We don't make use of the refresh rate in any useful way in the X11, and
in this case we just ended up with warnings since the refresh rate was
NaN. Fix this by making it 0.0 to mean "no refresh rate". This also is
what 'xrandr' itself reports.
Fixes warnings when launching 'mutter --x11' in Xvfb.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2434>
Even though it's great that XI2 has an event to notify about device
changes, this is something we can let the MetaBackend code handle
consistently for all backends, since looking for the source device
works everywhere.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/285>
What the keymap eventually is after, are things handled by the actual
backend (MetaBackendX11), so let it keep a pointer to that. This
eliminates some usages of globals.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2014>
Let the meta_cursor_sprite_realize() function return a boolean value
telling whether there was an actual change in the sprite cursor. E.g.
the surface/icon for it changed in between.
This is used in the native backend to avoid converting/uploading again
the cursor surface.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1915>
Certains keys (such as ~ and |) are in the keyboard map behind the
second shift level. This means in order for them to be input, the
shift key needs to be held down by the user.
The GNOME Shell on-screen keyboard presents these keys separately on
a page of keys that has no shift key. Instead, it relies on mutter
to set a shift latch before the key event is emitted. A shift latch
is a virtual press of the shift key that automatically gets released
after the next key press (in our case the ~ or | key).
The problem is using a shift latch doesn't work very well in the face
of key repeat. The latch is automatically released after the first
press, and subsequent repeats of that press no longer have shift
latched to them.
This commit fixes the problem by using a shift lock instead of a shift
latch. A shift lock is never implicitly released, so it remains
in place for the duration of key repeat.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2045>
It was a feature relevant for when Clutter was an application toolkit
that wanted the application window to communicate a minimum size to the
windowing system.
Now, clutter is part of the windowing system component, so this feature
doesn't make any sense, so remove it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
This changes the setup phase of clutter to not be result of calling an
init function that sets up a few global singletons, via global singleton
setup vfuncs.
The way it worked was that mutter first did some initial setup
(connecting to the X11 server), then set a "custom backend" setup vfunc
global, before calling clutter_init().
During the clutter_init() call, the context and backend was setup by
calling the global singleton getters, which implicitly created the
backend and context on-demand.
This has now changed to mutter explicitly creating a `ClutterContext`
(which is actually a `ClutterMainContext`, but with the name shortened to
be consistent with `CoglContext` and `MetaContext`), calling it with a
backend constructor vfunc and user data pointer.
This function now explicitly creates the backend, without having to go
via the previously set global vfunc.
This changes the behavior of some "get_default()" like functions, which
will now fail if called after mutter has shut down, as when it does so,
it now destroys the backends and contexts, not only its own, but the
clutter ones too.
The "ownership" of the clutter backend is also moved to
`ClutterContext`, and MetaBackend is changed to fetch it via the clutter
context.
This also removed the unused option parsing that existed in clutter.
In some places, NULL checks for fetching the clutter context, or
backend, and fetching the cogl context from the clutter backend, had to
be added.
The reason for this is that some code that handles EGL contexts attempts
to restore the cogl EGL context tracking so that the right EGL context
is used by cogl the next time. This makes no sense to do before Cogl and
Clutter are even initialized, which was the case. It wasn't noticed
because the relevant singletons were initialized on demand via their
"getters".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
Rename all instances of `MetaClutterBackendX11` so they are called
`clutter_backend_x11`. This is because `MetaBackendX11` will start to be
used for some things, and having both be named `backend_x11` would be
confusing.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2002>
meta_keymap_x11_replace_keycode currently reports to the X server
that the key types data is changed when adding a key to the keymap.
It's not changed. The number of key types is the same, and none of
them are modified.
This has two bad side effects:
1) It sends all of the key types data into the request
2) It hits a bug in the X server leading to the request getting
rejected entirely. See:
https://gitlab.freedesktop.org/xorg/xserver/-/merge_requests/761
Furthmore, the changed structure used to report to the X server
that the key types data is changed doesn't actually need to modified
at all in the function. It's already prepped by libX11 with the
correct state for the changes mutter is doing when
XkbChangeTypesOfKey is called.
This commit addresses the above two problems by just removing the
lines causing the issues.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2039>
Keys in the reserved keycode list are always added for the first group.
Before the previous commit such keycodes were not found unless that was
the current group. But now that we can also find matching keycodes that
are not directly in the current group, this is not necessary anymore.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1955>