We should allow a configuration file to set up the initial state of the
global state, which also implies being able to set the backend.
If the allowed backends have already been set programmatically via the
clutter_set_windowing_backend(), though, then the application code takes
precedence, as we assume that the application author knows better than
us what their code supports or requires.
The whole of ClutterBackend is a final/protected type, so having a bunch
of instance fields and an instance private data structure is redundant
at best, and less efficient at worst.
In situations when the default backend would fail (for example
when compiled with X11 support but run without DISPLAY), or
when the application is using backend specific code, it makes
sense to let the application choose the backend explicitly.
https://bugzilla.gnome.org/show_bug.cgi?id=707869
Cogl now requires that all applications integrate their main loop with
Cogl so that it can listen for events from winsys. This patch just
adds Cogl's GSource to the main loop.
Reviewed-by: Emmanuele Bassi <ebassi@linux.intel.com>
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The ::redraw virtual function was a throwback from olden times, and has
been thoroughly replaced by the equivalent vfunc on the StageWindow
interface. We can safely remove it, now, and simplify the flow of the
redraw code inside ClutterStage.
Create the device manager during the event initialization, where it
makes sense.
This allows us to get rid of the per-backend get_device_manager()
virtual function, and just store the DeviceManager pointer into the
ClutterBackend structure.
Since we use Cogl for the context creation we can now provide a default
context creation that should just work, plus a couple of hooks to allow
plugging into the creation sequence for platforms supported by Cogl that
require special handling — like foreign displays or alpha-enabled swap
chains.
The various backends have now two choices: either replace the
create_context() in its entirety, or plug themselves into the default
context creation.
Instead of defining new symbols for the windowing systems enabled at
configure time, we can reuse the same symbols for both the compile time
and run time checks, e.g.:
#ifdef CLUTTER_WINDOWING_X11
if (clutter_check_windowing_backend (CLUTTER_WINDOWING_X11))
/* use the clutter_x11_* API */
else
#endif
#ifdef CLUTTER_WINDOWING_WIN32
if (clutter_check_windowing_backend (CLUTTER_WINDOWING_WIN32))
/* use the clutter_win32_* API */
#endif
This scheme allows us to ensure that the input system namespace is free
for us to use and select at run time in later versions of Clutter.
The Clutter backend split is opaque enough that should allow us to just
build all possible backends inside the same shared object, and select
the wanted backend at initialization time.
This requires some work in the build system, as well as the
initialization code, to remove duplicate functions that might cause
conflicts at build and link time. We also need to defer all the checks
of the internal state of the platform-specific API to run-time type
checks.
This migrates all the GLX window system code down from the Clutter
backend code into a Cogl winsys. Moving OpenGL window system binding
code down from Clutter into Cogl is the biggest blocker to having Cogl
become a standalone 3D graphics library, so this is an important step in
that direction.
In the future, we want event translators to be the way to handle events
in backends. For this reason, they should be a part of the base abstract
ClutterBackend class, and not an X11-only concept.
This is a lump commit that is fairly difficult to break down without
either breaking bisecting or breaking the test cases.
The new design for handling X11 event translation works this way:
- ClutterBackend::translate_event() has been added as the central
point used by a ClutterBackend implementation to translate a
native event into a ClutterEvent;
- ClutterEventTranslator is a private interface that should be
implemented by backend-specific objects, like stage
implementations and ClutterDeviceManager sub-classes, and
allows dealing with class-specific event translation;
- ClutterStageX11 implements EventTranslator, and deals with the
stage-relative X11 events coming from the X11 event source;
- ClutterStageGLX overrides EventTranslator, in order to
deal with the INTEL_GLX_swap_event extension, and it chains up
to the X11 default implementation;
- ClutterDeviceManagerX11 has been split into two separate classes,
one that deals with core and (optionally) XI1 events, and the
other that deals with XI2 events; the selection is done at run-time,
since the core+XI1 and XI2 mechanisms are mutually exclusive.
All the other backends we officially support still use their own
custom event source and translation function, but the end goal is to
migrate them to the translate_event() virtual function, and have the
event source be a shared part of Clutter core.
Move the private Backend API to a separate header.
This also allows us to finally move the class vtable and instance
structure to a separate file and plug the visibility hole that left
the Backend class bare for everyone to poke into.