The GL or GLES library is now dynamically loaded by the CoglRenderer
so that it can choose between GL, GLES1 and GLES2 at runtime. The
library is loaded by the renderer because it needs to be done before
calling eglInitialize. There is a new environment variable called
COGL_DRIVER to choose between gl, gles1 or gles2.
The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have
been changed so that they don't assume the ifdefs are mutually
exclusive. They haven't been removed entirely so that it's possible to
compile the GLES backends without the the enums from the GL headers.
When using GLX the winsys additionally dynamically loads libGL because
that also contains the GLX API. It can't be linked in directly because
that would probably conflict with the GLES API if the EGL is
selected. When compiling with EGL support the library links directly
to libEGL because it doesn't contain any GL API so it shouldn't have
any conflicts.
When building for WGL or OSX Cogl still directly links against the GL
API so there is a #define in config.h so that Cogl won't try to dlopen
the library.
Cogl-pango previously had a #ifdef to detect when the GL backend is
used so that it can sneakily pass GL_QUADS to
cogl_vertex_buffer_draw. This is now changed so that it queries the
CoglContext for the backend. However to get this to work Cogl now
needs to export the _cogl_context_get_default symbol and cogl-pango
needs some extra -I flags to so that it can include
cogl-context-private.h
cogl-ext-functions.h now contains definitions for all of the core GL
and GLES functions that we would normally link to directly. All of the
code has changed to access them through the cogl context pointer. The
GE macro now takes an extra parameter to specify the context because
the macro itself needs to make GL calls but various points in the Cogl
source use different names for the context variable.
Instead of storing all of the feature function pointers in the driver
specific data of the CoglContext they are now all stored directly in
CoglContext. There is a single header containing the description of
the functions which gets included by cogl-context.h. There is a single
function in cogl-feature-private.c to check for all of these
functions.
The name of the function pointer variables have been changed from
ctx->drv.pf_glWhatever to just ctx->glWhatever.
The feature flags that get set when an extension is available are now
separated from the table of extensions. This is necessary because
different extensions can mean different things on GLES and GL. For
example, having access to glMapBuffer implies read and write support
on GL but only write support on GLES. The flags are instead set in the
driver specific init function by checking whether the function
pointers were successfully resolved.
_cogl_feature_check has been changed to assume the feature is
supported if any of the listed extensions are available instead of
requiring all of them. This makes it more convenient to specify
alternate names for the extension. Nothing else had previously listed
more than one name for an extension so this shouldn't cause any
problems.
The COGL_DEBUG=disable-texturing debug variable disables texturing in
the fixed function fragend by not bothering to enable the texture
targets. This wasn't working for the programmable fragends because the
texture targets don't need to be enabled to use them. This patch
modifies the two programmable backends to generate a constant value
for the texture lookups in the shader when the debug variable is
given.
The CoglDebugFlags are now stored in an array of unsigned ints rather
than a single variable. The flags are accessed using macros instead of
directly peeking at the cogl_debug_flags variable. The index values
are stored in the enum rather than the actual mask values so that the
enum doesn't need to be more than 32 bits wide. The hope is that the
code to determine the index into the array can be optimized out by the
compiler so it should have exactly the same performance as the old
code.
There are several places where we need to compare the texture state of a
pipeline and sometimes we need to take into consideration if the
underlying texture has changed but other times we may only care to know
if the texture target has changed.
For example the fragends typically generate programs that they want to
share with all pipelines with equivalent fragment processing state, and
in this case when comparing pipelines we only care about the texture
targets since changes to the underlying texture won't affect the
programs generated.
Prior to this we had tried to handle this by passing around some special
flags to various functions that evaluate pipeline state to say when we
do/don't care about the texture data, but this wasn't working in all
cases and was more awkward to manage than the new approach.
Now we simply have two state bits:
COGL_PIPELINE_LAYER_STATE_TEXTURE_TARGET and
COGL_PIPELINE_LAYER_STATE_TEXTURE_DATA and CoglPipelineLayer has an
additional target member. Since all the appropriate code takes masks of
these state bits to determine what to evaluate we don't need any extra
magic flags.
The ARBfp fragend was bypassing generating a shader if the pipeline
contains a user program. However it shouldn't do this if the pipeline
only contains a vertex shader. This was breaking
test-cogl-just-vertex-shader.
The GLES2 wrapper is no longer needed because the shader generation is
done within the GLSL fragend and vertend and any functions that are
different for GLES2 are now guarded by #ifdefs.
Once the GLES2 wrapper is removed then we won't have the GLenums
needed for setting up the layer combine state. This adds Cogl enums
instead which have the same values as the corresponding GLenums. The
enums are:
CoglPipelineCombineFunc
CoglPipelineCombineSource
and
CoglPipelineCombineOp
The GLSL vertend is mostly only useful for GLES2. The fixed function
vertend is kept at higher priority than the GLSL vertend so it is
unlikely to be used in any other circumstances.
The pipeline function _cogl_pipeline_find_codegen_authority has been
renamed to _cogl_pipeline_find_equivalent_parent and it now takes a
set of flags for the pipeline and layer state that affects the
authority. This is needed so that we can reuse the same code in the
vertend and progends.
Previously enabling and disabling textures was done whatever the
backend in cogl-pipeline-opengl. However enabling and disabling
texture targets only has any meaning if no fragment shaders are being
used so this patch moves the code to cogl-pipeline-fragend-fixed.
The GLES2 wrapper has also been changed to ignore enabledness when
deciding whether to update texture coordinate attribute pointers.
The current Cogl pipeline backends are entirely concerned with the
fragment processing state. We also want to eventually have separate
backends to generate shaders for the vertex processing state so we
need to rename the fragment backends. 'Fragend' is a somewhat weird
name but we wanted to avoid ending up with illegible symbols like
CoglPipelineFragmentBackendGlslPrivate.