduce a quartz specific stub.
This reverts commit eb81ec945c.
We are backing out the quartz specific stub winsys since we can simply
use the generic stub winsys on quartz until we develop a standalone
winsys. Since we plan on removing all special cases for the stub winsys
by handling with a winsys vtable like all the others it's better if we
don't introduce a quartz specific stub.
Previously whenever the journal is flushed a new vertex array would be
created to contain the vertices. To avoid the overhead of reallocating
a buffer every time, this patch makes it use a pool of 8 buffers which
are cycled in turn. The buffers are never destroyed but instead the
data is replaced. The journal should only ever be using one buffer at
a time but we cache more than one buffer anyway in case the GL driver
is internally using the buffer in which case mapping the buffer may
cause it to create a new buffer anyway.
When flushing a pipeline that has more layers than the previous
pipeline, the fixed function fragend is supposed to detect that the
texture unit previously had no texture target enabled and then enable
it. However the logic for checking whether the unit was enabled was
broken due to a typing failure when unit->enabled and
unit->current_gl_target were combined into one value in commit
6b7139b0. This was breaking some of the conformance tests when the
fixed function fragend is used.
https://bugzilla.gnome.org/show_bug.cgi?id=650979
The CoglPipeline code uses a combination of GL_MAX_TEXTURE_COORDS,
GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS and GL_MAX_TEXTURE_UNITS to
determine the maximum number of layers to allow in a pipeline. However
on fixed function hardware that doesn't advertise either GLSL or ARBfp
it was still using the first two enums which will probably just return
0 and set a GLerror. This meant that we effectively didn't support
using any layers on purely fixed function hardware. This patch changes
it to only use those two enums if the appropriate extensions are
advertised and to always use GL_MAX_TEXTURE_UNITS except on GLES2
where there is no fixed function.
https://bugzilla.gnome.org/show_bug.cgi?id=650966
The native window type of the EGL/Android winsys is ANativeWinow*. The
Android NDK gives you a pointer to this ANativeWindow and you just need
to configure that window using the EGLConfig you are choosing when
creating the context.
This means you have to know the ANativeWindow* window before creating
the context. This is solved here by just having a global variable you
can set with cogl_android_set_native_window() before creating the
context. This is a bit ugly though, and it conceptually belongs to the
OnScreen creation to know which ANativeWindow* to use. This would need a
"lazy context creation" mechanism, waiting for the user to create the
OnScreen to initialize the GL context.
With GLES 1, frame buffers are a optional extensions. We need to make
sure the pointer exist before calling the function and do that by just
checkout the corresponding feature.
When try_create_context() returns saying that it has to be run again to
try to create a context with an alternate configuration, it might not
have a GError set (and in fact it does not right now).
g_clear_error() handles that case where error is still NULL;
Early implementations provided only a GLES/egl.h while Khronos's
implementer guide now states EGL/egl.h is the One. Some implementations
keep a GLES/egl.h wrapper around EGL/egl.h for backward compatibility
while others provide EGL/egl.h only.
Also took the opportunity to factorize a bit this inclusion in
cogl-defines.h.
Instead of simply extending the cogl_pipeline_ namespace to add api for
controlling the depth testing state we now break the api out. This adds
a CoglDepthState type that can be stack allocated. The members of the
structure are private but we have the following API to setup the state:
cogl_depth_state_init
cogl_depth_state_set_test_enabled
cogl_depth_state_get_test_enabled
cogl_depth_state_set_test_function
cogl_depth_state_get_test_function
cogl_depth_state_set_writing_enabled
cogl_depth_state_get_writing_enabled
cogl_depth_state_set_range
cogl_depth_state_get_range
This removes the following experimental API which is now superseded:
cogl_material_set_depth_test_enabled
cogl_material_get_depth_test_enabled
cogl_material_set_depth_test_function
cogl_material_get_depth_test_function
cogl_material_set_depth_writing_enabled
cogl_material_get_depth_writing_enabled
cogl_material_set_depth_range
cogl_material_get_depth_range
Once a CoglDepthState structure is setup it can be set on a pipeline
using cogl_pipeline_set_depth_state().
Commit 3c1e83c7 changed uses of arrays of CoglAttributes to take a
length instead of being NULL terminated. In cogl_primitive_new it was
still adding the NULL terminator to the array it passes to
cogl_primitive_new_with_attributes but then it was also including this
terminator in the count so it would just segfault when it tries to ref
the NULL pointer. Also _cogl_primitive_new_with_attributes_unref was
still trying to detect the NULL terminator so it would also crash.
cogl/cogl-pango.h can't be included unless the include directory for
Pango is given in the compiler flags. In an application, it is
expected that if they are using this header then they would pull in
cogl-pango-1.0.pc which would provide this. However when building Cogl
itself we might be building without Pango support so the Makefile
can't rely on PANGO_CFLAGS. This was breaking building the
introspection data because cogl-pango.h was listed as one of the files
to scan but it can't be included.
For the first iteration of the CoglAttribute API several of the new
functions accepted a pointer to a NULL terminated list of CoglAttribute
pointers - probably as a way to reduce the number of arguments required.
This style isn't consistent with existing Cogl APIs though and so we now
explicitly pass n_attributes arguments and don't require the NULL
termination.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to strongly imply a relationship between
CoglBuffers and CoglIndexBuffers and be consistent with the
CoglAttributeBuffer and CoglPixelBuffer APIs.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to strongly imply a relationship between
CoglBuffers and CoglPixelBuffers and be consistent with the
CoglAttributeBuffer and CoglIndexBuffer APIs.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to switch away from
using the term "Array" which implies a regular, indexable layout which
isn't the case. We also want to have a strongly implied relationship
between CoglAttributes and CoglAttributeBuffers.
To help catch accidental changes to the size of public structs that can
be allocated on the stack this patch adds compile time checks that our
struct sizes haven't changed.
This adds an experimental CoglEuler data type and the following new
functions:
cogl_euler_init
cogl_euler_init_from_matrix
cogl_euler_init_from_quaternion
cogl_euler_equal
cogl_euler_copy
cogl_euler_free
cogl_quaternion_init_from_euler
Since this is experimental API you need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h
This adds an experimental quaternion utility API. It's not yet fully
documented but it's complete enough that people can start to experiment
with using it. It adds the following functions:
cogl_quaternion_init_identity
cogl_quaternion_init
cogl_quaternion_init_from_angle_vector
cogl_quaternion_init_from_array
cogl_quaternion_init_from_x_rotation
cogl_quaternion_init_from_y_rotation
cogl_quaternion_init_from_z_rotation
cogl_quaternion_equal
cogl_quaternion_copy
cogl_quaternion_free
cogl_quaternion_get_rotation_angle
cogl_quaternion_get_rotation_axis
cogl_quaternion_normalize
cogl_quaternion_dot_product
cogl_quaternion_invert
cogl_quaternion_multiply
cogl_quaternion_pow
cogl_quaternion_slerp
cogl_quaternion_nlerp
cogl_quaternion_squad
cogl_get_static_identity_quaternion
cogl_get_static_zero_quaternion
Since it's experimental API you'll need to define
COGL_ENABLE_EXPERIMENTAL_API before including cogl.h.
cogl-pango is conceptually a separate library so it doesn't seem
appropriate to bundle the headers with all the other cogl headers. Also
in-tree the headers live in a cogl-pango directory so if we want
examples that can include cogl-pango consistently when built in or out
of tree using the convention #include <cogl-pango/cogl-pango.h> makes
that easy.
This adds a compatibility cogl/cogl-pango.h header that's will redirect
to cogl-pango/cogl-pango.h with a warning, or result in an error if
COGL_ENABLE_EXPERIMENTAL_2_0_API is defined.
