Next commits will reintroduce a certain behavior of stage
capturing that can only happen with DMA-BUF buffers. To
control this, add a new flag tp MetaScreenCastRecordFlags
for this behavior.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/2186>
The area source, window source, and monitor source, currently set up the
stream size up front, given the area, maximum allowed window size or
monitor resolution, but for to be introduced sources, the size will be
negotiated using PipeWire, instead of specified via the D-Bus API. This
commit changes the internal source API to allow for this. There are
currently no users of this new behaviour.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
When recording the screen and real time encoding it using a gstreamer
pipeline, that pipeline can stall when the encoder is too slow. Log a
debug message using the new SCREEN_CAST debug topic in that case so we
know when framedrops are happening.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1709>
The other end of the PipeWire stream can set the buffer data type to a
bitmask of supported buffer types. We should respect this, and not
attempt to allocate a DMA buffer if it isn't asked for.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1697>
Instead of getters, pass the width, height and stride around when
relevant. This also removes the redudant "stream_size" and
"stream_height" variables from the src struct, as they are already part
of the video format.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1697>
A first step towards abandoning the CoglObject type system: convert
CoglFramebuffer, CoglOffscreen and CoglOnscreen into GObjects.
CoglFramebuffer is turned into an abstract GObject, while the two others
are currently final. The "winsys" and "platform" are still sprinkled
'void *' in the the non-abstract type instances however.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1496
Currently, the maximum size for a mouse pointer bitmap for screen
casting is 64x64 pixels.
However, this limit is hit way too often as it is way too low and
results in crashes in either gnome-remote-desktop or mutter.
For example: The a11y settings in g-c-c allow setting a larger pointer
bitmap in order to increase the visibility of the mouse pointer.
With the current limit of 64x64 pixels it is not possible to use the
larger variants of the default mouse pointer bitmap, without
experiencing any crash.
Another way to hit the limit is when display scaling is used or some
game uses a custom (large) mouse pointer bitmap.
The VNC backend in gnome-remote-desktop does not seem to have a maximum
pointer bitmap size.
The RDP backend on the other hand has a maximum pointer bitmap size at
384x384.
Use this size (384x384) as maximum size instead of the current 64x64
size for mouse pointer bitmaps to avoid crashes in mutter and
gnome-remote-desktop and to ensure that bigger mouse pointer bitmaps
can be used.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1414
Always force-track the cursor position (so that the X11 backend can keep
it up to date), and if the cursor wasn't part of the sampled
framebuffer when reading pixels into CPU memory, draw it in an extra
pass using cairo after the fact. The cairo based cursor painting only
happens on the X11 backend, as we otherwise inhibit the hw cursor.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1391
During animation or other things that cause multiple frames in a row
being painted, we might skip recording frames if the max framerate is
reached.
Doing so means we might end up skipping the last frame in a series,
ending with the last frame we sent was not the last one, making things
appear to get stuck sometimes.
Handle this by creating a timeout if we ever throttle, and at the time
the timeout callback is triggered, make sure we eventually send an up to
date frame.
This is handle differently depending on the source type. A monitor
source type reports 1x1 pixel damage on each view its monitor overlaps,
while a window source type simply records a frame from the surface
directly, except without recording a timestamp, so that timestamps
always refer to when damage actually happened.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
Now that we don't use the record function to early out depending on
implicit state (don't record pixels if only cursor moved for example),
let it simply report an error when it fails, as we should no longer ever
return without pixels if nothing failed.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
Both do more or less the same but with different methods - one puts
pixels into a buffer using the CPU, the other puts pixels into a buffer
using the GPU.
However, they are behaving slightly different, which they shouldn't.
Lets first address the misleading disconnect in naming, and later we'll
make them behave more similarly.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1361
The stream will clean up the buffers, so let it do that before we
destroy them under its feet. Note that it'll only do this after the
following PipeWire commit:
commit fbaa4ddedd84afdffca16f090dcc4b0db8ccfc29
Author: Wim Taymans <wtaymans@redhat.com>
Date: Mon Jun 1 15:36:09 2020 +0200
stream: allow NULL param and 0 buffers in disconnect
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1283
We're iterating inside the PipeWire loop when detecting PipeWire errors,
and shouldn't destroy the PipeWire objects mid-iteration. Avoid this by
first disabling the stream src (effectively stopping the recording),
then notifying about it being closed in an idle callback. The
notification eventually makes the rest of the screen cast code clean up
the objects, including the src and the associated PipeWire objects, but
will do so outside the PipeWire loop iteration.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1251https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1251
For every stream src, we created and attached a GSource. Upon stream
src destruction, we g_source_destroy():ed the GSource. What
g_source_destroy() does, hawever, is not really "destroy" it but only
detaches it from the main context removing the reference the context had
added for it via g_source_attach(). This caused the GSource to leak,
although in a detached state, as the reference taken on creation was
still held.
