This adds CoglFramebuffer methods for accessing the clip stack. We plan
on making some optimizations to how framebuffer state is flushed which
will require us to track when a framebuffer's clip state has changed.
This api also ties in to the longer term goal of removing the need for a
default global CoglContext since these methods are all implicitly
related to a specific context via their framebuffer argument.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a cogl_framebuffer_identity_matrix() method that can be used
to reset the current modelview matrix to the identity matrix.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds cogl_framebuffer_ methods to update the modelview and
projection matrix stacks to replace functions like cogl_translate(),
cogl_rotate() and cogl_scale() etc.
This is part of the on-going effort to get rid of the global CoglContext
pointer since the existing methods don't take an explicit pointer to a
CoglContext. All the methods are now related to a context via the
framebuffer.
We added framebuffer methods instead of direct context methods because
the matrix stacks are per-framebuffer and as well as removing the global
CoglContext we would rather aim for a more direct state access API
design than, say, cairo or OpenGL, so we'd like to avoid needing the
cogl_push/pop_framebuffer(). We anticipate that Cogl will mostly be
consumed by middleware graphics layers such as toolkits or game engines
and feel that a more stateless model will avoid impedance mismatches if
higher levels want to expose a stateless model to their developers and
statefullness can still be added by higher levels if really desired.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
It's useful to be able to query back the number of
point_samples_per_pixel that may have previously be chosen using
cogl_framebuffer_set_samples_per_pixel().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This factors out the CoglOnscreen code from cogl-framebuffer.c so we now
have cogl-onscreen.c, cogl-onscreen.h and cogl-onscreen-private.h.
Notably some of the functions pulled out are currently namespaced as
cogl_framebuffer but we know we are planning on renaming them to be in
the cogl_onscreen namespace; such as cogl_framebuffer_swap_buffers().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a new experimental function, cogl_framebuffer_finish(), which
can be used to explicitly synchronize the CPU with the GPU. It's rare
that this level of explicit synchronization is desirable but for example
it can be useful during performance analysys to make sure measurements
reflect the working time of the GPU not just the time to queue commands.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds support for multisample rendering to offscreen framebuffers.
After an offscreen framebuffer is first instantiated using
cogl_offscreen_new_to_texture() it is then possible to use
cogl_framebuffer_set_samples_per_pixel() to request multisampling before
the framebuffer is allocated. This also adds
cogl_framebuffer_resolve_samples() for explicitly resolving point
samples into pixels. Even though we currently only support the
IMG_multisampled_render_to_texture extension which doesn't require an
explicit resolve, the plan is to also support the
EXT_framebuffer_multisample extension which uses the framebuffer_blit
extension to issue an explicit resolve.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds cogl_framebuffer_discard_buffers API that allows applications
to explicitly discard depth and stencil buffers which really helps when
using a tile based GPU architexture by potentially avoiding the need to
save the results of depth and stencil buffer changes to system memory
between frames since these can usually be handled directly with on-chip
memory instead.
The semantics for cogl_framebuffer_swap_buffers and
cogl_framebuffer_swap_region are now documented to include an implicit
discard of all buffers, including the color buffer.
We now recommend that all rendering to a CoglOffscreen framebuffer
should be followed by a call like:
cogl_framebuffer_discard_buffers (fb,
COGL_BUFFER_BIT_DEPTH|
COGL_BUFFER_BIT_STENCIL);
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a new function, cogl_framebuffer_get_color_format() to be able
to query the common pixel format for any color buffers attached to a
given CoglFramebuffer. For example an offscreen framebuffer created
using cogl_offscreen_new_to_texture() would have a format matching the
texture.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Cogl aims to consistently put the origin of 2D objects at the top-left
instead of the bottom left as OpenGL does, but there was an oversight
and the experimental cogl_framebuffer_swap_region API was accepting
coordinates relative to the bottom left. Cogl will now flip the user's
given rectangles to be relative to the bottom of the framebufffer before
sending them to APIs like glXCopySubBuffer and glBlitFramebuffer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This makes cogl_framebuffer_clear and cogl_framebuffer_clear4f public as
experimental API. Since these functions take explicit framebuffer
pointers you don't need to push/pop a framebuffer just to clear it. Also
these functions are implicitly tied to a specific CoglContext via the
framebuffer pointer unlike cogl_clear.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a function to query what CoglContext a given framebuffer
belongs too. This can be useful if you pass framebuffer pointers around
and at some point you want to create another framebuffer as part of the
same context as a given framebuffer without assuming there is a single
default context.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The cogl_framebuffer_get_blue_bits was defined 2 times-fix to use the
correct define for cogl_framebuffer_get_alpha_bits
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds CoglPipeline and CoglFramebuffer support for setting a color
mask which is a bit mask defining which color channels should be written
to the current framebuffer.
