MetaProfiler is not built when -Dprofiler=false, and that
breaks the build since MetaBackend unconditionally imports
and uses it.
Fix that by wrapping MetaProfiler in compile-time checks.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/603
We rely on the frame clock to compress input events, thus if the frame
clock stops, input events are not dispatched. At the same time, there
is no reason to redraw at a full frame rate, as nothing will be
presented anyway, so slow down to 10Hz (compared to the most common
60Hz). Note that we'll only actually reach 10Hz if there is an active
animation being displayed, which won't happen e.g. if there is a screen
shield in the way.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/506
Don't schedule redraws when being headless; there is nothing to draw so
don't attempt to draw. This also makes a flaky test become non-flaky, as
it previously spuriously got warnings due to windows being "painted"
when headless but lacking frame timings, as nothing was actually
painted.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/170
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
Add API to let GNOME Shell have the ability to get notified about remote
access sessions (remote desktop, remote control and screen cast), and
with a way to close them.
This is done by adding an abstraction above the remote desktop and
screen cast session objects, to avoid exposing their objects to outside
of mutter. Doing that would result in external parts holding references
to the objects, complicating their lifetimes. By using separate wrapper
objects, we avoid this issue all together.
Monitor whether UPower is running ourselves. That allows us to keep the
same value for "lid-is-closed" throughout the process of UPower
restarting, preventing unwanted monitor re-configuration through the process.
Fixes another screen black out when UPower restarts and the laptop lid
is closed.
Rather than handle UpClient in both MetaBackend (to reset the idletime
when the lid is opened), and in MetaMonitorManager and
MetaMonitorConfigManager (to turn the screen under the lid on/off
depending on its status), move the ability to get the lid status from
UPower or mock it in one place, in MetaBackend.
While MetaStage, MetaWindowGroup and MetaDBusDisplayConfigSkeleton don't
appear explicitly in the public API, their gtypes are still exposed via
meta_get_stage_for_screen(), meta_get_*window_group_for_screen() and
MetaMonitorManager's parent type. Newer versions of gjs will warn about
undefined properties if it encounters a gtype without introspection
information, so expose those types to shut up the warnings.
https://bugzilla.gnome.org/show_bug.cgi?id=781471
As a follow up to the patch from a95cbd0a, we need to make sure
that the pointer is out of the way as well when monitors changed,
since that's the event that will prevail in some cases. Besides,
this is also consistent with what the code before a95cbd0a was,
which initialized the pointer position in the same way both in
this case and in the real_post_init() function.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157
Centering the pointer at startup causes undesired behaviour if
it ends up hovering over reactive elements, that might react
to that positioning, causing confusion. This is the case of
the login dialog when a list of different users is shown, as
centering the pointer at startup in that case will get the
user in the center of the screen pre-selected, which is not
the expected behaviour (i.e. pre-selecting the first one).
Fix this by simply moving the pointer out of the way, close
to the bottom-right corner, during initialization.
Closes: https://gitlab.gnome.org/GNOME/gnome-shell/issues/157
And use the old "native" backend for both X11 and Wayland. This will
allow us to share fixes between implementations without having to delve
into the XSync X11 extension code.
https://bugzilla.gnome.org/show_bug.cgi?id=705942
Bluetooth mouse usually goes in sleep state after a timeout, when that
happen the mouse is disconnected and on_device_removed function is
called. Before the patch if a touch device is available the
on_device_removed function hide the cursor. The issue is that the cursor
does not reappear once the bluetooth mouse is reconnected because
MetaBackend::current_device_id is not invalidated when on_device_removed
was called.
The patch set MetaBackend::current_device_id to 0 if the current device
is removed. This will make update_last_device to be triggered as soon as
another input device is used or the bluetooth mouse reconnect, as
consequence that the cursor reappear. The id 0 is never given to devices
and can safely used as undefine id.
https://bugzilla.gnome.org/show_bug.cgi?id=761067
Adding an internal signal and use it to update the internal state before
emitting "monitors-changed" which will be repeated by the screen to the world.
https://bugzilla.gnome.org/show_bug.cgi?id=788860
Move finding, opening and managment of the KMS file descriptor to
MetaMonitorManagerKms. This means that the monitor manager creation can
now fail, both if more than one GPU with connectors is discovered, or
if finding or opening the primary GPU fails.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
The monitor manager instance was created and setup in one step; at
construction. This is problematic if, in the future, the monitor manager
creation can fail, as the monitor manager is created quite late.
