This code was supposed to refresh our default icons when the theme
changed, but it actually was a no-op, since the default icons are cached
in a static variable in MetaUI.
I'm not sure the fact that the fallback icons don't update when the
theme changes is an important enough use case to keep working, but I'm
keeping the skeleton function there in case somebody wants to actually
fix it properly.
When opening the window menu without an associated control - e.g.
by right-clicking the titlebar or by keyboard - using coordinates
for the menu position is appropriate. However when the menu is
associated with a window button, the expected behavior in the
shell can be implemented much easier with the full button geometry:
the menu will point to the center of the button's bottom edge
rather than align to the left/right side of the titlebar as it
does now, and the clickable area where a release event does not
dismiss the menu will match the actual clickable area in mutter.
So add an additional show_window_menu_for_rect() function and
use it when opening the menu from a button.
https://bugzilla.gnome.org/show_bug.cgi?id=731058
For Wayland, we want to have everything possible in terms of the frame
rect, or "window geometry" as the Wayland protocol calls it, in order
to properly eliminate some flashing when changing states to fullscreen
or similar.
For this, we need to heavily refactor how the code is structured, and
make it so that meta_window_move_resize_internal is specified in terms
of the frame rect coordinate space, and transforming all entry points
to meta_window_move_resize_internal.
This is a big commit that's hard to tear apart. I tried to split it
as best I can, but there's still just a large amount of changes that
need to happen at once.
Expect some regressions from this. Sorry for any temporary regression
that this might cause.
We have two different coordinate spaces here. One is the rectangle
returned by meta_window_get_frame_rect, which is called the "frame
rect" or "the window geometry", which includes visible frame borders
but not invisible frame borders. The other is "frame->rect" which
corresponds to the frame's server geometry. That is, it includes
both visible and invisible frame borders.
These two were of course the same until we introduced invisible
frame borders, and an executive decision was made to make
meta_window_get_frame_rect return the rectangle bounding the
visible portions of the frame.
As time went on, the "frame rect" turned out to be more useful when
making decisions upon, since the user often doesn't think about the
invisible window geometry as part of the window.
We already calculate what amounts to the "frame rect" in the theme
code, so just change META_CORE_GET_FRAME_RECT to consume that
directly.
Since we're going to be calling meta_window_get_frame_rect in here
soon, I'd rather it be one method call, rather than two. We can't
put it at the toplevel, since that might cause infinite recursion
(e.g. meta_core_get calls meta_window_get_frame_rect calls
meta_ui_get_frame_borders calls meta_core_get, ...)
The last commit added support for the "appmenu" button in decorations,
but didn't actually implement it. Add a new MetaWindowMenuType parameter
to the show_window_menu () functions and use it to ask the compositor
to display the app menu when the new button is activated.
https://bugzilla.gnome.org/show_bug.cgi?id=730752
It looks weird to have Alt+Space pop up under the cursor instead
of the top-left corner of the window, and the Wayland request will
pass through the coordinates as well.
Add it to the compositor interface, and extend the
_GTK_SHOW_WINDOW_MENU ClientMessage to support it as well.
Grab operations are now always taken on the backend connection, and
this breaks GTK+'s event handling.
Instead of taking a grab op, just do the handling ourselves. The
GTK+ connection will get an implicit grab, which means pointer /
keyboard events won't be sent to the rest of mutter, which is good.
We previously separated out MetaDisplay and MetaScreen. mutter
would only manage one screen, but we still kept a list of screens
for simplicity.
With Wayland support, we no longer care about the ability to
manage more than one screen at a time. Remove this by killing
the list of screens, in favor of having just one MetaScreen
in MetaDisplay.
We also kill off active_screen at the same time, since it's
not necessary anymore.
A future cleanup should merge MetaDisplay and MetaScreen. To avoid
breaking API, we should probably keep MetaScreen around as a dummy
type.
Cache the computed border size so we can fetch the border size at
any time without worrying that we'll be spending too much time in
the theme code (in some cases we might allocate a PangoFontDescription
or do other significant work.)