When freeing a framebuffer stack it's possible to have entries with NULL
draw or read buffers so we should check that before calling
cogl_onscreen/offscreen_free. This fixes a crash with the wayland
backend when running conformance tests such as cogl-test-object which
never push a framebuffer.
To support toolkits targeting wayland and using Cogl we allow toolkits
to be responsible for connecting to a wayland display and asking Cogl to
use the toolkit owned display and compositor object. Note: eventually
the plan is that wayland will allow retrospective querying of objects so
we won't need the foreign compositor API when Cogl can simply query it
from the foreign display.
The EGL API doesn't provide for a way to explicitly select a platform
when the driver can support multiple. Mesa allows selection using an
EGL_PLATFORM environment variable though so we set that to "wayland"
when we know that's what we want.
Some places were using COGL_HAS_WIN32 but the only macro defined is
COGL_HAS_WIN32_SUPPORT. The similar macros such as COGL_HAS_XLIB are
only defined for compatibility with existing code but COGL_HAS_WIN32
was never defined so there's no need to support it.
One of the places was including the non-existant cogl-win32.h. This
has been removed because the file only temporarily existed during
development of the backend.
In update_primitive_attributes it tries to fill in an array of
pointers with a NULL terminator. However it was only allocating enough
space for a pointer for each of the attributes plus one byte instead
of plus enough bytes for another pointer.
Thomas Wood found this bug with static analysis.
All of the winsys backends didn't handle cleaning up the CoglOnscreen
properly so that they would assert in cogl_onscreen_free because the
winsys pointer is never freed. They also didn't cope if deinit is
called before init (which will be the case if an onscreen is created
and freed without being allocated).
When SetPixelFormat fails, the DC would get released but none of the
other resources would be freed. This patch makes it call
_cogl_winsys_onscreen_deinit on failure to clean up all of the
resources. The patch looks big because it moves the onscreen_deinit
and onscreen_bind functions.
Some of the virtual functions in CoglWinsysVtable only need to be
implemented for specific backends or when a specific feature is
advertised. This splits the vtable struct into two commented sections
marking which are optional and which are required. Wherever an
optional function is used there is now a g_return_if_fail to ensure
there is an implementation.
Wayland now supports integration via standard eglSurfaces which makes it
possible to share more code with other EGL platforms. (though at some
point cogl-winsys-egl.c really needs to gain a more formal
CoglEGLPlatform abstraction so we can rein back on the amount of #ifdefs
we have.)
This removes all the remnants from being able to build Cogl standalone
while it was part of the Clutter repository. Now that Cogl has been
split out then standalone builds are the only option.
We now install cogl-pango-1.0 and cogl-pango-2.0 pkg-config files that
applications should optionally depend on if they want to use the
cogl_pango API.
If a foreign xid has been set on a CoglOnscreen then
cogl_onscreen_x11_get_window_xid doesn't need to defer to the winsys to
get the underlying window xid. This also means it's possible to read
back the xid before the framebuffer is allocated which fixes a crash in
the x11-foreign example app.
Ideally we wouldn't have any private symbols exported, but for now there
are some APIs that coglpango needs access to that aren't public so we
have ensure they are exported. The aim is to get rid of this need at
some point.
When comparing the wrap modes of two pipeline layers it now considers
COGL_WRAP_MODE_AUTOMATIC to be equivalent to CLAMP_TO_EDGE. By the
time the pipeline is in the journal, the upper primitive code is
expected to have overridden this wrap mode with something else if it
wants any other behaviour. This is important for getting text to batch
together with textures because the text explicitly sets the wrap mode
to CLAMP_TO_EDGE on its pipeline.
This adds cogl_atlas_texture_* functions to register a callback that
will get invoked whenever any of the CoglAtlas's the textures use get
reorganized. The callback is global and is not tied to any particular
atlas texture.
This adds a new function called _cogl_atlas_texture_new_with_size. The
old new_from_bitmap function now just calls this and updates the
texture with the data.
This extends cogl_onscreen_x11_set_foreign_xid to take a callback to a
function that details the event mask the Cogl requires the application
to select on foreign windows. This is required because Cogl, for
example, needs to track size changes of a window and may also in the
future want other notifications such as map/unmap.
Most applications wont need to use the foreign xwindow apis, but those
that do are required to pass a valid callback and update the event mask
of their window according to Cogl's requirements.
This adds Cogl API to show and hide onscreen framebuffers. We don't want
to go too far down the road of abstracting window system APIs with Cogl
since that would be out of its scope but the previous idea that we would
automatically map framebuffers on allocation except for those made from
foreign windows wasn't good enough. The problem is that we don't want to
make Clutter always create stages from foreign windows but with the
automatic map semantics then Clutter doesn't get an opportunity to
select for all the events it requires before mapping. This meant that we
wouldn't be delivered a mouse enter event for windows mapped underneath
the cursor which would break Clutters handling of button press events.
When building on windows for example we need to ensure we pass
-no-undefined to the linker. Although we were substituting a
COGL_EXTRA_LDFLAGS variable from our configure.ac we forgot to
reference that when linking cogl.
Until Cogl gains native win32/OSX support this remove the osx and win32
winsys files and instead we'll just rely on the stub-winsys.c to handle
these platforms. Since the only thing the platform specific files were
providing anyway was a get_proc_address function; it was trivial to
simply update the clutter backend code to handle this directly for now.
This is a workaround for a bug on OSX for some radeon hardware that
we can't verify and the referenced bug link is no longer valid.
If this is really still a problem then a new bug should be opened and we
can look at putting the fix in some more appropriate place than
cogl-gl.c
For now we are going for the semantics that when a CoglOnscreen is first
allocated then it will automatically be mapped. This is for convenience
and if you don't want that behaviour then it is possible to instead
create an Onscreen from a foreign X window and in that case it wont be
mapped automatically.
This approach means that Cogl doesn't need onscreen_map/unmap functions
but it's possible we'll decide later that we can't avoid adding such
functions and we'll have to change these semantics.
This allows more detailed control over the driver and winsys features
that Cogl should have. Cogl is designed so it can support multiple
window systems simultaneously so we have enable/disable options for
the drivers (gl vs gles1 vs gles2) and options for the individual window
systems; currently glx and egl. Egl is broken down into an option
for each platform.
The GDL API is used for example on intel ce4100 (aka Sodaville) based
systems as a way to allocate memory that can be composited using the
platforms overlay hardware. This updates the Cogl EGL winsys and the
support in Clutter so we can continue to support these platforms.
So that we can dynamically select what winsys backend to use at runtime
we need to have some indirection to how code accesses the winsys instead
of simply calling _cogl_winsys* functions that would collide if we
wanted to compile more than one backend into Cogl.
This moves the GLX specific code from cogl-texture-pixmap-x11.c into
cogl-winsys-glx.c. If we want the winsys components to by dynamically
loadable then we can't have GLX code scattered outside of
cogl-winsys-glx.c. This also sets us up for supporting the
EGL_texture_from_pixmap extension which is almost identical to the
GLX_texture_from_pixmap extension.
As was recently done for the GLX window system code, this commit moves
the EGL window system code down from the Clutter backend code into a
Cogl winsys.
Note: currently the cogl/configure.ac is hard coded to only build the GLX
winsys so currently this is only available when building Cogl as part
of Clutter.
The "DRM_SURFACELESS" EGL platform was invented when we were adding the
wayland backend to Clutter but in the end we added a dedicated backend
instead of extending the EGL backend so actually the platform name isn't
used.
Commit b061f737 moved _cogl_winsys_has_feature to the common winsys
code so there's no need to define it in the stub winsys any more. This
was breaking builds for backends using the stub winsys.