To make it possible to in the future fail creating a monitor manager,
create the instance very early when initiating the backend, then on
post init backend setup, "setup" the monitor manager state, i.e. read
the current state and setup the stage.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
The error was printed, then dropped, eventually resulting in another
generic error being printed. Lets just propogate the error all the way
up instead.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
This commit adds basic screen casting and remote desktoping
functionalty. This works by exposing two D-Bus API services:
org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop.
The remote desktop API is used to create remote desktop sessions. For
each session, a D-Bus object is created, and an application can manage
the session by sending messages to the session object. A remote desktop
session the user to emit input events using the D-Bus methods on the
session object. To get framebuffer content, the application should
create an associated screen cast session.
The screen cast API is used to create screen cast sessions. One can so
far either create stand-alone screen cast sessions, or a screen cast
session associated with a remote desktop session. A remote desktop
associated screen cast session is managed by the remote desktop session.
So far only remote desktop managed screen cast sessions are implemented.
Each screen cast session may have one or more streams. A screen cast
stream is a stream of buffers of some part of the compositor content.
So far API exists for creating streams of monitors and windows, but
only monitor streams are implemented.
When a screen cast session is started, the one PipeWire stream is
created for each screen cast stream created for the session. When this
has happened, a PipeWireStreamAdded signal is emitted on the stream
object, passing a unique identifier. The application may use this
identifier to find the associated stream being advertised by the
PipeWire daemon.
The remote desktop and screen cast functionality must be explicitly be
enabled at ./configure time by passing --enable-remote-desktop to
./configure. Doing this will build both screen cast and remote desktop
support.
To actually enable the screen casting and remote desktop, the user must
enable the experimental feature. See
org.gnome.mutter.experimental-features.
https://bugzilla.gnome.org/show_bug.cgi?id=784199
Add API to get the layout group (layout index) currently active. In the
native backend this is done by fetching the state directly from the
evdev backend; on X11 this works by listening for XkbStateNotify
events, caching the layout group value.
https://bugzilla.gnome.org/show_bug.cgi?id=786408
This basically moves g-s-d's orientation plugin into mutter so that
eventually g-s-d doesn't need to build monitor configurations by
itself anymore.
https://bugzilla.gnome.org/show_bug.cgi?id=781906
Introduce MetaSettings and add the settings managed by MetaBackend into
the new object. These settings include: experimental-features and UI
scaling factor.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Let the backend implementations create their own input settings
backend, as is done with other backend specific special purpose
backends. Also use the macro for declaring the GType.
https://bugzilla.gnome.org/show_bug.cgi?id=782152
meta_backend_real_post_init() had some open coded initialization with
some unexpected interdependencies. Split these up and move them to their
own functions in order to make meta_backend_real_post_init() a bit more
readable.
https://bugzilla.gnome.org/show_bug.cgi?id=782152
Instead of looking at the GTK+ settings, check the logical monitor
state and determine the UI scaling factor given the maximum logical
monitor scale. This is only enabled when the monitor config manager
feature is enabled, as only then can a scale be explicitly configured.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The UI scaling depends on whether the framebuffers are scaled. Enable
the caller to determine the what scale its UI should be drawn in, in
relation to the stage coordinate space by calling this function. A new
singal "ui-scaling-factor-changed" is added in order to liston for for
changes.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Window scaling is a clutter feature used to enable automatic scaling of
stage windows when running under as an application in windowing system.
Clutter in mutter does not support running as a stand-alone application
toolkit, so lets remove this unused feature.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of using a environment variable, add a new 'experimental
feature' gsetting keyword "monitor-config-manager" that enables the use
of the new MetaMonitorConfigManager. This commit also makes it possible
to switch between the two systems without restarting mutter.
The D-Bus API is disabled when the experimental feature is not enabled,
and clients trying to access it will get a access-denied error in
response. A new property 'IsExperimentalApiEnabled' is added to let the
D-Bus client know whether it is possible to use the experimental API or
not.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This commit adds support for rendering onto enlarged per logical
monitor framebuffers, using the scaled clutter stage views, for HiDPI
enabled logical monitors.
