The coding style has for a long time said to avoid using redundant glib
data types such as gint or gchar etc because we feel that they make the
code look unnecessarily foreign to developers coming from outside of the
Gnome developer community.
Note: When we tried to find the historical rationale for the types we
just found that they were apparently only added for consistent syntax
highlighting which didn't seem that compelling.
Up until now we have been continuing to use some of the platform
specific type such as gint{8,16,32,64} and gsize but this patch switches
us over to using the standard c99 equivalents instead so we can further
ensure that our code looks familiar to the widest range of C developers
who might potentially contribute to Cogl.
So instead of using the gint{8,16,32,64} and guint{8,16,32,64} types this
switches all Cogl code to instead use the int{8,16,32,64}_t and
uint{8,16,32,64}_t c99 types instead.
Instead of gsize we now use size_t
For now we are not going to use the c99 _Bool type and instead we have
introduced a new CoglBool type to use instead of gboolean.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
(cherry picked from commit 5967dad2400d32ca6319cef6cb572e81bf2c15f0)
Instead of creating FBOs on the GL side, the KMS EGL platform uses the
latest changes to Mesa to create an EGL surface using a GBM surface as
the native surface type. This removes some of the special vtable hooks
that the KMS platform needed because it is now much more similar to
the other platforms.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The cogl.h header is meant to be the public header for including the 1.x
api used by Clutter so we should stop using that as a convenient way to
include all likely prototypes and typedefs. Actually we already do a
good job of listing the specific headers we depend on in each of the .c
files we have so mostly this patch just strip out the redundant
includes for cogl.h with a few fixups where that broke the build.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds cogl_onscreen_template_set_swap_throttled() api that allows
developers to specify their preference for swap buffer throttling
up-front as part of the onscreen template that is used to create a
CoglDisplay when initializing Cogl. This is desirable because some
platforms may not support configuring swap throttling on a per
framebuffer basis and also since applications often want to apply the
same policy to all onscreen framebuffers anyway.
This allows applications to specify certain constraints that feed into
the process of selecting a CoglRenderer backend. For example
applications might depend on x11 for handling input and so they require
a backend that's also based on x11.
CoglTexture2D had an assert to verify that the EGL winsys was being
used. This doesn't make any sense any more because the EGL winsys
can't be used directly but instead it is just a base winsys for the
platform winsys's. To fix this this patch adds a set of 'criteria'
flags to each winsys, one of which is 'uses EGL'. CoglTexture2D can
use this to determine if the winsys is supported.
Eventually we might want to expose these flags publically so that an
application can select a winsys based on certain conditions. For
example, an application may need a winsys that uses X or EGL but
doesn't care exactly which one it is.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This moves all of the code specific to the Android platform out of
cogl-winsys-egl. It is completely untested apart from that it
compiles using a dummy android/native_window.h header.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This moves all of the code specific to the gdl winsys out of
cogl-winsys-egl. It is completely untested apart from that it
compiles.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The GLX and EGL winsys backends had a check for when onscreen==NULL
in which case they would instead try to bind the dummy surface. This
wouldn't work however because it would have already crashed by that
point when it tried to get the Cogl context out of the onscreen. The
function needs a bit of refactoring before it could support this but
presumably nothing is relying on this anyway because it wouldn't work
so for now we can just remove it.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
CoglXlibDisplay just contained one member called dummy_xwin. This was
not shared outside of the respective winsys's so I don't think it
really makes sense to have a separate shared struct for it. It seems
more like an implementation detail that is specific to the winsys
because for example it may be that the EGL winsys could use the
surfaceless extension and not bother with a dummy window. This will
also make it easier to factor out the Xlib-specific data in
CoglDisplayEGL to the platform data.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Previously the Xlib renderer data was meant to be the first member of
whatever the winsys data is. This doesn't work well for the EGL winsys
because it only needs the Xlib data if the X11 platform is used. The
Xlib renderer data is now instead created on demand and connected to
the object using cogl_object_set_user_data. There is a new function to
get access to it.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Instead of having #ifdefs to hook into the normal EGL winsys, the KMS
winsys now overrides any winsys functions that it wants. Where the
winsys wants to hook into a point within a function provided by the
EGL winsys there is a EGL-platform vtable which gets set on the EGL
renderer data during renderer_connect. The KMS-specific data on all of
the structures is now allocated separately by the KMS winsys and is
pointed to by a new 'platform' pointer in the EGL data.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The #ifdefs in cogl-winsys-egl have been changed so that they
additionally check renderer->winsys_vtable->id for the corresponding
winsys ID so that multiple EGL platforms can be enabled.