The comparison for finding onscreen framebuffers in
find_onscreen_for_xid had a small thinko so that it would ignore
framebuffers when the negation of the type is onscreen. This ends up
doing the right thing anyway because the onscreen type has the value 0
and the offscreen type has the value 1 but presumably it would fail if
we ever added any other framebuffer types.
The code for _cogl_winsys_has_feature will be identical in all of the
winsys backends for the time being, so it seems to make sense to have
it in the common cogl-winsys.c file.
Previously the mask of available winsys features was stored in a
CoglBitmask. That isn't the ideal type to use for this because it is
intended for a growable array of bits so it can allocate extra memory
if there are more than 31 flags set. For the winsys feature flags the
highest used bit is known at compile time so it makes sense to
allocate a fixed array instead. This is conceptually similar to the
CoglDebugFlags which are stored in an array of integers with macros to
test a bit in the array. This moves the macros used for CoglDebugFlags
to cogl-flags.h and makes them more generic so they can be shared with
CoglContext.
Instead of having cogl_renderer_xlib_add_filter and friends there is
now cogl_renderer_add_native_filter which can be used regardless of
the backend. The callback function for the filter now just takes a
void pointer instead of an XEvent pointer which should be interpreted
differently depending on the backend. For example, on Xlib it would
still be an XEvent but on Windows it could be a MSG. This simplifies
the code somewhat because the _cogl_xlib_add_filter no longer needs to
have its own filter list when a stub renderer is used because there is
always a renderer available.
cogl_renderer_xlib_handle_event has also been renamed to
cogl_renderer_handle_native_event. This just forwards the event on to
all of the listeners. The backend renderer is expected to register its
own event filter if it wants to process the events in some way.
Older drivers for PowerVR SGX hardware have the vendor-specific
GL_IMG_TEXTURE_NPOT extension instead of the
functionally-equivalent GL_OES_TEXTURE_NPOT extension.
We need to guard the usage of symbols related to the
GLX_INTEL_swap_event extension, to avoid breaking on platforms and/or
versions of Mesa that do not expose that extension.
It's generally useful to be able to query the width and height of a
framebuffer and we expect to need this in Clutter when we move the
eglnative backend code into Cogl since Clutter will need to read back
the fixed size of the framebuffer when realizing the stage.
This backend hasn't been used for years now and so because it is
untested code and almost certainly doesn't work any more it would be a
burdon to continue trying to maintain it. Considering that we are now
looking at moving OpenGL window system integration code down from
Clutter backends into Cogl that will be easier if we don't have to
consider this backend.
This adds an autogen.sh, configure.ac and build/autotool files etc under
clutter/cogl and makes some corresponding Makefile.am changes that make
it possible to build and install Cogl as a standalone library.
Some notable things about this are:
A standalone installation of Cogl installs 3 pkg-config files;
cogl-1.0.pc, cogl-gl-1.0.pc and cogl-2.0.pc. The second is only for
compatibility with what clutter installed though I'm not sure that
anything uses it so maybe we could remove it. cogl-1.0.pc is what
Clutter would use if it were updated to build against a standalone cogl
library. cogl-2.0.pc is what you would use if you were writing a
standalone Cogl application.
A standalone installation results in two libraries currently, libcogl.so
and libcogl-pango.so. Notably we don't include a major number in the
sonames because libcogl supports two major API versions; 1.x as used by
Clutter and the experimental 2.x API for standalone applications.
Parallel installation of later versions e.g. 3.x and beyond will be
supportable either with new sonames or if we can maintain ABI then we'll
continue to share libcogl.so.
The headers are similarly not installed into a directory with a major
version number since the same headers are shared to export the 1.x and
2.x APIs (The only difference is that cogl-2.0.pc ensures that
-DCOGL_ENABLE_EXPERIMENTAL_2_0_API is used). Parallel installation of
later versions is not precluded though since we can either continue
sharing or later add a major version suffix.
This migrates all the GLX window system code down from the Clutter
backend code into a Cogl winsys. Moving OpenGL window system binding
code down from Clutter into Cogl is the biggest blocker to having Cogl
become a standalone 3D graphics library, so this is an important step in
that direction.
As part of the process of splitting Cogl out as a standalone graphics
API we need to introduce some API concepts that will allow us to
initialize a new CoglContext when Clutter isn't there to handle that for
us...
The new objects roughly in the order that they are (optionally) involved
in constructing a context are: CoglRenderer, CoglOnscreenTemplate,
CoglSwapChain and CoglDisplay.
Conceptually a CoglRenderer represents a means for rendering. Cogl
supports rendering via OpenGL or OpenGL ES 1/2.0 and those APIs are
accessed through a number of different windowing APIs such as GLX, EGL,
SDL or WGL and more. Potentially in the future Cogl could render using
D3D or even by using libdrm and directly banging the hardware. All these
choices are wrapped up in the configuration of a CoglRenderer.
Conceptually a CoglDisplay represents a display pipeline for a renderer.
Although Cogl doesn't aim to provide a detailed abstraction of display
hardware, on some platforms we can give control over multiple display
planes (On TV platforms for instance video content may be on one plane
and 3D would be on another so a CoglDisplay lets you select the plane
up-front.)
Another aspect of CoglDisplay is that it lets us negotiate a display
pipeline that best supports the type of CoglOnscreen framebuffers we are
planning to create. For instance if you want transparent CoglOnscreen
framebuffers then we have to be sure the display pipeline wont discard
the alpha component of your framebuffers. Or if you want to use
double/tripple buffering that requires support from the display
pipeline.
CoglOnscreenTemplate and CoglSwapChain are how we describe our default
CoglOnscreen framebuffer configuration which can affect the
configuration of the display pipeline.
The default/simple way we expect most CoglContexts to be constructed
will be via something like:
if (!cogl_context_new (NULL, &error))
g_error ("Failed to construct a CoglContext: %s", error->message);
Where that NULL is for an optional "display" parameter and NULL says to
Cogl "please just try to do something sensible".
If you want some more control though you can manually construct a
CoglDisplay something like:
display = cogl_display_new (NULL, NULL);
cogl_gdl_display_set_plane (display, plane);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
And in a similar fashion to cogl_context_new() you can optionally pass
a NULL "renderer" and/or a NULL "onscreen template" so Cogl will try to
just do something sensible.
If you need to change the CoglOnscreen defaults you can provide a
template something like:
chain = cogl_swap_chain_new ();
cogl_swap_chain_set_has_alpha (chain, TRUE);
cogl_swap_chain_set_length (chain, 3);
onscreen_template = cogl_onscreen_template_new (chain);
cogl_onscreen_template_set_pixel_format (onscreen_template,
COGL_PIXEL_FORMAT_RGB565);
display = cogl_display_new (NULL, onscreen_template);
if (!cogl_display_setup (display, &error))
g_error ("Failed to setup a CoglDisplay: %s", error->message);
This tries to make the naming style of files under cogl/winsys/
consistent with other cogl source files. In particular private header
files didn't have a '-private' infix.
This gives us a way to clearly track the internal Cogl API that Clutter
depends on. The aim is to split Cogl out from Clutter into a standalone
3D graphics API and eventually we want to get rid of any private
interfaces for Clutter so its useful to have a handle on that task.
Actually it's not as bad as I was expecting though.
This renames the two internal functions _cogl_get_draw/read_buffer
as cogl_get_draw_framebuffer and _cogl_get_read_framebuffer. The
former is now also exposed as experimental API.
The long term goal with the Cogl API is that we will get rid of the
default global context. As a step towards this, this patch tracks a
reference back to the context in each CoglFramebuffer so in a lot of
cases we can avoid using the _COGL_GET_CONTEXT macro.