This works by scaling the mode of the monitors in a logical monitors by
the scale, no longer relying on scaling the window actors and window
geometry for making windows have the correct size on HiDPI monitors.
It is disabled by default, as in automatically created configurations
will still use the old mode. This is partly because Xwayland clients
will not yet work good enough to make it feasible.
To enable, add the 'scale-monitor-framebuffer' keyword to the
org.gnome.mutter.experimental-features gsettings array.
It is still possible to specify the mode via the new D-Bus API, which
has been adapted.
The adaptations to the D-Bus API means the caller need to be aware of
how to position logical monitors on the stage grid. This depends on the
'layout-mode' property that is used (see the DisplayConfig D-Bus
documentation).
https://bugzilla.gnome.org/show_bug.cgi?id=777732
This gsetting will allow the adding of keywords to a array, where each
keyword may enable an experimental feauter, if the given mutter version
supports that particular experimental feature. Emphasis is put on the
lack of guarantee that any such keyword has any effect. Currently no
keywords are defined.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Implement MetaDnd for emitting DnD signals to plugins such as gnome-shell. The
xdnd handling code comes from gnome-shell, and it is hidden behind MetaDnd now.
https://bugzilla.gnome.org/show_bug.cgi?id=765003
Add private API for overriding the compositor configuration, i.e. the
compositor type (X11 WM or Wayland compositor) and backend type. This
will make it possible to add a special test backend used by src/tests/.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Change meta_monitor_manager_get_logical_monitor_at() to use floats,
replace users of meta_monitor_manager_get_monitor_at_point() to use the
API that returns a logical monitor and remove the now unused function.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
The method used for getting the current logical monitor (the monitor
where the pointer cursor is currently at) depends on the backend type,
so move that logic to the corresponding backends.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Let the backend initialize the cursor tracker, and change all call
sites to get the cursor tracker from the backend instead of from the
screen. It wasn't associated with the screen anyway, so the API was
missleading.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
In preparation for further refactorizations, rename the MetaMonitorInfo
struct to MetaLogicalMonitor. Eventually, part of MetaLogicalMonitor
will be split into a MetaMonitor type.
https://bugzilla.gnome.org/show_bug.cgi?id=777732
Instead of hiding stage views enablement behind MUTTER_STAGE_VIEWS=1,
default to enable it, while making it possible to disable using
MUTTER_STAGE_VIEWS=0 instead.
https://bugzilla.gnome.org/show_bug.cgi?id=770366
Instead of continuing eventually crashing with a segmentation fault due
to a missing renderer, make MetaBackend an GInitable, and gracefully
handle the failure to fully create the backend with an EXIT_FAILURE.
https://bugzilla.gnome.org/show_bug.cgi?id=769036
Being a listener to a signal, it is inconvenient to enforce order of
execution between different signal listeners. If there are things in
the backend that should be updated before various other signal
handlers, make sure so is done by emitting the signal after having
explicitly notified the backend.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
The stage resizing was placed in the generic backend, which was only
run on certain configurations (when running nested or using the native
backend). This commits makes the resizing more explicit thus more
obvious.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
MetaRenderer is meant to be the object responsible for rendering the
scene graph. It will contain the logic related to the cogl winsys
backend, the clutter backend, and the clutter stage window.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
Introduce two new clutter backends: MetaClutterBackendX11 and
MetaClutterBackendNative. They are so far only wrap ClutterBackendX11
and ClutterBackendEglNative respectively, but the aim is to move things
from the original clutter backends when needed.
https://bugzilla.gnome.org/show_bug.cgi?id=768976
It indirectly triggers expensive operations in gnome-shell
(js/ui/keyboard.js), which turns out too expensive if we happen to operate
the shell simultaneously with 2 devices that will trigger the operations
there.
So just rate limit the signal emission, defer to an idle and just emit
the last device gotten. Worst that will happen is that we may possibly
emit the signal on the same device consecutively.
https://bugzilla.gnome.org/show_bug.cgi?id=753527
The wp_pointer_constraints protocol is a protocol which enables clients
to manipulate the behavior of the pointer cursor associated with a seat.
Currently available constraints are locking the pointer to a static
position, and confining the pointer to a given region.