Fix this by also removing our own reference to it when finalizing.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1106
PipeWire will be unable to dequeue a buffer if all are already busy.
This can happen for valid reasons, e.g. the stream consumer not being
fast enough, so don't complain in the journal if it happens.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1115
Much like monitor streaming, implement window streaming by
making the window actor draw itself with a paint context
that used the passed framebuffer.
Now that all MetaScreenCastStreamSrc subclasses implement
blit_to_framebuffer, remove the conditional check from
meta_screen_cast_stream_src_blit_to_framebuffer().
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1086
Implement PipeWire's add_buffer and remove buffer, try and export
a DMA buffer first and, on failure, fallback to memfd.
When DMA buffers are successfully created and shared, blit the
framebuffer contents when drawing instead of downloading the pixels.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1086
Make the monitor implementation do things strictly related to its own
source type, leaving the Spa related logic and cursor read back in the
generic layer, later to be reused by the window source type
implementation.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/413
The 'cursor-mode', which currently is limited to RecordMonitor(), allows
the user to either do screen casts where the cursor is hidden, embedded
in the framebuffer, or sent as PipeWire stream metadata.
The latter allows the user to get cursor updates sent, including the
cursor sprite, without requiring a stage paint each frame. Currently
this is done by using the cursor sprite texture, and either reading
directly from, or drawing to an offscreen framebuffer which is read from
instead, in case the texture is scaled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/357
To be able to cast windows, which by definition can change in size
dynamically, we need a way to specify the video crop meta to adjust to
the window size whenever it changes.
Add VideoCrop support with a new optional hook `get_videocrop()` in the
`ScreenCastStreamSrcClass` which, if defined, can let the child specify
a rectangle for the video cropping area.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/306
The function is intentionally provided as macro to not require a
cast. Recently the macro was improved to check that the passed in
pointer matches the free function, so the cast to GDestroyNotify
is now even harmful.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/176
The framerate for screen cast sources was set to variable within 1 FPS
and the framerate of the monitor being screen casted. This meant that if
the sink didn't match the framerate (e.g. had a lower max framerate),
the formats would not match and a stream would not be established.
Allow letting the sink clamp the framerate range by setting it as
'unset', allowing it to be negotiated.
The PipeWire master branch saw some backports from the work branch,
including API changes making the 0.1 series more aligned with future
plans. Make mutter use the new API. This is needed to avoid dead locks
that existed in the older version.
Various code assumed PipeWire function calls would never fail. Some can
actually fail for real reasons, and some currently can only fail due to
OOM situations, but we should still not assume that will always be the
case.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/102
As of commit 5f5ef3de2cdc816dab82cb7eb5d7171bee0ad2c5 in pipewire the
stream creator can find out the node ID of the stream it created.
So instead of using a special purpose entry to the info property box to
let the application discover stream by monitoring added nodes searching
for the given special purpose entry, just pass the node directly.
https://bugzilla.gnome.org/show_bug.cgi?id=784199
When the PipeWire context or stream ends up in an error state, signal
that the source has closed. This then triggers the stream and finally
the session to be closed too.
https://bugzilla.gnome.org/show_bug.cgi?id=784199
This commit adds basic screen casting and remote desktoping
functionalty. This works by exposing two D-Bus API services:
org.gnome.Mutter.ScreenCast and org.gnome.Mutter.RemoteDesktop.
The remote desktop API is used to create remote desktop sessions. For
each session, a D-Bus object is created, and an application can manage
the session by sending messages to the session object. A remote desktop
session the user to emit input events using the D-Bus methods on the
session object. To get framebuffer content, the application should
create an associated screen cast session.
The screen cast API is used to create screen cast sessions. One can so
far either create stand-alone screen cast sessions, or a screen cast
session associated with a remote desktop session. A remote desktop
associated screen cast session is managed by the remote desktop session.
So far only remote desktop managed screen cast sessions are implemented.
Each screen cast session may have one or more streams. A screen cast
stream is a stream of buffers of some part of the compositor content.
So far API exists for creating streams of monitors and windows, but
only monitor streams are implemented.
When a screen cast session is started, the one PipeWire stream is
created for each screen cast stream created for the session. When this
has happened, a PipeWireStreamAdded signal is emitted on the stream
object, passing a unique identifier. The application may use this
identifier to find the associated stream being advertised by the
PipeWire daemon.
The remote desktop and screen cast functionality must be explicitly be
enabled at ./configure time by passing --enable-remote-desktop to
./configure. Doing this will build both screen cast and remote desktop
support.
To actually enable the screen casting and remote desktop, the user must
enable the experimental feature. See
org.gnome.mutter.experimental-features.
https://bugzilla.gnome.org/show_bug.cgi?id=784199