In the future, we want event translators to be the way to handle events
in backends. For this reason, they should be a part of the base abstract
ClutterBackend class, and not an X11-only concept.
Use both the MappingNotify event and the XKB XkbMapNotify event, if
we're compiled with XKB support.
This change is also useful for making ClutterKeymapX11 an event
translator and let it deal with XKB events internally like we do for
stage and input events.
Based on a patch by: Damien Lespiau <damien.lespiau@intel.com>
Signed-off by: Emmanuele Bassi <ebassi@linux.intel.com>
http://bugzilla.clutter-project.org/show_bug.cgi?id=2525
Since we need to find the stage from the X11 Window, it's better to use
a static hashmap that gets updated every time the ClutterStageX11:xwin
member is changed, instead of iterating over every stage handled by the
global ClutterStageManager singleton.
Since we access it in order to get the X11 Display pointer, it makes
sense to have the ClutterBackendX11 already available inside the
ClutterStageX11 structure, and avoid the pattern:
ClutterBackend *backend = clutter_get_default_backend ();
ClutterBackendX11 *backend_x11 = CLUTTER_BACKEND_X11 (backend);
which costs us a function call, a type cast and an unused variable.
When we receive a ConfigureNotify event that doesn't affect the size
of the window (only the position) then we were still calling
clutter_stage_ensure_viewport which ends up queueing a full stage
redraw. This patch makes it so that it only ensures the viewport when
the size changes as it already did for avoiding queueing a relayout.
It now also avoids setting the clipped redraws cool off period when
the window only moves under the assumption that it's only necessary
for size changes.
The x11 backend exposes a lot of symbols that are meant to only be used
when implementing a subclassed backend, like the glx and eglx ones.
The uninstalled headers are also filled with cruft declarations of
functions long since removed.
Let's try to clean up this mess.
This is a lump commit that is fairly difficult to break down without
either breaking bisecting or breaking the test cases.
The new design for handling X11 event translation works this way:
- ClutterBackend::translate_event() has been added as the central
point used by a ClutterBackend implementation to translate a
native event into a ClutterEvent;
- ClutterEventTranslator is a private interface that should be
implemented by backend-specific objects, like stage
implementations and ClutterDeviceManager sub-classes, and
allows dealing with class-specific event translation;
- ClutterStageX11 implements EventTranslator, and deals with the
stage-relative X11 events coming from the X11 event source;
- ClutterStageGLX overrides EventTranslator, in order to
deal with the INTEL_GLX_swap_event extension, and it chains up
to the X11 default implementation;
- ClutterDeviceManagerX11 has been split into two separate classes,
one that deals with core and (optionally) XI1 events, and the
other that deals with XI2 events; the selection is done at run-time,
since the core+XI1 and XI2 mechanisms are mutually exclusive.
All the other backends we officially support still use their own
custom event source and translation function, but the end goal is to
migrate them to the translate_event() virtual function, and have the
event source be a shared part of Clutter core.
When building actor relative transforms, instead of using the matrix
stack to combine transformations and making assumptions about what is
currently on the stack we now just explicitly initialize an identity
matrix and apply transforms to that.
This removes the full_vertex_t typedef for internal transformation code
and we just use ClutterVertex.
ClutterStage now implements apply_transform like any other actor now
and the code we had in _cogl_setup_viewport has been moved to the
stage's apply_transform instead.
ClutterStage now tracks an explicit projection matrix and viewport
geometry. The projection matrix is derived from the perspective whenever
that changes, and the viewport is updated when the stage gets a new
allocation. The SYNC_MATRICES mechanism has been removed in favour of
_clutter_stage_dirty_viewport/projection() APIs that get used when
switching between multiple stages to ensure cogl has the latest
information about the onscreen framebuffer.
XGetGeometry is a great piece of API, since it gets a lot of stuff that
are moderately *not* geometry related - the root window, and the depth
being two.
Since we have multiple conditions depending on the result of that call
we should split them up depending on the actual error - and each of them
should have a separate error message. This makes debugging simpler.
Since using addresses that might change is something that finally
the FSF acknowledge as a plausible scenario (after changing address
twice), the license blurb in the source files should use the URI
for getting the license in case the library did not come with it.
Not that URIs cannot possibly change, but at least it's easier to
set up a redirection at the same place.
As a side note: this commit closes the oldes bug in Clutter's bug
report tool.
http://bugzilla.openedhand.com/show_bug.cgi?id=521
There is no need for us to check for low-level functions and header
files, especially since we haven't been checking the results until
now. This makes cross-compiling slightly more bearable.