Currently locking is fully implemented, and confining is implemented for
rectangular confinement regions.
What else is lacking is less troublesome semantics for enabling the lock
or confinement; currently the only requirement implemented is that the
window that appears focused is the one that may aquire the lock.
This means that a pointer could be 'stolen' by creating a new window that
receives active focus, or when using focus-follows-mouse, a pointer
passes a window that has requested a lock. This semantics can be changed
and the protocol itself allows any semantics as seems fit.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
Add support for sending relative pointer motion deltas to clients who
request such events by creating wp_relative_pointer objects via
wp_relative_pointer_manager.
This currently implements the unstable version 1 from wayland-protocols.
https://bugzilla.gnome.org/show_bug.cgi?id=744104
Failing to initialize Clutter isn't something it's useful to report
into automatic bug tracking systems or get a backtrace for - in fact,
the most common case is that DISPLAY is unset or points to a
non-existent X server. So simply exit rather than calling g_error().
https://bugzilla.gnome.org/show_bug.cgi?id=757311
This seems nicer/tidier than the current X11 (center on the span of all
monitors) or native (so close to the activities corner it's hard not
to trigger it) platform behaviors.
This code also takes over the native-specific pointer warping that
happens when the pointer was over a removed output.
https://bugzilla.gnome.org/show_bug.cgi?id=746896
On startup, the cursor is kept hidden if there's any touchscreen available.
If the device that was last interacted is removed, we check on available
pointing devices though, so we don't possibly hide the pointer if there are
further mice/touchpads/etc.
Devices being added don't update cursor visibility, we wait for the user
interacting with those instead.
https://bugzilla.gnome.org/show_bug.cgi?id=712775
This function can be used to trigger changes depending on the device type
that is currently emitting the events. So far, it is used to switch cursor
visibility on/off on touchscreen interaction.
A "last-device-updated" signal has also been added, in order allow hooking
other behavior changes (eg. OSK) when the last device changes.
https://bugzilla.gnome.org/show_bug.cgi?id=712775
This object internally keeps track of the relevant input configuration,
and goes through its vmethods in order to apply the configuration on the
backend-specific devices.
So far, only mouse/touchpad settings are actually attached to GSettings
changes. ::set_matrix(), meant for tablets/touchscreens, is not hooked
yet.
One caveat is that meta_input_settings_create() may return NULL if the
backend does not own the windowing system (wayland nested on X11 being
the one case), and thus device settings can't be changed freely.
https://bugzilla.gnome.org/show_bug.cgi?id=739397
We'll need this in the wayland frontend to send a modifiers event to
clients.
Note that on X11 this isn't needed because key events include the
group index encoded in modifier state. If we ever want to make the
wayland frontend work with the X11 backend we'll handle it then.
https://bugzilla.gnome.org/show_bug.cgi?id=736433
Setting the scaling factor immediately after calling clutter_init()
avoids creating the stage at one size, then later resizing it to
a different size.
https://bugzilla.gnome.org/show_bug.cgi?id=736279
If we add device 2, then add device 254, then remove device 254, then
the max device ID will be 253. Scan through all the devices again on
removal to calculate a new max device ID.
Rather than have the DBus code control this, move this into
MetaBackend. This also lets us destroy idle monitors when appropriate,
rather than leaking them forever.
This allows creating the stage much earlier than it otherwise would have
been. Our initialization sequence has always been a bit haphazard, with
first the MetaBackend created, then the MetaDisplay, and inside of that,
the MetaScreen and MetaCompositor.
Refactor this out so that the MetaBackend creates the Clutter
stage. Besides the clarity of early initialization, we now have much
easier access to the stage, allowing us to use it for things such as
key focus and beyond.
These methods allow us to set and get xkbcommon keymaps as well as
locking a specific layout in a layout group.
With this, we introduce dependencies on xkeyboard-config, xkbfile,
xkbcommon-x11 and a libX11 new enough to have xcb support.
https://bugzilla.gnome.org/show_bug.cgi?id=734301
This reverts commit 3b85e4b2b9.
This breaks touch support; reverting would break wayland
(is what this patch tried to fix; we should find a better solution
that works on both).
This makes Alt+F7 / Alt+F8 work respectively under X11 nested mode.
For the native backend implementation, we'll need a special Clutter
function, so don't implement that for now.