There is no corresponding implementation of _cogl_features_init any more
so it was simply an oversight that the prototype wasn't removed when the
implementation was removed.
Recently _cogl_swap_buffers_notify was added (in 142b229c5c) so that
Cogl would be notified when Clutter performs a swap buffers request for
a given onscreen framebuffer. It was expected this would be required for
the recent cogl_read_pixel optimization that was implemented (ref
1bdb0e6e98) but in the end it wasn't used.
Since it wasn't used in the end this patch removes the API.
This moves the functionality of _cogl_create_context_driver from
driver/{gl,gles}/cogl-context-driver-{gl,gles}.c into
driver/{gl,gles}/cogl-{gl,gles}.c as a static function called
initialize_context_driver.
cogl-context-driver-{gl,gles}.[ch] have now been removed.
This adds a new experimental function (you need to define
COGL_ENABLE_EXPERIMENTAL_API to access it) which takes us towards being
able to have a standalone Cogl API. This is really a minor aesthetic
change for now since all the GL context creation code still lives in
Clutter but it's a step forward none the less.
Since our current designs introduce a CoglDisplay object as something
that would be passed to the context constructor this provides a stub
cogl-display.h with CoglDisplay typedef.
_cogl_context_get_default() which Clutter uses to access the Cogl
context has been modified to use cogl_context_new() to initialize
the default context.
There is one rather nasty hack used in this patch which is that the
implementation of cogl_context_new() has to forcibly make the allocated
context become the default context because currently all the code in
Cogl assumes it can access the context using _COGL_GET_CONTEXT including
code used to initialize the context.
In _cogl_pipeline_prune_empty_layer_difference if the layer's parent
has no owner then it just takes ownership of it. However this could
theoretically end up taking ownership of the root layer because
according to the comment above in the same function that should never
have an owner. This patch just adds an extra check to ensure that the
unowned layer has a parent.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2588
In _cogl_pipeline_prune_empty_layer_difference if we are reverting to
the immediate parent of an empty/redundant layer then it is not enough
to simply add a reference to the pipeline's ->layer_differences list
without also updating parent_layer->owner to point back to its new
owner.
This oversight was leading us to break the invariable that all layers
referenced in layer_differences have an owner and was also causing us to
break another invariable whereby after calling
_cogl_pipeline_layer_pre_change_notify the returned layer must always be
owned by the given 'required_owner'.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2588
glib already has a data type to manage a list of callbacks called a
GHookList so we might as well use it instead of maintaining Cogl's own
type. The glib version may be slightly more efficient because it
avoids using a GList and instead encodes the prev and next pointers
directly in the GHook structure. It also has more features than
CoglCallbackList.
Previously we were applying the culling optimization to any actor
painted without considering that we may be painting to an offscreen
framebuffer where the stage clip isn't applicable.
For now we simply expose a getter for the current draw framebuffer
and we can assume that a return value of NULL corresponds to the
stage.
Note: This will need to be updated as stages start to be backed by real
CoglFramebuffer objects and so we won't get NULL in those cases.
Drawing and clipping to paths is generally quite expensive because the
geometry has to be tessellated into triangles in a single VBO which
breaks up the journal batching. If we can detect when the path
contains just a single rectangle then we can instead divert to calling
cogl_rectangle which will take advantage of the journal, or by pushing
a rectangle clip which usually ends up just using the scissor.
This patch adds a boolean to each path to mark when it is a
rectangle. It gets cleared whenever a node is added or gets set to
TRUE whenever cogl2_path_rectangle is called. This doesn't try to
catch cases where a rectangle is composed by cogl_path_line_to and
cogl_path_move_to commands.
In 9ff04e8a99 the builtin uniforms were moved to the common shader
boilerplate. However the common boilerplate is positioned before the
default precision specifier on GLES2 so it would fail to compile
because the uniforms end up with no precision in the fragment
shader. This patch just moves the precision specifier to above the
common boilerplate.
Instead of unconditionally combining the modelview and projection
matrices and then iterating each of the vertices to call
cogl_matrix_transform_point for each one in turn we now only combine the
matrices if there are more than 4 vertices (with less than 4 vertices
its less work to transform them separately) and we use the new
cogl_vertex_{transform,project}_points APIs which can hopefully
vectorize the transformations.
Finally the perspective divide and viewport scale is done in a separate
loop at the end and we don't do the spurious perspective divide and
viewport scale for the z component.
This adds two new experimental functions to cogl-matrix.c:
cogl_matrix_view_2d_in_perspective and cogl_matrix_view_2d_in_frustum
which can be used to setup a view transform that maps a 2D coordinate
system (0,0) top left and (width,height) bottom right to the current
viewport.
Toolkits such as Clutter that want to mix 2D and 3D drawing can use
these APIs to position a 2D coordinate system at an arbitrary depth
inside a 3D perspective projected viewing frustum.
OpenGL < 4.0 only supports integer based viewports and internally we
have a mixture of code using floats and integers for viewports. This
patch switches all viewports throughout clutter and cogl to be
represented using floats considering that in the future we may want to
take advantage of floating point viewports with modern hardware/drivers.
This makes a change to the original point_in_poly algorithm from:
http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
The aim was to tune the test so that tests against screen aligned
rectangles are more resilient to some in-precision in how we transformed
that rectangle into screen coordinates. In particular gnome-shell was
finding that for some stage sizes then row 0 of the stage would become a
dead zone when going through the software picking fast-path and this was
because the y position of screen aligned rectangles could end up as
something like 0.00024 and the way the algorithm works it doesn't have
any epsilon/fuz factor to consider that in-precision.
We've avoided introducing an epsilon factor to the comparisons since we
feel there's a risk of changing some semantics in ways that might not be
desirable. One of those is that if you transform two polygons which
share an edge and test a point close to that edge then this algorithm
will currently give a positive result for only one polygon.
Another concern is the way this algorithm resolves the corner case where
the horizontal ray being cast to count edge crossings may cross directly
through a vertex. The solution is based on the "idea of Simulation of
Simplicity" and "pretends to shift the ray infinitesimally down so that
it either clearly intersects, or clearly doesn't touch". I'm not
familiar with the idea myself so I expect a misplaced epsilon is likely
to break that aspect of the algorithm.
The simple solution this patch applies is to pixel align the polygon
vertices which should eradicate most noise due to in-precision.
https://bugzilla.gnome.org/show_bug.cgi?id=641197
When using a pipeline and the journal to blit images between
framebuffers, it should disable blending. Otherwise it will end up
blending the source texture with uninitialised garbage in the
destination texture.
If an atlas texture's last reference is held by the journal or by the
last flushed pipeline then if an atlas migration is started it can
cause a crash. This is because the atlas migration will cause a
journal flush and can sometimes change the current pipeline which
means that the texture would be destroyed during migration.
This patch adds an extra 'post_reorganize' callback to the existing
'reorganize' callback (which is now renamed to 'pre_reorganize'). The
pre_reorganize callback is now called before the atlas grabs a list of
the current textures instead of after so that it doesn't matter if the
journal flush destroys some of those textures. The pre_reorganize
callback for CoglAtlasTexture grabs a reference to all of the textures
so that they can not be destroyed when the migration changes the
pipeline. In the post_reorganize callback the reference is removed
again.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2538
When Cogl debugging is disabled then the 'waste' variable is not used
so it throws a compiler warning. This patch removes the variable and
the value is calculated directly as the parameter to COGL_NOTE.
Some code was doing pointer arithmetic on the return value from
cogl_buffer_map which is void* pointer. This is a GCC extension so we
should try to avoid it. This patch adds casts to guint8* where
appropriate.