The is a stop-gap solution until we can move all of the EGL platforms
into their own winsys files with overrides of the EGL vtable. However
with this approach we can move one platform at a time which will make
it easier.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Instead of just having an "EGL" renderer, there is now a separate
winsys for each platform. Currently they just directly copy the vtable
for the EGL platform so it is still only possible to have one EGL
platform compiled into Cogl. However the intention is that the
winsys-specific code for each platform will be moved into override
functions in the corresponding platform winsys.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Requests for the shell to manipulate it's state for the surface are now
abstracted through a wl_shell_surface object rather through wl_shell as
before.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
There were two problems stopping the KMS winsys from working with a
GLES2 driver:
• When creating the EGL context, it was missing the attribute to
select the client version so it would end up with the GLES1 API.
• When creating the depth buffer for the framebuffer it was using
GL_DEPTH_COMPONENT but only GL_DEPTH_COMPONENT16 is supported on
GLES. cogl-framebuffer already unconditionally uses this so it
probably makes sense to do the same here.
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Since the wayland protocol doesn't currently provide a way to
retrospectively query the interfaces that get notified when a client
first connects then when using a foreign display with Cogl then we also
need api for telling cogl what compositor and shell objects to use. We
already had api for setting a foreign compositor so this patch just adds
api for setting a foreign shell.
This patch also adds documentation for all the wayland specific apis.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
For some reason the EGL spec says that the surface passed to
eglSwapBuffers must be bound as the current surface for the swap to
work. Mesa validates that this is the case and returns an error from
the swap buffers call if not.
https://bugzilla.gnome.org/show_bug.cgi?id=665604
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Since _cogl_winsys_kms_display_setup was basically just calling
setup_kms() it made sense to fold the code of setup_kms() back into the
_cogl_winsys_kms_display_setup() function.
Reviewed-by: Rob Bradford <rob@linux.intel.com>
So that the various internal Cogl*EGL typedefs can be available to
cogl-winsys-kms.c this moves them into cogl-winsys-egl-private.h
Reviewed-by: Rob Bradford <rob@linux.intel.com>
To start with this backend only supports creating a single CoglOnscreen
framebuffer and will automatically set is up to display fullscreen on
the first suitable crtc it can find.
To compile this backend - get some dribbly black candles, sacrifice a
goat and configure with: --enable-kms-egl-platform
Note: There is currently a problem with using GLES2 with this winsys
so you need to run with EGL_DRIVER=gl
Note: If you have problems with mesa crashing in XCB during
eglInitialize then you may need to explicitly run with EGL_PLATFORM=gbm
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This change is one logical update to update the Wayland support. This
comprises of the following parts:
* Binding to both the shell and compositor global objects - necessary since
the API for setting top level status moved to the wl_shell interface
* The Wayland visual API went away and instead you setup the EGL surface
appropriately
* The message handling was refined to reflect the current behaviour - now
obsolete comments were removed and new comments updated
Reviewed-by: Robert Bragg <robert@linux.intel.com>
Xlib headers define many trivially named objects which can later cause
name collision problems when only cogl.h header is included in a program
or library. Xlib headers are now only included through including the
standalone header cogl-xlib.h.
https://bugzilla.gnome.org/show_bug.cgi?id=661174
Reviewed-by: Robert Bragg <robert@linux.intel.com>
It's useful to be able to query back the number of
point_samples_per_pixel that may have previously be chosen using
cogl_framebuffer_set_samples_per_pixel().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Since we've had several developers from admirable projects say they
would like to use Cogl but would really prefer not to pull in
gobject,gmodule and glib as extra dependencies we are investigating if
we can get to the point where glib is only an optional dependency.
