This makes sure that we see them for Wayland clients as well, and don't
time out and crash when we're accessing an invalid window / surface.
Spotted-by: Rui Matos <tiagomatos@gmail.com>
If a sequence moves past a certain distance without being used by a
gesture, reject it so clients may see and react to it ASAP. This makes
gestures to be began by initially quasi-static touchpoints, in addition to
quasi-simultaneous.
When a passive touch grab is rejected over the frame, management is punted to
the frame itself, and pointer events emulated, but the attempt to transfer the
grab from the GDK connection to the Clutter one fails with AlreadyGrabbed, and
will fail until the Clutter connection receives the XI_TouchEnd resulting from
XIRejectTouch, gotten after the XI_ButtonPress on the GDK connection.
In order to bypass this shortcoming, store the current grab operation on the
frame as long as the button is pressed, so it is retried once on the next
motion event happening during frame dragging, that will have a recent enough
timestamp to succeed. If no grabbing succeeded, the current grab operation
data will be reset on GDK_BUTTON_RELEASE.
When a touch sequence is passively grabbed and later rejected, events
will be replayed on the next client in propagation order, although those
events (either transformed to pointer events or not) will contain the
original timestamps, this will make grabs fail with InvalidTime if triggered
from the replayed ButtonPress/TouchBegin handler.
In order to work around this, store the most recent event time (presumably
gotten from the XI_TouchEnd caused by the passive grab being rejected), and
use that time on the events being replayed afterwards and grabs, so we don't
possibly fail with InvalidTime if those events result in a compositor grab.
Touch events will be caught first by the compositor this way,
whenever the MetaGestureTracker notifies of the accepted/rejected
state of a sequence, XIAllowTouchEvents() will be called on it
accordingly, so it is handled exclusively by the compositor or
punted to clients.
This object tracks both touch sequences happening on the stage and
gestures attached to the stage actor. When a gesture emits
::gesture-begin, All triggering sequences and future ones will be
marked as "accepted" by the compositor, and events will be listened
for meanwhile there are active gestures.
If a sequence goes unclaimed for a short time, it will be
automatically "denied", and punted to the client or shell element
below.
Touch events are largely ignored on GdkEvent emulation, so only
make frames receive pointer events, only the pointer emulating
touch will be reported, and any other further touches will be
ignored, which is about the behavior we want. This makes window
dragging possible again on touch.
Since Wayland configures are more of a hint to the client than anything,
we don't want to save the unconstrained rect when we're just hinting to
the client that it should resize, since it could ignore us. This would
get us stuck in a loop, since meta_window_move_resize_now would use the
unconstrained_rect to resize, and we don't remove the resize from the
queue if we have an outstanding request like that.
This fixes a bunch of traffic / CPU usage when trying to resize
weston-terminal.
When frame extents change, we might not update the frame rect, but the
buffer rect still needs to be updated. Split out the check for this to
be independent of the check for the frame rect.
This fixes issues that could happen when the window was maximized while
it was in the top-left corner.
Designers got used to RGBA support in GTK+, so the colors we pick
up from there might well have an alpha channel; update our gradient
rendering to support this - eventually we should probably port that
code to cairo ...
For XWayland, we need to make sure to send out mouse events on O-R
windows, otherwise they won't get motion or button events.
The comment mentions being eaten for the compositor, but we already
bypass the compositor for all events that have a window. The return
value just controls whether we pass them to Wayland.
The output_id is more of an opaque identifier for the monitor, based on
its underlying ID from the windowing system. Since we also use the term
"output_id" for the output's index, rename our use of the opaque cookie
"output_id" to "winsys_id".
When we changed the setting of the buffer rect to be inside the moving
code to make sure it was updated in places we were moving directly
without any round-trip needed, I removed a code to set the buffer rect
without remembering that's where the size of it was updated.
Add back the code to update the buffer rect.
This fixes Wayland windows not appearing.
GTK+ likes to set these, well, _NET_WM_OPAQUE_REGION in particular, to
the same value. Save some expensive and processing when this happens. We
should probably make GTK+ smarter.
The GDK and hence GNOME standard is that keys that begin with XF86 according to
libxkbcommon not prefixed with XF86, though gdk_keyval_from_name() strips XF86
if provided. If libxkbcommon doesn't recognize the accelerator name without
XF86, try again adding XF86 to the start.
This restores compatibility with gnome-settings-daemon, schemas, and existing
user configuration.
https://bugzilla.gnome.org/show_bug.cgi?id=727993