Based on a patch by Fan, Chun-wei.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2561
Instead of directly banging GL to migrate textures the atlas now uses
the CoglFramebuffer API. It will use one of four approaches; it can
set up two FBOs and use _cogl_blit_framebuffer to copy between them;
it can use a single target fbo and then render the source texture to
the FBO using a Cogl draw call; it can use a single FBO and call
glCopyTexSubImage2D; or it can fallback to reading all of the texture
data back to system memory and uploading it again with a sub texture
update.
Previously GL calls were used directly because Cogl wasn't able to
create a framebuffer without a stencil and depth buffer. However there
is now an internal version of cogl_offscreen_new_to_texture which
takes a set of flags to disable the two buffers.
The code for blitting has now been moved into a separate file called
cogl-blit.c because it has become quite long and it may be useful
outside of the atlas at some point.
The 4 different methods have a fixed order of preference which is:
* Texture render between two FBOs
* glBlitFramebuffer
* glCopyTexSubImage2D
* glGetTexImage + glTexSubImage2D
Once a method is succesfully used it is tried first for all subsequent
blits. The default default can be overridden by setting the
environment variable COGL_ATLAS_DEFAULT_BLIT_MODE to one of the
following values:
* texture-render
* framebuffer
* copy-tex-sub-image
* get-tex-data
This adds a declaration for _cogl_is_texture_2d to the private header
so that it can be used in cogl-blit.c to determine if the target
texture is a simple 2D texture.
This adds a function called _cogl_texture_2d_copy_from_framebuffer
which is a simple wrapper around glCopyTexSubImage2D. It is currently
specific to the texture 2D backend.
This adds the _cogl_blit_framebuffer internal function which is a
wrapper around glBlitFramebuffer. The API is changed from the GL
version of the function to reflect the limitations provided by the
GL_ANGLE_framebuffer_blit extension (eg, no scaling or mirroring).
This extension is the GLES equivalent of the GL_EXT_framebuffer_blit
extension except that it has some extra restrictions. We need to check
for some extension that provides glBlitFramebuffer so that we can
unconditionally use ctx->drv.pf_glBlitFramebuffer in both GL and GLES
code. Even with the restrictions, the extension provides enough
features for what Cogl needs.
Previously when _cogl_atlas_texture_migrate_out_of_atlas is called it
would unreference the atlas texture's sub-texture before calling
_cogl_atlas_copy_rectangle. This would leave the atlas texture in an
inconsistent state during the copy. This doesn't normally matter but
if the copy ends up doing a render then the atlas texture may end up
being referenced. In particular it would cause problems if the texture
is left in a texture unit because then Cogl may try to call
get_gl_texture even though the texture isn't actually being used for
rendering. To fix this the sub texture is now unrefed after the copy
call instead.
The current framebuffer is now internally separated so that there can
be a different draw and read buffer. This is required to use the
GL_EXT_framebuffer_blit extension. The current draw and read buffers
are stored as a pair in a single stack so that pushing the draw and
read buffer is done simultaneously with the new
_cogl_push_framebuffers internal function. Calling
cogl_pop_framebuffer will restore both the draw and read buffer to the
previous state. The public cogl_push_framebuffer function is layered
on top of the new function so that it just pushes the same buffer for
both drawing and reading.
When flushing the framebuffer state, the cogl_framebuffer_flush_state
function now tackes a pointer to both the draw and the read
buffer. Anywhere that was just flushing the state for the current
framebuffer with _cogl_get_framebuffer now needs to call both
_cogl_get_draw_buffer and _cogl_get_read_buffer.
When pushing a framebuffer it would previously push
COGL_INVALID_HANDLE to the top of the framebuffer stack so that when
it later calls cogl_set_framebuffer it will recognise that the
framebuffer is different and replace the top with the new
pointer. This isn't ideal because it breaks the code to flush the
journal because _cogl_framebuffer_flush_journal is called with the
value of the old pointer which is NULL. That function was checking for
a NULL pointer so it wouldn't actually flush. It also would mean that
if you pushed the same framebuffer twice we would end up dirtying
state unnecessarily. To fix this cogl_push_framebuffer now pushes a
reference to the current framebuffer instead.
After a dependent framebuffer is added to a framebuffer it was never
getting removed. Once the journal for a framebuffer is flushed we no
longer depend on any framebuffers so the list should be cleared. This
was causing leaks of offscreens and textures.
This adds a note to clarify that cogl_matrix_multiply allows you to
multiply the @a matrix in-place, so @a can equal @result but @b can't
equal @result.
When uploading the layer matrix to GL it wasn't first calling
glActiveTextureMatrix to set the right texture unit for the
layer. This would end up setting the texture matrix on whatever layer
happened to be previously active. This happened to work for
test-cogl-multitexture presumably because it was coincidentally
setting the layer matrix on the last used layer.
The pipeline private data is accessed both from the private data set
on a CoglPipeline and the destroy notify function of a weak material
that the vertex buffer creates when it needs to override the wrap
mode. However when a CoglPipeline is destroyed, the CoglObject code
first removes all of the private data set on the object and then the
CoglPipeline code gets invoked to destroy all of the weak children. At
this point the vertex buffer's weak override destroy notify function
will get invoked and try to use the private data which has already
been freed causing a crash.
This patch instead adds a reference count to the pipeline private data
stuct so that we can avoid freeing it until both the private data on
the pipeline has been destroyed and all of the weak materials are
destroyed.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2544
In cogl_pipeline_set_layer_combine_constant it was comparing whether
the new color is the same as the old color using a memcmp on the
constant_color parameter. However the combine constant is stored in
the layer data as an array of four floats but the passed in color is a
CoglColor (which is currently an array of four guint8s). This was
causing valgrind errors and presumably also the check for setting the
same color twice would always fail.
This patch makes it do the conversion to a float array upfront before
the comparison.
cogl_matrix_project_points and cogl_matrix_transform_points had an
optimization for the common case where the stride parameters exactly
match the size of the corresponding structures. The code for both when
generated by gcc with -O2 on x86-64 use two registers to hold the
addresses of the input and output arrays. In the strided version these
pointers are incremented by adding the value of a register and in the
packed version they are incremented by adding an immediate value. I
think the difference in cost here would be negligible and it may even
be faster to add a register.
Also GCC appears to retain the loop counter in a register for the
strided version but in the packed version it can optimize it out and
directly use the input pointer as the counter. I think it would be
possible to reorder the code a bit to explicitly use the input pointer
as the counter if this were a problem.
Getting rid of the packed versions tidies up the code a bit and it
could potentially be faster if the code differences are small and we
get to avoid an extra conditional in cogl_matrix_transform_points.
When copying COMBINE state in
_cogl_pipeline_layer_init_multi_property_sparse_state we would read some
state from the destination layer (invalid data potentially), then
redundantly set the value back on the destination. This was picked up by
valgrind, and the code is now more careful about how it references the
src layer vs the destination layer.
There is currently a problem with per-framebuffer journals in that it's
possible to create a framebuffer from a texture which then gets rendered
too but the framebuffer (and corresponding journal) can be freed before
the texture gets used to draw with.
Conceptually we want to make sure when freeing a framebuffer that - if
it is associated with a texture - we flush the journal as the last thing
before really freeing the framebuffer's meta data. Technically though
this is awkward to implement since the obvious mechanism for us to be
notified about the framebuffer's destruction (by setting some user data
internally with a callback) notifies when the framebuffer has a
ref-count of 0. This means we'd have to be careful what we do with the
framebuffer to consider e.g. recursive destruction; anything that would
set more user data on the framebuffer while it is being destroyed and
ensuring nothing else gets notified of the framebuffer's destruction
before the journal has been flushed.
