Some of the Clutter code was using GL types for the primitive types
such as GLint and GLubyte and then passing these to Cogl. This doesn't
make much sense because the Cogl functions directly take native C
types. This patch just replaces them with either a native C type or a
glib type.
Some of the cogl conformance tests are trying to directly call GL for
example to test creating a foreign texture. These tests have been
changed to manually define the GL enum values instead of relying on a
GL header to define them.
This is necessary because Cogl may soon stop including a GL header
from its public headers.
Reviewed-by: Emmanuele Bassi <ebassi@linux.intel.com>
Yes, it's not really the proper GL name for a linear-on-every-axis of a
texture plus linear-between-mipmap-levels minification filter, but it
has three redeeming qualities as a name:
- LINEAR_MIPMAP_LINEAR sucks, as it introduces GL concepts like
mipmaps in the API naming, while we're trying to avoid that;
- people using GL already know what 'trilinear' means in this context
without going all Khronos on their asses;
- we're using 2D textures anyway, so 'linear on two axes and linear
between mipmap levels' can be effectively approximated to
'trilinear'.
I mean, if even the OpenGL official wiki says:
Unfortunately, what most people think of as "trilinear" is not linear
filtering of a 3D texture, but what in OpenGL terms is GL_LINEAR mag
filter and GL_LINEAR_MIPMAP_LINEAR in the min filter in a 2D texture.
That is, it is bilinear filtering of each appropriate mipmap level,
and doing a third linear filter between the adjacent mipmap levels.
Hence the term "trilinear".
-- http://www.opengl.org/wiki/Texture
then the horse has already been flogged to death, and I don't intend to
be accused of necrophilia and sadism by flogging it some more.
Prior art: every single GL tutorial in the history of ever;
CoreAnimation's scaling filter enumerations.
If people want to start using 1D or 3D textures they they are probably
going to be using Cogl API directly, and that has the GL naming scheme
for minification and magnification filters anyway.
ClutterContent is an interface for creating delegate objects that handle
what an actor is going to paint.
Since they are a newly added type, they only hook into the new PaintNode
based API.
The position and size of the content is controlled in part by the
content's own preferred size, and by the ClutterContentGravity
enumeration.
In a separate branch, this test has become quite complicated and
involves multiple files and its own configure options. Instead of
cluttering up the clutter source tree it has now been moved to its own
repo at:
http://github.com/clutter-project/test-wayland-surface
Reviewed-by: Emmanuele Bassi <ebassi@linux.intel.com>
* Abstracts the buffer for text in ClutterText
* Allows implementation of undo/redo.
* Allows use of non-pageable memory for text
in the case of sensitive passwords.
* Implement a test with two ClutterText using the same
buffer.
https://bugzilla.gnome.org/show_bug.cgi?id=652653
The minimum preferred size of a Flow layout manager is the size of a
column or a row, as the whole point of the layout policy enforced by
the Flow layout manager is to reflow when needed.
This adds an extremely minimal wayland compositor to tests/interactive
to test the ClutterWaylandSurface actor. Currently this minimal
compositor doesn't support any input, it simply paints client surfaces
fixed at the top-left of the stage.
Reviewed-by: Emmanuele Bassi <ebassi@linux.intel.com>
The coordinate transformation code is exercised throughout the
conformance and interactive tests, so there's no need to have a specific
interactive test that doesn't do anything more complicated than calling
clutter_actor_transform_stage_point().
Even if the test has been successfully compiled against the X11 backend,
we need to ensure that it is actually running against it, otherwise bad
things will happen.
The Clutter backend split is opaque enough that should allow us to just
build all possible backends inside the same shared object, and select
the wanted backend at initialization time.
This requires some work in the build system, as well as the
initialization code, to remove duplicate functions that might cause
conflicts at build and link time. We also need to defer all the checks
of the internal state of the platform-specific API to run-time type
checks.
Instead of directly using the GLSL names for the builtins in the
shaders for test-shader and test-pick, this makes it use the Cogl
wrapper names instead. That way it will be portable to GLES2 as well.
Reviewed-by: Emmanuele Bassi <ebassi@linux.intel.com>
GLib deprecated g_thread_init(), and threading support is initialized
by GObject, so Clutter already runs with threading support enabled. We
can drop the clutter_threads_init() call requirement, and initialize the
Big Clutter Lock™ on clutter_init(). This reduces the things that have
to be done when dealing with threads with Clutter, and the things that
can possibly go wrong.
-tests/interactive/Makefile.am, build/win32/Makefile.am: copy the
generated test-unit-names.h to build/win32 so that it can be
distributed in "make dist" (maybe we could dist the generated header
in tests/interactive directly?)
-Update test-interactive Visual C++ projects to include build/win32 in
the list of folders to look for headers
The easing test is a nice example of what ClutterAnimation and
clutter_actor_animate() can do. The "tween ball to the pointer
event coordinates" is a bit of a staple in animation libraries
and their documentation.
The Animatable interface allows object classes to provide and animate
properties outside of the usual GObject property introspection API.
This change allows ClutterState to defer to the animatable objects the
property introspection and animation, just like ClutterAnimation does.