Actually we feel like we only make minimal use of glib anyway, so it may
well be quite straightforward to achieve this.
This adds a --disable-glib configure option that can be used to disable
features that depend on glib.
Actually --disable-glib doesn't strictly disable glib at this point
because it's more helpful if cogl continues to build as we make
incremental progress towards this.
The first use of glib that this patch tackles is the use of
g_return_val_if_fail and g_return_if_fail which have been replaced with
equivalent _COGL_RETURN_VAL_IF_FAIL and _COGL_RETURN_IF_FAIL macros.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This factors out the CoglOnscreen code from cogl-framebuffer.c so we now
have cogl-onscreen.c, cogl-onscreen.h and cogl-onscreen-private.h.
Notably some of the functions pulled out are currently namespaced as
cogl_framebuffer but we know we are planning on renaming them to be in
the cogl_onscreen namespace; such as cogl_framebuffer_swap_buffers().
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Currently features are represented as bits in a 32bit mask so we
obviously can't have more than 32 features with that approach. The new
approach is to use the COGL_FLAGS_ macros which lets us handle bitmasks
without a size limit and we change the public api to accept individual
feature enums instead of a mask. This way there is no limit on the
number of features we can add to Cogl.
Instead of using cogl_features_available() there is a new
cogl_has_feature() function and for checking multiple features there is
cogl_has_features() which takes a zero terminated vararg list of
features.
In addition to being able to check for individual features this also
adds a way to query all the features currently available via
cogl_foreach_feature() which will call a callback for each feature.
Since the new functions take an explicit context pointer there is also
no longer any ambiguity over when users can first start to query
features.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
This adds support for multisample based rendering of onscreen windows
whereby multiple point samples per pixel can be requested and if the
hardware supports that it results in reduced aliasing (especially
considering the jagged edges of polygons)
Reviewed-by: Neil Roberts <neil@linux.intel.com>
When creating new onscreen framebuffers we need to take the
configuration in cogl terms and translate that into a configuration
applicable to any given winsys, e.g. an EGLConfig or a GLXFBConfig
or a PIXELFORMATDESCRIPTOR.
Also when we first create a context we typically have to do a very
similar thing because most OpenGL winsys APIs also associate a
framebuffer config with the context and all future configs need to be
compatible with that.
This patch introduces an internal CoglFramebufferConfig to wrap up some
of the configuration parameters that are common to CoglOnscreenTemplate
and to CoglFramebuffer so we aim to re-use code when dealing with the
above two problems.
This patch also aims to rework the winsys code so it can be more
naturally extended as we start adding more configureability to how
onscreen framebuffers are created.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Previously the EGL backend was directly prodding the width/height
members of the framebuffer structure when a configure notify event is
received. However this doesn't set the dirty flag for the viewport so
Cogl will continue using the wrong viewport y offset. The GLX backend
is already using an abstraction for updating the size which does set
the flag. This patch just makes the EGL backend also use that
abstraction.
As part of the on going, incremental effort to purge the non type safe
CoglHandle type from the Cogl API this patch tackles most of the
CoglHandle uses relating to textures.
We'd postponed making this change for quite a while because we wanted to
have a clearer understanding of how we wanted to evolve the texture APIs
towards Cogl 2.0 before exposing type safety here which would be
difficult to change later since it would imply breaking APIs.
The basic idea that we are steering towards now is that CoglTexture
can be considered to be the most primitive interface we have for any
object representing a texture. The texture interface would provide
roughly these methods:
cogl_texture_get_width
cogl_texture_get_height
cogl_texture_can_repeat
cogl_texture_can_mipmap
cogl_texture_generate_mipmap;
cogl_texture_get_format
cogl_texture_set_region
cogl_texture_get_region
Besides the texture interface we will then start to expose types
corresponding to specific texture types: CoglTexture2D,
CoglTexture3D, CoglTexture2DSliced, CoglSubTexture, CoglAtlasTexture and
CoglTexturePixmapX11.