For simplicity, for now, this patch provides another solution which is
to flush framebuffer journals whenever we switch away from a given
framebuffer via cogl_set_framebuffer or cogl_push/pop_framebuffer. The
disadvantage of this approach is that we can't batch all the geometry of
a scene that involves intermediate renders to offscreen framebufers.
Clutter is doing this more and more with applications that use the
ClutterEffect APIs so this is a shame. Hopefully this will only be a
stop-gap solution while we consider how to reliably support journal
logging across framebuffer changes.
When flushing a clip stack that contains more than one rectangle which
needs to use the stencil buffer the code takes a different path so
that it can combine the new rectangle with the existing contents of
the stencil buffer. However it was not correctly flushing the
modelview and projection matrices so that rectangle would be in the
wrong place.
This adds a COGL_DEBUG=clipping option that reports how the clip is
being flushed. This is needed to determine whether the scissor,
stencil clip planes or software clipping is being used.
The CoglDebugFlags are now stored in an array of unsigned ints rather
than a single variable. The flags are accessed using macros instead of
directly peeking at the cogl_debug_flags variable. The index values
are stored in the enum rather than the actual mask values so that the
enum doesn't need to be more than 32 bits wide. The hope is that the
code to determine the index into the array can be optimized out by the
compiler so it should have exactly the same performance as the old
code.
The lighting parameters such as the diffuse and ambient colors were
previously only flushed in the fixed vertend. This meant that if a
vertex shader was used then they would not be set. The lighting
parameters are uniforms which are just as useful in a fragment shader
so it doesn't really make sense to set them in the vertend. They are
now flushed in the common cogl-pipeline-opengl code but the code is
#ifdef'd for GLES2 because they need to be part of the progend in that
case.
The uniforms for the alpha test reference value and point size on
GLES2 are updating using similar code. This generalizes the code so
that there is a static array of predefined builtin uniforms which
contains the uniform name, a pointer to a function to get the value
from the pipeline, a pointer to a function to update the uniform and a
flag representing which CoglPipelineState change affects the
uniform. The uniforms are then updated in a loop. This should simplify
adding more builtin uniforms.
The builtin uniforms are accessible from either the vertex shader or
the fragment shader so we should define them in the common
section. This doesn't really matter for the current list of uniforms
because it's pretty unlikely that you'd want to access the matrices
from the fragment shader, but for other builtins such as the lighting
material properties it makes sense.
When we added the texture->framebuffers member a _cogl_texture_init
funciton was added to initialize the list of framebuffers associated
with a texture to NULL. All the backends were updated except the
x11 tfp backend. This was causing crashes in test-pixmap.
This is part of a broader cleanup of some of the experimental Cogl API.
One of the reasons for this particular rename is to reduce the verbosity
of using the API. Another reason is that CoglVertexArray is going to be
renamed CoglAttributeBuffer and we want to help emphasize the
relationship between CoglAttributes and CoglAttributeBuffers.
We have a bunch of experimental convenience functions like
cogl_primitive_p2/p2t2 that have corresponding vertex structures but it
seemed a bit odd to have the vertex annotation e.g. "P2T2" be an infix
of the type like CoglP2T2Vertex instead of be a postfix like
CoglVertexP2T2. This switches them all to follow the postfix naming
style.
COGL_DEBUG=disable-fast-read-pixel can be used to disable the
optimization for reading a single pixel colour back by looking at the
geometry in the journal and not involving the GPU. With this disabled we
will always flush the journal, rendering to the framebuffer and then use
glReadPixels to get the result.
This adds a transparent optimization to cogl_read_pixels for when a
single pixel is being read back and it happens that all the geometry of
the current frame is still available in the framebuffer's associated
journal.
The intention is to indirectly optimize Clutter's render based picking
mechanism in such a way that the 99% of cases where scenes are comprised
of trivial quad primitives that can easily be intersected we can avoid
the latency of kicking a GPU render and blocking for the result when we
know we can calculate the result manually on the CPU probably faster
than we could even kick a render.
A nice property of this solution is that it maintains all the
flexibility of the render based picking provided by Clutter and it can
gracefully fall back to GPU rendering if actors are drawn using anything
more complex than a quad for their geometry.
It seems worth noting that there is a limitation to the extensibility of
this approach in that it can only optimize picking a against geometry
that passes through Cogl's journal which isn't something Clutter
directly controls. For now though this really doesn't matter since
basically all apps should end up hitting this fast-path. The current
idea to address this longer term would be a pick2 vfunc for ClutterActor
that can support geometry and render based input regions of actors and
move this optimization up into Clutter instead.
Note: currently we don't have a primitive count threshold to consider
that there could be scenes with enough geometry for us to compensate for
the cost of kicking a render and determine a result more efficiently by
utilizing the GPU. We don't currently expect this to be common though.
Note: in the future it could still be interesting to revive something
like the wip/async-pbo-picking branch to provide an asynchronous
read-pixels based optimization for Clutter picking in cases where more
complex input regions that necessitate rendering are in use or if we do
add a threshold for rendering as mentioned above.
Both cogl_matrix_transform_points and _project_points take points_in and
points_out arguments and explicitly allow pointing to the same array
(i.e. to transform in-place) The implementation of the various internal
transform functions though were not handling this possability and so it
was possible the reference partially transformed vertex values as if
they were original input values leading to incorrect results. This patch
ensures we take a temporary copy of the current input point when
transforming.
This adds a utility function that can determine if a given point
intersects an arbitrary polygon, by counting how many edges a
"semi-infinite" horizontal ray crosses from that point. The plan is to
use this for a software based read-pixel fast path that avoids using the
GPU to rasterize journaled primitives and can instead intersect a point
being read with quads in the journal to determine the correct color.
This adds a stop-gap mechanism for Cogl to know when the window system
is requested to present the current backbuffer to the frontbuffer by
adding a _cogl_swap_buffers_notify function that backends are now
expected to call right after issuing the equivalent request to OpenGL
vie the platforms OpenGL binding layer. This (blindly) updates all the
backends to call this new function.
For now Cogl doesn't do anything with the notification but the intention
is to use it as part of a planned read-pixel optimization which will
need to reset some state at the start of each new frame.
Instead of having _cogl_get/set_clip stack which reference the global
CoglContext this instead makes those into CoglClipState method functions
named _cogl_clip_state_get/set_stack that take an explicit pointer to a
CoglClipState.
This also adds _cogl_framebuffer_get/set_clip_stack convenience
functions that avoid having to first get the ClipState from a
framebuffer then the stack from that - so we can maintain the
convenience of _cogl_get_clip_stack.
This adds an internal function to be able to query the screen space
bounding box of the current clip entries contained in a given
CoglClipStack.
This bounding box which is cheap to determine can be useful to know the
largest extents that might be updated while drawing with this clip
stack.
For example the plan is to use this as part of an optimized read-pixel
path handled on the CPU which will need to track the currently valid
extents of the last call to cogl_clear()
Instead of having a single journal per context, we now have a
CoglJournal object for each CoglFramebuffer. This means we now don't
have to flush the journal when switching/pushing/popping between
different framebuffers so for example a Clutter scene that involves some
ClutterEffect actors that transiently redirect to an FBO can still be
batched.
This also allows us to track state in the journal that relates to the
current frame of its associated framebuffer which we'll need for our
optimization for using the CPU to handle reading a single pixel back
from a framebuffer when we know the whole scene is currently comprised
of simple rectangles in a journal.
This adds an internal alternative to cogl_object_set_user_data that also
passes an instance pointer to destroy notify callbacks.
When setting private data on a CoglObject it's often desirable to know
the instance being destroyed when we are being notified to free the
private data due to the object being freed. The typical solution to this
is to track a pointer to the instance in the private data itself so it
can be identified but that usually requires an extra micro allocation
for the private data that could have been avoided if only the callback
were given an instance pointer.
