This is in preparation of moving Cogl tests into src/tests, so they can
use the real backend, instead of the franken-backend it some how still
manages to use some how.
This makes them no longer installed. Most mutter tests are yet to be
installed, so leave that for later, since bigger changes are needed for
that.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2555>
Now that we support Wayland buffer transforms in all cases, we can
properly report them to outputs.
Also make sure we resend the output geomerty on transform changes.
This partly reverts commit bda9c359
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/344>
This allows the GL fallback path to correctly paint the cursor
if clients pre-rotated the buffer using
`wl_surface::set_buffer_transform`, visually matching the
hardware cursor path.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/344>
They can be quite heavy, as they load up one virtual machine each. If
your system is already busy, this can easily cause them to time out
instead of finish in time, as they all fight over the same limited
amount of CPU and I/O time.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2556>
Failing in `wait_for_effects_completed()` or `wait_for_view_verified()
indicates client- or compositor-bugs. As hitting those is quite likely
during test development, print error messages to simplify debugging.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2246>
The "single pixel buffer" Wayland protocol extension provides a way for
clients to create 1x1 buffers with a single color, specified by
providing the color channels (red, green and blue) as well as the
alpha channel as a 32 bit unsigned integer.
For now, this is turned into a 1x1 texture. Future potential
improvements is to hook things up to the scanout candidate logic and
turn it into a scanout capable DMA buffer.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2246>
When taking the scanout path we still want to clear the
redraw-clip from the stage-view in order to ensure we skip
frames in `handle_frame_clock_frame()` if no new redraw-clip
was recorded.
This was not done previously as the accumulated redraw-clip was
needed for the next repaint, likely under the assumption that
scheduling a scanout repeatedly would be computationally cost-free.
This assumption does not hold in a VRR world.
In order to archive both, an accumulated redraw-clip for the next
paint and frame-skipping during scanout, introduce new API to defer
and accumulate redraw-clips until the next repaint.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2480>
To Wayland clients, it doesn't matter how we configure our onscreen
buffers, since they don't necessarily have the same bandwidth issues
related to mode setting, whichis the primary reason why we disable
modifiers using the udev rule, so simply check whether importing with
modifiers will work at all and advertise modifiers if so is the case.
This might help avoid issues using legacy non-modifiers path in drivers.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2546>
We disable modifiers for two reasons: an udev rule saying so, or the
lack of a working drmModeAddFB2(). However, to the users, this is not
granular enough. While the current user, whether to enable modifiers in
MetaRendererNative, doesn't need more granularity, we want to send
modifiers to Wayland clients even if the onscreen framebuffers should
still be allocated without modifiers.
Prepare for differentiating between how Wayland DMA buffers work and how
onscreen buffer allocation work by separating the relevant device flags.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2546>
Similar to the clutter commits
- Drop all the private structs documentations
- Make use of gi-docgen items linking as much as possible
- Use markdown formatting for code snippets
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2441>
This uses MetaCompositorViewNative to find a candidate surface for
scanout and to keep track of it separately for each view, effectively
allowing each CRTC to use a different buffer for direct scanout.
There are three parts for potentially assigning a buffer for direct
scanout at the compositor level:
1. Finding a candidate surface actor on the view (if any)
2. Attempting to assign the candidate's buffer for direct scanout
3. Updating references relating to the scanout candidate as needed
The three parts were moved in their entirety from being handled by the
MetaCompositorNative to being handled by the MetaCompositorViewNative.
As part of this transition, the logic was also slightly refactored so
that each of the three parts is handled by its own helper function.
This allowed to avoid the use of "goto" statements and hopefully make
the logic easier to read and follow.
The first part mentioned above was changed in this commit to make use
of the new meta_compositor_view_get_top_window_actor () API to get the
top window actor in the view instead of the top window actor on all
views.
The second part and third parts mentioned above weren't changed other
than being done in the context of a view instead of globally.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2526>