As well as manually setting the geometry size, we needed to queue a
relayout. This is what the ConfigureNotify handler would normally do,
but we don't get this event when using a foreign window (obviously).
This should fix resizing in things like gtk-clutter.
If we get into the resize function and it's a foreign window, set the
geometry size so that the allocate will set the backend size and call
glViewport.
Setting/unsetting fullscreen on a mapped or unmapped window now works
correctly.
If you unfullscreen a window that was initially full-screened, it will
unset the fullscreen hint and the WM will likely push the size down to
the largest valid size.
If the window was previously un-fullscreened, Clutter will restore the
previous size.
Fullscreening also now works if the WM switches the hint without the
application's knowledge (as happens when you resize a window to the size
of the screen, for example, with stock metacity).
When we resize, we relied on the stage's allocate to re-initialise the
GL viewport. Unfortunately, if we resized within Clutter, the new size
was cached before the window is actually resized, so glViewport wasn't
being called after resizing (some of the time, it's a race condition).
Change the way resizing works slightly so that we only resize when the
geometry size doesn't match our preferred size, and queue a relayout on
ConfigureNotify so the glViewport gets called.
Also change window creation slightly so that setting the size of a
window before it's realized works correctly.
We want to set the default size without triggering the layout machinary,
so change the window creation process slightly so we start with a
640x480 window.
Due to the way the new sizing works, clutter stage must set its size in
init (to maintain old behaviour) and the properties on the X11 stage
must be initialised to 1x1 so that it actually goes ahead with the
resize.
Fixes stages that aren't user resizable and have no size set from
appearing at 1x1.
Calling clutter_actor_set_size in response to ConfigureNotify makes
setting the size of the stage racy - the most common result of which
seems to be that you can't set the stage dimensions to anything less
than 640x480.
Instead, add a first_allocation bit to the private structure of the X11
stage and force the first resize (necessary or the default stage will be
a 1x1 window).
Now that we have a minimum size getter on the stage object, change
get_geometry to actually always return the geometry. This fixes stages
that are set as user-resizable appearing at 1x1 size.
This will need changing in other back-ends too.
Since asking for ARGB by default is still somewhat experimental on X11
and not every toolkit or complex widgets (like WebKit) still do not like
dealing with ARGB visuals, we should switch back to RGB by default - now
that at least we know it works.
For applications (and toolkit integration libraries) that want to enable
the ClutterStage:use-alpha property there is a new function:
void clutter_x11_set_use_argb_visual (gboolean use_argb);
which needs to be called before clutter_init().
The CLUTTER_DISABLE_ARGB_VISUAL environment variable can still be used
to force this value off at run-time.
If a Stage has been set to use a foreign Window then Clutter should not
be managing it; calling XWithdrawWindow and XMapWindow should be
reserved to the windows we manage ourselves.
This ensures that glViewport is called before the first stage paint.
Previously _clutter_stage_maybe_setup_viewport (which is done before we
start painting) was bailing out without calling cogl_setup_viewport because
the CLUTTER_STAGE_IN_RESIZE flag may be set if the stage was resized before
the first paint. (NB: The CLUTTER_STAGE_IN_RESIZE flag isn't removed until
we get an explicit event back from the X server since the window manager may
choose to deny/alter the resize.)
We now special case the first resize - where the viewport hasn't previously
been initialized and use the requested geometry to initialize the
glViewport without waiting for a reply from the server.
The only backend that tried to implement offscreen stages was the GLX backend
and even this has apparently be broken for some time without anyone noticing.
The property still remains and since the property already clearly states that
it may not work I don't expect anyone to notice.
This simplifies quite a bit of the GLX code which is very desireable from the
POV that we want to start migrating window system code down to Cogl and the
simpler the code is the more straight forward this work will be.
In the future when Cogl has a nicely designed API for framebuffer objects then
re-implementing offscreen stages cleanly for *all* backends should be quite
straightforward.
The user-initiated resize is conflicting with the allocated size. This
happens because we change the size of the stage's X Window behind the
back of the size allocation machinery.
Instead, we should change the size of the actor whenever we receive a
ConfigureNotify event to reflect the new size of the actor.
We force the redraw before mapping, in the hope that when a composited
window manager maps the window it will have its contents ready; that is
not going to work: the solution for this problem requires the implementation
of a protocol for compositors, and not a hack.
Moreover, painting before mapping will cause a paint with the wrong
GL viewport size, which is the wrong thing to do on GLX.