The new internal _cogl_object_set_user_data passes the instance pointer
as a second argument which means it is ABI compatible for us to layer
the public version on top of this internal function.
This moves the implementation of cogl_clear into cogl-framebuffer.c as
two new internal functions _cogl_framebuffer_clear and
_cogl_framebuffer_clear4f. It's not clear if this is what the API will
look like as we make more of the CoglFramebuffer API public due to the
limitations of using flags to identify buffers when framebuffers may
contain any number of ancillary buffers but conceptually it makes some
sense to tie the operation of clearing a color buffer to a framebuffer.
The short term intention is to enable tracking the current clear color
as a property of the framebuffer as part of an optimization for reading
back single pixels when the geometry is simple enough that we can
compute the result quickly on the CPU. (If the point doesn't intersect
any geometry we'll need to return the last clear color.)
Previously most of the code for cogl-program and cogl-shader was
ifdef'd out for GLES 1.1 and alternate stub definitions were
defined. This patch removes those and instead puts #ifdef's directly
in the functions that need it. This should make it a little bit easier
to maintain.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2516
When determining whether to hash the combine constant Cogl checks the
arguments to the combine funcs to determine whether the combine
constant is used. However is was using the GLenums GL_CONSTANT_COLOR
and GL_CONSTANT_ALPHA but these are not valid values for the
CoglPipelineCombineSource enum so presumably the constant would never
get hashed. This patch makes it use Cogl's enum of
COGL_PIPELINE_COMBINE_SOURCE_CONSTANT instead.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2516
GLES has an extension called GL_OES_mapbuffer to support mapping
buffer objects but only for writing. Cogl now has two new feature
flags to advertise whether mapping for reading and writing is
supported. Under OpenGL, these features are always set if the VBO
extension is advertised and under GLES only the write flag is set if
the GL_OES_mapbuffer extension is advertised.
In the journal code and when generating the stroke path the vertices
are generated on the fly and stored in a CoglBuffer using
cogl_buffer_map. However cogl_buffer_map is allowed to fail but it
wasn't checking for a NULL return value. In particular on GLES it will
always fail because glMapBuffer is only provided by an extension. This
adds a new pair of internal functions called
_cogl_buffer_{un,}map_for_fill_or_fallback which wrap
cogl_buffer_map. If the map fails then it will instead return a
pointer into a GByteArray attached to the context. When the buffer is
unmapped the array is copied into the buffer using
cogl_buffer_set_data.
On GLES2 there's no builtin mechanism to replace texture coordinates
with point sprite coordinates so calling glEnable(GL_POINT_SPRITE)
isn't valid. Instead the point sprite coords are implemented by using
a special builtin varying variable in GLSL.
There are several places where we need to compare the texture state of a
pipeline and sometimes we need to take into consideration if the
underlying texture has changed but other times we may only care to know
if the texture target has changed.
For example the fragends typically generate programs that they want to
share with all pipelines with equivalent fragment processing state, and
in this case when comparing pipelines we only care about the texture
targets since changes to the underlying texture won't affect the
programs generated.
Prior to this we had tried to handle this by passing around some special
flags to various functions that evaluate pipeline state to say when we
do/don't care about the texture data, but this wasn't working in all
cases and was more awkward to manage than the new approach.
Now we simply have two state bits:
COGL_PIPELINE_LAYER_STATE_TEXTURE_TARGET and
COGL_PIPELINE_LAYER_STATE_TEXTURE_DATA and CoglPipelineLayer has an
additional target member. Since all the appropriate code takes masks of
these state bits to determine what to evaluate we don't need any extra
magic flags.
When notifying that a pipeline property is going to change, then at
times a pipeline will take over being the authority of the corresponding
state group. Some state groups can contain multiple properties and so to
maintain the integrity of all of the properties we have to initialize
all the property values in the new authority. For state groups with only
one property we don't have to initialize anything during the
pre_change_notify() because we can assume the value will be initialized
as part of the change being notified.
This patch optimizes how we handle this initialization of state groups
in a couple of ways; firstly we no longer do anything to initialize
state-groups with only one property, secondly we no longer use
_cogl_pipeline_copy_differences - (we have a new
_cogl_pipeline_init_multi_property_sparse_state() func) so we can avoid
lots calls to handle_automatic_blend_enable() which is sometimes seen
high in sysprof profiles.
Previously atlasing would be disabled if the GL driver does not
support reading back texture data. This meant that atlasing would not
happen on GLES. However we also require that the driver support FBOs
and the texture data is only read back as a fallback if the FBO
fails. Therefore the atlas should be ok on GLES 2 which has FBO
support in core.
We try and bail out of flushing pipeline state asap if we can see the
pipeline has already been flushed and hasn't changed but we weren't
checking to see if the skip_gl_color flag is the same as when it was
last flush too and so we'd sometimes bail out without updating the
glColor correctly.
When an item is added to the journal the current pipeline immediately
gets the legacy state applied to it and the modified pipeline is
logged instead of the original. However the actual drawing from the
journal is done using the vertex attribute API which was also applying
the legacy state. This meant that the legacy state used would be a
combination of the state set when the journal entry was added as well
as the state set when the journal is flushed. To fix this there is now
an extra CoglDrawFlag to avoid applying the legacy state when setting
up the GL state for the vertex attributes. The journal uses this flag
when flushing.
The vertex attribute API assumes that if there is a color array
enabled then we can't determine if the colors are opaque so we have to
enable blending. The journal always uses a color array to avoid
switching color state between rectangles. Since the journal switched
to using vertex attributes this means we effectively always enable
blending from the journal. To fix this there is now a new flag for
_cogl_draw_vertex_attributes to specify that the color array is known
to only contain opaque colors which causes the draw function not to
copy the pipeline. If the pipeline has blending disabled then the
journal passes this flag.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2481
There is an internal version of cogl_draw_vertex_attributes_array
which previously just bypassed the framebuffer flushing, journal
flushing and pipeline validation so that it could be used to draw the
journal. This patch generalises the function so that it takes a set of
flags to specify which parts to flush. The public version of the
function now just calls the internal version with the flags set to
0. The '_real' version of the function has now been merged into the
internal version of the function because it was only called in one
place. This simplifies the code somewhat. The common code which
flushed the various state has been moved to a separate function. The
indexed versions of the functions have had a similar treatment.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2481
Cogl no longer has any code that assumes the buffer in a CoglBitmap is
allocated to the full size of height*rowstride. We should comment that
this is the case so that we remember to keep it that way. This is
important for cogl_texture_new_from_data because the application may
have created the data from a sub-region of a larger image and in that
case it's not safe to read the full rowstride of the last row when the
sub region contains the last row of the larger image.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2491
When uploading data for GLES we need to deal with cases where the
rowstride is too large to be described only by GL_UNPACK_ALIGNMENT
because there is no GL_UNPACK_ROW_LENGTH. Previously for the
sub-region uploading code it would always copy the bitmap and for the
code to upload the whole image it would copy the bitmap unless the
rowstride == bpp*width. Neither paths took into account that we don't
need to copy if the rowstride is just an alignment of bpp*width. This
moves the bitmap copying code to a separate function that is used by
both upload methods. It only copies the bitmap if the rowstride is not
just an alignment of bpp*width.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2491
The ffs function is defined in C99 so if we want to use it in Cogl we
need to provide a fallback for MSVC. This adds a configure check for
the function and then a fallback using a while loop if it is not
available.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2491
If we have to copy the bitmap to do the premultiplication then we were
previously using the rowstride of the source image as the rowstride
for the new image. This is wasteful if the source image is a subregion
of a larger image which would make it use a large rowstride. If we
have to copy the data anyway we might as well compact it to the
smallest rowstride. This also prevents the copy from reading past the
end of the last row of pixels.