The final color mask is the intersection of the framebuffer color mask
and the pipeline color mask. The framebuffer mask affects all rendering
to the framebuffer while the pipeline masks can be used to affect
individual primitives.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds a getter and setter for requesting dithering to be enabled.
Dithering is a hardware dependent technique to increase the visible
color resolution beyond what the underlying hardware supports by playing
tricks with the colors placed into the framebuffer to give the illusion
of other colors. (For example this can be compared to half-toning used
by some news papers to show varying levels of grey even though their may
only be black and white are available).
The results of enabling dithering are platform dependent and may have no
effect.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
There were several CoglOnscreen functions named like:
cogl_onscreen_<platform>_blah instead of cogl_<platform>_onscreen_blah
so this patch updates those to be consistent with other platform
specific apis we have in cogl.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This adds a description for the cogl-framebuffer section and adds lots
of missing symbols to the 2.0 reference manual.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This exposes the previously internal only
_cogl_framebuffer_get_red/green/blue/alpha_bits() functions as 2.0
experimental API.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
This exposes experimental cogl_framebuffer APIs for getting and setting
a viewport without having to refer to the implicit CoglContext. It adds
the following experimental API:
cogl_framebuffer_set_viewport
cogl_framebuffer_get_viewport4fv
cogl_framebuffer_get_viewport_x
cogl_framebuffer_get_viewport_y
cogl_framebuffer_get_viewport_width
cogl_framebuffer_get_viewport_height
Signed-off-by: Neil Roberts <neil@linux.intel.com>
To support toolkits targeting wayland and using Cogl we allow toolkits
to be responsible for connecting to a wayland display and asking Cogl to
use the toolkit owned display and compositor object. Note: eventually
the plan is that wayland will allow retrospective querying of objects so
we won't need the foreign compositor API when Cogl can simply query it
from the foreign display.
Some places were using COGL_HAS_WIN32 but the only macro defined is
COGL_HAS_WIN32_SUPPORT. The similar macros such as COGL_HAS_XLIB are
only defined for compatibility with existing code but COGL_HAS_WIN32
was never defined so there's no need to support it.
One of the places was including the non-existant cogl-win32.h. This
has been removed because the file only temporarily existed during
development of the backend.
This extends cogl_onscreen_x11_set_foreign_xid to take a callback to a
function that details the event mask the Cogl requires the application
to select on foreign windows. This is required because Cogl, for
example, needs to track size changes of a window and may also in the
future want other notifications such as map/unmap.
Most applications wont need to use the foreign xwindow apis, but those
that do are required to pass a valid callback and update the event mask
of their window according to Cogl's requirements.
This adds Cogl API to show and hide onscreen framebuffers. We don't want
to go too far down the road of abstracting window system APIs with Cogl
since that would be out of its scope but the previous idea that we would
automatically map framebuffers on allocation except for those made from
foreign windows wasn't good enough. The problem is that we don't want to
make Clutter always create stages from foreign windows but with the
automatic map semantics then Clutter doesn't get an opportunity to
select for all the events it requires before mapping. This meant that we
wouldn't be delivered a mouse enter event for windows mapped underneath
the cursor which would break Clutters handling of button press events.
It's generally useful to be able to query the width and height of a
framebuffer and we expect to need this in Clutter when we move the
eglnative backend code into Cogl since Clutter will need to read back
the fixed size of the framebuffer when realizing the stage.
This migrates all the GLX window system code down from the Clutter
backend code into a Cogl winsys. Moving OpenGL window system binding
code down from Clutter into Cogl is the biggest blocker to having Cogl
become a standalone 3D graphics library, so this is an important step in
that direction.