Instead of using ClutterActor for the base class of the Stage
implementation we should extend the StageWindow interface with
the required bits (geometry, realization) and use a simple object
class.
This require a wee bit of changes across Backend, Stage and
StageWindow, even though it's mostly re-shuffling.
First of all, StageWindow should get new virtual functions:
* geometry:
- resize()
- get_geometry()
* realization
- realize()
- unrealize()
This covers all the bits that we use from ClutterActor currently
inside the stage implementations.
The ClutterBackend::create_stage() virtual function should create
a StageWindow, and not an Actor (it should always have been; the
fact that it returned an Actor was a leak of the black magic going
on underneath). Since we never guaranteed ABI compatibility for
the Backend class, this is not a problem.
Internally to ClutterStage we can finally drop the shenanigans of
setting/unsetting actor flags on the implementation: if the realization
succeeds, for instance, we set the REALIZED flag on the Stage and
we're done.
As an initial proof of concept, the X11 and GLX stage implementations
have been ported to the New World Order(tm) and show no regressions.
Clutter advertises itself on X11 as implementing the _NET_WM_PING protocol,
which is needed to be able to detect frozen applications; this allows us to
stop the destruction of the stage by blocking the CLUTTER_DELETE event and
wait for user feedback without the Window Manager thinking that the app has
gone unresponsive.
In order to implement the _NET_WM_PING protocol properly, though, we need
to add the _NET_WM_PID property on the Stage window, since the EWMH states:
[_NET_WM_PID] MAY be used by the Window Manager to kill windows which
do not respond to the _NET_WM_PING protocol.
Meaning that an unresponsive Clutter application might not be killable by
the window manager.
Fixes bug:
http://bugzilla.openedhand.com/show_bug.cgi?id=1748
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The fix for bug 1750 inside commit b190448e made Clutter-GTK spew
BadWindow errors. The reason for that is that we call XDestroyWindow()
without checking if the old Window is None; this happens if we call
clutter_x11_set_stage_foreign() on a new ClutterStage before it has
been realized.
Since Clutter-GTK does not need to realize the Stage it is going to
embed anymore (the only reason for that was to obtain a proper Visual
but now there's ClutterBackendX11 API for that), the set_stage_foreign()
call is effectively setting the StageX11 Window for the first time.
When we replace the stage Window using a foreign one we also need to
destroy the Window we created, if needed, to avoid leaking resources
all around.
Fixes bug:
http://bugzilla.openedhand.com/show_bug.cgi?id=1750
A lot of applications change the size of the stage from the default
before the stage is initially shown. The size change won't take affect
until the first allocation run. However we want the window to be at
the correct size when we first map it so we should force an allocation
run before showing the stage.
There was an explicit call to XResizeWindow in
clutter_stage_x11_show. This is not needed anymore because
XResizeWindow will already have been called by the allocate method.
Updating the WM hints on the stage window shortcircuits if the stage
is in WITHDRAWN state, so we need to move the update_wm_hints() call
after the flag has been unset.
Signed-off-by: Emmanuele Bassi <ebassi@linux.intel.com>
The race we were experiencing in the X11 backends is apparently
back after the fix in commit 00a3c698.
This time, just delaying the setting of the SYNC_MATRICES flag
is not enough, so we can resume the use of a STAGE_IN_RESIZE
private flag.
This should also fix bug:
http://bugzilla.openedhand.com/show_bug.cgi?id=1668
The clutter_context_get_default() function is private, but shared
across Clutter. For this reason, it should be prefixed by '_' so
that the symbol is hidden from the shared object.
The :fullscreen property is very much confusing as it is implemented.
It can be written to a value, but the whole process might fail. If we
set:
g_object_set (stage, "fullscreen", TRUE, NULL);
and the fullscreen process fails or it is not implemented, the value
will be reset to FALSE (if we're lucky) or left TRUE (most of the
times).
The writability is just a shorthand for invoking clutter_stage_fullscreen()
or clutter_stage_unfullscreen() depending on a boolean value without
using an if.
The :fullscreen property also greatly confuses high level languages,
since the same symbol is used:
- for a method name (Clutter.Stage.fullscreen())
- for a property name (Clutter.Stage.fullscreen)
- for a signal (Clutter.Stage::fullscreen)
For these reasons, the :fullscreen should be renamed to :fullscreen-set
and be read-only. Implementations of the Stage should only emit the
StageState event to change from normal to fullscreen, and the Stage
will automatically update the value of the property and emit a notify
signal for it.