The main effort here is clearing the cache when various bits of window
state change that could potentially affect the computed borders.
https://bugzilla.gnome.org/show_bug.cgi?id=707194
Warnings that are going to the journal should be not translated:
they're not user visible, and translating them would just make
bug reporting harder (as now the developers need to understand
what the warning is saying)
https://bugzilla.gnome.org/show_bug.cgi?id=707897
Switching meta/util.h to gi18n.h was wrong, mutter is a library
and needs gi18n-lib.h, but that cannot be included from a public
header (since it depends on config.h or command line options),
so split util.h into a public and a private part.
https://bugzilla.gnome.org/show_bug.cgi?id=707897
This breaks down the assumptions in stack-tracker.c and stack.c that
Mutter is only stacking X windows.
The stack tracker now tracks windows using a MetaStackWindow structure
which is a union with a type member so that X windows can be
distinguished from Wayland windows.
Some notable changes are:
Queued stack tracker operations that affect Wayland windows will not be
associated with an X serial number.
If an operation only affects a Wayland window and there are no queued
stack tracker operations ("unvalidated predictions") then the operation
is applied immediately since there is no server involved with changing
the stacking for Wayland windows.
The stack tracker can no longer respond to X events by turning them into
stack operations and discarding the predicted operations made prior to
that event because operations based on X events don't know anything
about the stacking of Wayland windows.
Instead of discarding old predictions the new approach is to trust the
predictions but whenever we receive an event from the server that
affects stacking we cross-reference with the predicted stack and check
for consistency. So e.g. if we have an event that says ADD window A then
we apply the predictions (up to the serial for that event) and verify
the predicted state includes a window A. Similarly if an event says
RAISE_ABOVE(B, C) we can apply the predictions (up to the serial for
that event) and verify that window B is above C.
If we ever receive spurious stacking events (with a serial older than we
would expect) or find an inconsistency (some things aren't possible to
predict from the compositor) then we hit a re-synchronization code-path
that will query the X server for the full stacking order and then use
that stack to walk through our combined stack and force the X windows to
match the just queried stack but avoiding disrupting the relative
stacking of Wayland windows. This will be relatively expensive but
shouldn't be hit for compositor initiated restacking operations where
our predictions should be accurate.
The code in core/stack.c that deals with synchronizing the window stack
with the X server had to be updated quite heavily. In general the patch
avoids changing the fundamental approach being used but most of the code
did need some amount of re-factoring to consider what re-stacking
operations actually involve X or not and when we need to restack X
windows we sometimes need to search for a suitable X sibling to restack
relative too since the closest siblings may be Wayland windows.
Move preferences to GSettings, using mainly shared schemas from
gsettings-desktop-schemas.
Unlike GConf, GSettings support is not optional, as Gio is already
a hard dependency of GTK+.
https://bugzilla.gnome.org/show_bug.cgi?id=635378
The code assumed that the focus window was always the one at the
top of the window stack, which is not true if an unfocused window
has the above hint set.
Rather than fixing this assumption, rename the function to
lower_beneath_grab_window() and use the display's grab window - the
function is only used for displaying the tile previews, which means
that we want the grab window anyway.
https://bugzilla.gnome.org/show_bug.cgi?id=650661
If mutter is going to be a "real" library, then it should install its
includes so that users can do
#include <meta/display.h>
rather than
#include <display.h>
So rename the includedir accordingly, move src/include to src/meta,
and fix up all internal references.
There were a handful of header files in src/include that were not
installed; this appears to have been part of a plan to keep core/,
ui/, and compositor/ from looking at each others' private includes,
but that wasn't really working anyway. So move all non-installed
headers back into core/ or ui/.
https://bugzilla.gnome.org/show_bug.cgi?id=643959
Add a new frame type META_FRAME_TYPE_ATTACHED which is used for
attached modal dialogs.
The theme format version is bumped to 3.2, and attached windows
can have borders defined in a metacity-theme-3.xml as:
<window version=">= 3.2" type="attached" style_set="[name]"/>
If no style is defined for "attached", drawing will fall back
to the "border" type.
https://bugzilla.gnome.org/show_bug.cgi?id=592382
While the Meego developers agreed to switching mutter to GTK+-3.0
unconditionally a while ago, Canonical used a GTK+-2.0 build for their
Unity project. As Canonical now announced a switch to compiz as their
window manager, there is no longer a reason to maintain GTK+-2.0
compatibility.
https://bugzilla.gnome.org/show_bug.cgi?id=633133