This reverts commit 47e339b46e. The
approach that was used to reduce the amount of work we do on RR events
to the necessary minimum is flawed. It assumes that, when the first
event we see where the retrieved XRRScreenResources.timestamp is
bigger than the previous, we already have all the data we need to
rebuild our view of the world.
That isn't true however, because the X server sends
RRScreenChangeNotify events for every step of the configuration
change, i.e. it lacks an atomic reconfiguration API. In particular, if
the X screen size is one of the changes, when we rebuild our state and
emit monitors-changed, the X screen size might still be the previous
one and since we stop updating ourselves until another reconfiguration
happens (noticed by looking at XRRScreenResources.timestamp) we end up
with the wrong idea of the X screen size.
https://bugzilla.gnome.org/show_bug.cgi?id=738630
This optimization breaks our use of XRRScreenResources' timestamps to
detect hotplugs in case one of the outputs is disconnected and the
remaining ones don't need any mode, position or transform adjustments.
In that scenario, when applying the new configuration, we resize the X
screen but never call XRRSetCrtcConfig() and since XRRSetScreenSize()
doesn't take a timestamp and the X server doesn't update its last set
timestamp, when we next get a RRScreenChangeNotify and update
ourselves, XRRScreenResources.timestamp will still be smaller than
XRRScreenResources.configTimestamp which makes us think we're seeing a
new hotplug. We just don't enter an endless loop because the screen
size that we keep applying is always the same and the X server
short-circuits and stops sending us RRScreenChangeNotifys.
Always calling XRRSetCrtcConfig() ensures that the last set timestamp
will be bigger than configTimestamp in the next event and thus making
us trigger the monitors-changed signal properly.
Note that the X server already does basically the same checks that
we're removing here, so doing this shouldn't be a significant
efficiency loss. See
http://cgit.freedesktop.org/xorg/xserver/tree/randr/rrcrtc.c?h=server-1.16-branch#n539
It doesn't make sense to load cursor textures that we might not ever
use. Since the code here also uses CoglTexture2D, and cursors tend
to be NPOT textures, then we won't crash users of cards without
NPOT support. At least until they open the magnifier. :)
Refactor make_default_config() to always sanity-check the configuration to
ensure that it fits within the framebuffer. Previously, this was only done
for the default linear configuration.
In recent versions of the QXL driver, it may set "suggested X|Y" connector
properties. These properties are used to indicate the position at which
multiple displays should be aligned. If all outputs have a suggested position,
the displays are arranged according to these positions, otherwise we fall back
to the default configuration.
At the moment, we trust that the driver has chosen sane values for the
suggested position.
When the output device has hotplug_mode_update (e.g. the qxl driver used in
vms), the displays can be dynamically resized, so the current display
configuration does not often match a stored configuration. When a new
monitor is added, make_default_config() tries to create a new display
configuration by choosing a stored configuration with N-1 monitors, and then
adding a new monitor to the end of the layout. Because the stored config
doesn't match the current outputs, apply_configuration() will routinely
fail, leaving the additional display unconfigured. In this case, it's more
useful to just fall back to creating a new default configuration from
scratch so that all outputs get configured to their preferred mode.
Move logic for creating different types of configurations into separate
functions. This keeps things a bit cleaner and allows us to add alternate
configuration types more easily.
When a laptop's lid is closed we try to build and apply a temporary
configuration that disables the laptop's display if we have other
outputs.
This isn't enough though, we must also check if at least one of these
other outputs is enabled otherwise we'll try to resize the screen to
0x0 which (rightfully) hits an assertion.
https://bugzilla.gnome.org/show_bug.cgi?id=739450
It turns out that this was wrong because MetaWindow->monitor points to
the old monitor infos and they are needed to position windows in the
new configuration which happens in a monitors-changed handler.
This reverts commit e1704acda4.
The code in MetaMonitorConfig was really complex and was trying to do
way too much, using multiple different variables to determine where
things were stored, and trying to do fancy tricks to transfer
ownership.
Add a refcounting system to help simplify this, and clean up the logic.
Simply along the way, this fixes multiple bugs in the monitor config
logic, most notably bug #734889, which was my original goal to fix.
The X server sends several RRScreenChangeNotify events in a burst when
something happens which, currently, causes us to rebuild our view of
the world as many times and notify the upper layers about it which
causes a lot of bogus repeated work like rebuilding background actors.
We can avoid this extra work by looking at the timestamp in the
XRRScreenResources struct which is updated when an X client (including
us!) last changed something and comparing it with the previous
timestamp.
https://bugzilla.gnome.org/show_bug.cgi?id=738630
meta_monitor_config_match_current() only matches the number of outputs
and if the output connector, vendor, product and serial match.
In the X backend, this means that we can't use it to bypass doing any
work because it won't detect cases where we actually want to update
ourselves like e.g. an output being turned off either by us or by
another X client (e.g. xrandr).
In the native backend, unlike the xrandr backend, we only get called
on real hotplug events and thus should always trigger the common
hotplug code to (possibly) apply a new mode so the check is pointless
anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=738630
In randr events, configTimestamp can be considered the hotplug time,
i.e. whenever the server notices hardware changes, this value will be
updated.
Having that in mind, we can re-work the logic to make it clearer.
There are no semantic changes.
The code here was a bit messy with the addition of
hotplug_mode_update, and the comments were a bit confusing and
inaccurate. Clean it up and comment it a bit better to make the flow and
intention more clear.
We need to tell clutter's evdev backend about the desktop's key repeat
settings so that our own key bindings event processing and
gnome-shell's chrome widgets get their fake key events for continuous
key press as they expect.
Note that the wayland frontend filters out these events and thus
wayland clients do not see them as specced.
https://bugzilla.gnome.org/show_bug.cgi?id=728055
The X server applies a default keymap to hotplugged keyboard
devices. To enforce our current settings we must re-upload the keymap
when a new keyboard shows up.
Note that setting the VCK keymap causes the server to propagate it
to all slave keyboard devices.
https://bugzilla.gnome.org/show_bug.cgi?id=737673
We overrode the property for PowerSaveMode, which meant that gdbus's
auto-generated PropertiesChanged code wasn't being run.
This really confused gnome-rr and gnome-settings-daemon's power plugin
about the current DPMS state of the display, since they used their
cached PowerSaveMode properties, and never saw a PropertiesChanged being
emitted.
If a display was on, they set it to off, and then set it back on, the
setting back on would never fire, since they thought the display was
already off.
To fix this, remove our custom property override and just respond to
notifications on the object.
Namely, this fixes the DPMS management when receiving notifications so
that it now properly times out.
Use the new DRM capabilities to figure out the correct cursor size, and
make sure that matches instead of hardcoding 64x64. This fixes incorrect
rendering on some newer AMD cards that support 256x256 cursors.
Based heavily on a patch by:
Alvaro Fernando García <alvarofernandogarcia@gmail.com>