We will then also expose an interface for the high-level texture types
we have (such as CoglTexture2DSlice, CoglSubTexture and
CoglAtlasTexture) called CoglMetaTexture. CoglMetaTexture is an
additional interface that lets you iterate a virtual region of a meta
texture and get mappings of primitive textures to sub-regions of that
virtual region. Internally we already have this kind of abstraction for
dealing with sliced texture, sub-textures and atlas textures in a
consistent way, so this will just make that abstraction public. The aim
here is to clarify that there is a difference between primitive textures
(CoglTexture2D/3D) and some of the other high-level textures, and also
enable developers to implement primitives that can support meta textures
since they can only be used with the cogl_rectangle API currently.
The thing that's not so clean-cut with this are the texture constructors
we have currently; such as cogl_texture_new_from_file which no longer
make sense when CoglTexture is considered to be an interface. These
will basically just become convenient factory functions and it's just a
bit unusual that they are within the cogl_texture namespace. It's worth
noting here that all the texture type APIs will also have their own type
specific constructors so these functions will only be used for the
convenience of being able to create a texture without really wanting to
know the details of what type of texture you need. Longer term for 2.0
we may come up with replacement names for these factory functions or the
other thing we are considering is designing some asynchronous factory
functions instead since it's so often detrimental to application
performance to be blocked waiting for a texture to be uploaded to the
GPU.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
If the user doesn't explicitly pass an onscreen template then instead of
leaving display->onscreen_template as NULL we now instantiate a template
ourselves. This simplifies winsys code that might want to refer to the
template since it needn't first check for a NULL pointer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Cogl aims to consistently put the origin of 2D objects at the top-left
instead of the bottom left as OpenGL does, but there was an oversight
and the experimental cogl_framebuffer_swap_region API was accepting
coordinates relative to the bottom left. Cogl will now flip the user's
given rectangles to be relative to the bottom of the framebufffer before
sending them to APIs like glXCopySubBuffer and glBlitFramebuffer.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
If the display has been setup up, we should destroy the underlying
objects that the winsys has created. This can be done by calling the
winsys->destroy_display() function in _free.
Then, in that function, and for the NULL and GDL EGL platform we can
destroy the surface we have created in the setup_display() function
(through create_context()).
This allows to have clutter create a "dummy" display in
cogl_renderer_check_onscreen_template(), then free it, then recreate the
context and the surface that will be the final ones.
https://bugzilla.gnome.org/show_bug.cgi?id=655355
If we are being called without any GDL specific call (either the plane
we want to render to or the swap chain length) we can provide sane
defaults to still be able to create a context and a surface.
https://bugzilla.gnome.org/show_bug.cgi?id=655355
The egl winsys has a few code paths depending on the platform we are
compiling for. The GDL platform needs those defined as well.
A few tweaks were needed here and there to make it compile again.
https://bugzilla.gnome.org/show_bug.cgi?id=655355
When passing the EGL_NATIVE_PIXMAP_KHR target to eglCreateImage the
EGL_KHR_image_pixmap extension explicitly states that EGL_NO_CONTEXT
must also be passed so we are now careful to do this.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
Previously, _cogl_get_proc_address had a fallback to resolve the
symbol using g_module_open(NULL) to get the symbol from anywhere in
the address space. The EGL backend ends up using this on some drivers
because eglGetProcAddress isn't meant to return a pointer for core
functions. This causes problems if something in the process is linking
against a different GL library, for example Cairo may be linking
against libGL itself. In this case it may end up resolving symbols
from the GL library even if GLES is being used.
This patch removes the fallback. The EGL version now has its own
fallback instead which passes the existing libgl_module from the
renderer to g_module_symbol so that it should only get symbols from
that library or its dependency chain. The GLX and WGL winsys only call
glXGetProcAddress and wglGetProcAddress. The stub winsys does however
continue using the global symbol lookup.