An internal function called _cogl_bitmap_copy has been added to do the
copy. It creates a new bitmap with the smallest possible rowstride
rounded up the nearest multiple of 4 bytes. There may be other places
in Cogl that are currently assuming we can read height*rowstride of
the source buffer so they may want to take advantage of this function
too.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2491
The builtin vertex attribute for the normals was incorrectly checked
for as 'cogl_normal' however it is defined as cogl_normal_in in the
shader boilerplate and for the name generated by CoglVertexBuffer.
http://bugzilla.clutter-project.org/show_bug.cgi?id=2499
The ARBfp fragend was bypassing generating a shader if the pipeline
contains a user program. However it shouldn't do this if the pipeline
only contains a vertex shader. This was breaking
test-cogl-just-vertex-shader.
Previously Cogl would only ever use one atlas for textures and if it
reached the maximum texture size then all other new textures would get
their own GL texture. This patch makes it so that we create as many
atlases as needed. This should avoid breaking up some batches and it
will be particularly good if we switch to always using multi-texturing
with a default shader that selects between multiple atlases using a
vertex attribute.
Whenever a new atlas is created it is stored in a GSList on the
context. A weak weference is taken on the atlas using
cogl_object_set_user_data so that it can be removed from the list when
the atlas is destroyed. The atlas textures themselves take a reference
to the atlas and this is the only thing that keeps the atlas
alive. This means that once the atlas becomes empty it will
automatically be destroyed.
All of the COGL_NOTEs pertaining to atlases are now prefixed with the
atlas pointer to make it clearer which atlas is changing.
All of the drawing needed in _cogl_add_path_to_stencil_buffer is done
with the vertex attribute API so there should be no need to flush the
enable flags to enable the vertex array. This was causing problems on
GLES2 where the vertex array isn't available.
The GLES2 wrapper is no longer needed because the shader generation is
done within the GLSL fragend and vertend and any functions that are
different for GLES2 are now guarded by #ifdefs.
Once the GLES2 wrapper is removed then we won't have the GLenums
needed for setting up the layer combine state. This adds Cogl enums
instead which have the same values as the corresponding GLenums. The
enums are:
CoglPipelineCombineFunc
CoglPipelineCombineSource
and
CoglPipelineCombineOp
Once the GLES2 wrapper is removed we won't be able to upload the
matrices with the fixed function API any more. The fixed function API
gives a global state for setting the matrix but if a custom shader
uniform is used for the matrices then the state is per
program. _cogl_matrix_stack_flush_to_gl is called in a few places and
it is assumed the current pipeline doesn't need to be flushed before
it is called. To allow these semantics to continue to work, on GLES2
the matrix flush now just stores a reference to the matrix stack in
the CoglContext. A pre_paint virtual is added to the progend which is
called whenever a pipeline is flushed, even if the same pipeline was
flushed already. This gives the GLSL progend a chance to upload the
matrices to the uniforms. The combined modelview/projection matrix is
only calculated if it is used. The generated programs end up never
using the modelview or projection matrix so it usually only has to
upload the combined matrix. When a matrix stack is flushed a reference
is taked to it by the pipeline progend and the age is stored so that
if the same state is used with the same program again then we don't
need to reupload the uniform.
Sometimes it would be useful if we could efficiently track when a matrix
stack has been modified. For example on GLES2 we have to upload the
modelview as a uniform to our glsl programs but because the modelview
state is part of the framebuffer state it becomes a bit more tricky to
know when to re-sync the value of the uniform with the framebuffer
state. This adds an "age" counter to CoglMatrixStack which is
incremented for any operation that effectively modifies the top of the
stack so now we can save the age of the stack inside the pipeline
whenever we update modelview uniform and later compare that with the
stack to determine if it has changed.
This returns the layer matrix given a pipeline and a layer index. The
API is kept as internal because it directly returns a pointer into the
layer private data to avoid a copy into an out-param. We might also
want to add a public function which does the copy.
When the GLES2 wrapper is removed we can't use the fixed function API
such as glColorPointer to set the builtin attributes. Instead the GLSL
progend now maintains a cache of attribute locations that are queried
with glGetAttribLocation. The code that previously maintained a cache
of the enabled texture coord arrays has been modified to also cache
the enabled vertex attributes under GLES2. The vertex attribute API is
now the only place that is using this cache so it has been moved into
cogl-vertex-attribute.c
Previously when stroking a path it was flushing a pipeline and then
directly calling glDrawArrays to draw the line strip from the path
nodes array. This patch changes it to build a CoglVertexArray and a
series of attributes to paint with instead. The vertex array and
attributes are attached to the CoglPath so it can be reused later. The
old vertex array for filling has been renamed to fill_vbo.
The code to display the source when the show-source debug option is
given has been moved to _cogl_shader_set_source_with_boilerplate so
that it will show both user shaders and generated shaders. It also
shows the code with the full boilerplate. To make it the same for
ARBfp, cogl_shader_compile_real now also dumps user ARBfp shaders.
The GLSL vertend is mostly only useful for GLES2. The fixed function
vertend is kept at higher priority than the GLSL vertend so it is
unlikely to be used in any other circumstances.
Due to Mesa bug 28585 calling glVertexAttrib with attrib location 0
doesn't appear to work. This patch just reorders the vertex and color
attributes in the shader in the hope that Mesa will assign the color
attribute to a different location.
Some builtin attributes such as the matrix uniforms and some varyings
were missing from the boilerplate for GLES2. This also moves the
texture matrix and texture coord attribute declarations to
cogl-shader.c so that they can be dynamically defined depending on the
number of texture coord arrays enabled.
The vertends are intended to flush state that would be represented in
a vertex program. Code to handle the layer matrix, lighting and
point size has now been moved from the common cogl-pipeline-opengl
backend to the fixed vertend.
'progend' is short for 'program backend'. The progend is intended to
operate on combined state from a fragment backend and a vertex
backend. The progend has an 'end' function which is run whenever the
pipeline is flushed and the two pipeline change notification
functions. All of the progends are run whenever the pipeline is
flushed instead of selecting a single one because it is possible that
multiple progends may be in use for example if the vertends and
fragends are different. The GLSL progend will take the shaders
generated by the fragend and vertend and link them into a single
program. The fragend code has been changed to only generate the shader
and not the program. The idea is that pipelines can share fragment
shader objects even if their vertex state is different. The authority
for the progend needs to be the combined authority on the vertend and
fragend state.
This adds two internal functions:
gboolean
_cogl_program_has_fragment_shader (CoglHandle handle);
gboolean
_cogl_program_has_vertex_shader (CoglHandle handle);
They just check whether any of the contained shaders are of that type.
The pipeline function _cogl_pipeline_find_codegen_authority has been
renamed to _cogl_pipeline_find_equivalent_parent and it now takes a
set of flags for the pipeline and layer state that affects the
authority. This is needed so that we can reuse the same code in the
vertend and progends.
Previously enabling and disabling textures was done whatever the
backend in cogl-pipeline-opengl. However enabling and disabling
texture targets only has any meaning if no fragment shaders are being
used so this patch moves the code to cogl-pipeline-fragend-fixed.
The GLES2 wrapper has also been changed to ignore enabledness when
deciding whether to update texture coordinate attribute pointers.
The current Cogl pipeline backends are entirely concerned with the
fragment processing state. We also want to eventually have separate
backends to generate shaders for the vertex processing state so we
need to rename the fragment backends. 'Fragend' is a somewhat weird
name but we wanted to avoid ending up with illegible symbols like
CoglPipelineFragmentBackendGlslPrivate.