The internal _cogl_get_proc_address function has been renamed to
_cogl_renderer_get_proc_address because it needs a connected renderer
to work so it could be considered to be a renderer method. The pointer
to the renderer is passed down to the winsys backends so that it can
use the data attached to the renderer to get the module pointers.
https://bugzilla.gnome.org/show_bug.cgi?id=655412
Reviewed-by: Robert Bragg <robert@linux.intel.com>
This makes sure the egl winsys frees the private egl_tex_pixmap state if
in _cogl_winsys_texture_pixmap_x11_create if there is a failure to
create an EGLImage.
Reviewed-by: Neil Roberts <neil@linux.intel.com>
The _cogl_context_check_gl_version function is meant to be called once
Cogl has a GL context so that it can check whether the context found
is supported by Cogl. However, only the stub winsys was calling this
and it was doing it before Cogl had a chance to retrieve the function
pointer for glString so it would just crash. This patch combines the
two functions into one so that _cogl_context_update_features returns a
gboolean and a GError. Then it can just check the context itself.
https://bugzilla.gnome.org/show_bug.cgi?id=654440
Reviewed-by: Robert Bragg <robert@linux.intel.com>
The GL or GLES library is now dynamically loaded by the CoglRenderer
so that it can choose between GL, GLES1 and GLES2 at runtime. The
library is loaded by the renderer because it needs to be done before
calling eglInitialize. There is a new environment variable called
COGL_DRIVER to choose between gl, gles1 or gles2.
The #ifdefs for HAVE_COGL_GL, HAVE_COGL_GLES and HAVE_COGL_GLES2 have
been changed so that they don't assume the ifdefs are mutually
exclusive. They haven't been removed entirely so that it's possible to
compile the GLES backends without the the enums from the GL headers.
When using GLX the winsys additionally dynamically loads libGL because
that also contains the GLX API. It can't be linked in directly because
that would probably conflict with the GLES API if the EGL is
selected. When compiling with EGL support the library links directly
to libEGL because it doesn't contain any GL API so it shouldn't have
any conflicts.
When building for WGL or OSX Cogl still directly links against the GL
API so there is a #define in config.h so that Cogl won't try to dlopen
the library.
Cogl-pango previously had a #ifdef to detect when the GL backend is
used so that it can sneakily pass GL_QUADS to
cogl_vertex_buffer_draw. This is now changed so that it queries the
CoglContext for the backend. However to get this to work Cogl now
needs to export the _cogl_context_get_default symbol and cogl-pango
needs some extra -I flags to so that it can include
cogl-context-private.h
Instead of storing all of the feature function pointers in the driver
specific data of the CoglContext they are now all stored directly in
CoglContext. There is a single header containing the description of
the functions which gets included by cogl-context.h. There is a single
function in cogl-feature-private.c to check for all of these
functions.
The name of the function pointer variables have been changed from
ctx->drv.pf_glWhatever to just ctx->glWhatever.
The feature flags that get set when an extension is available are now
separated from the table of extensions. This is necessary because
different extensions can mean different things on GLES and GL. For
example, having access to glMapBuffer implies read and write support
on GL but only write support on GLES. The flags are instead set in the
driver specific init function by checking whether the function
pointers were successfully resolved.
_cogl_feature_check has been changed to assume the feature is
supported if any of the listed extensions are available instead of
requiring all of them. This makes it more convenient to specify
alternate names for the extension. Nothing else had previously listed
more than one name for an extension so this shouldn't cause any
problems.
instead of looking at the ctx->private_feature_flags to determine if
Cogl supports creating an EGLImage from a X Pixmap we now check the
renderer private features instead since these are what get setup in
check_egl_extensions. The conflicting flags defined in cogl-internal.h
should be removed since they are un-used.
Signed-off-by: Neil Roberts <neil@linux.intel.com>
check_egl_extensions was mistakenly always ORing in the priv flags of
the first feature_data entry instead of referencing the i variable to
index into the array of feature data after determining that an extension
is available.
Signed-off-by: Neil Roberts <neil@linux.intel.com>