As with the compositor type enum, also have the X11 display policy enum,
as it's also effectively part of the context configuration. But as with
the compositor type, move it to a header file for enums only, and since
this is a private one, create a private variant meta-enums.h.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1861>
Scanout doesn't go through the usual path of compositing and doing
eglSwapBuffers, therefore it doesn't hit the timestamp query placed in
that path. Instead, get the timings by binding the scanout buffer to an
FBO and doing a timestamp query on the FBO.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1762>
In order to make it possible to e.g. unload an unused DRM device, we
need to make sure that we don't keep the file descriptor open if we
don't need it; otherwise we block anyone from unloading the
corresponding module.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
The DRM buffers aren't really tied to mode setting, so they shouldn't
need to have an associated mode setting device. Now that we have a
device file level object that can fill this role, port over
MetaDrmBuffer and friends away from MetaKmsDevice to MetaDeviceFile.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Keep a private MetaDeviceFile instance for the GPU's managed by the
renderer. This is a step towards decoupling rendering from mode setting,
as well as on-demand holding of device file descriptors.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Tags are meant to make it possible for a device file opener to tag a
file if it has affected the state the file descriptor is in; e.g. if it
has enabled a DRM capability.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
Handle open() failing due to being interrupted by trying again until it
either succeeds, or fails due to some other error. This was an error
handling path taken when opening sysfs files; do the same here to not
potentially regress once we open sysfs files with the device pool.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
It's only when we take/release from/to logind we need these two
integers, so only retrieve them when that's done. Making this change
makes it possible to open devices that don't have these parameters.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
This changes the way the KMS backends load; if we're headless, we always
use the dummy one and fail otherwise; in other cases, we first try the
atomic backend, and if that fails, fall back on the simple one.
The aim for this is to have the impl device open and close the device
when needed, using the device pool directly.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
This practically does the same thing as part of MetaLauncher, except
with added thread safety and caching. For example, opening the same file
a second time will return the same MetaDeviceFile, and only once all
acquired MetaDeviceFile's are released, will the file descriptor be
closed and control of the device released.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1828>
ClutterInputDevice's get_group_n_modes() vfunc is meant to return
-1 for groups that are out of the known range, not within. Fix the
early return condition, and let the native backend return correctly
the number of modes for the given group.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1920>
Scanouts are taken away after painting. However, when we're
streaming, what we actually want is to capture whatever is
going to end up on screen - and that includes the scanout
if there's any.
Add a before-paint watch that only records new frames if a
scanout is set.
Inspired by (and commit log mostly copied from) e6a13e5d57
("monitor-stream-src: Add before-paint watch to catch scanouts").
v2:
* Do not call stage_painted from before_stage_painted (Georges Basile
Stavracas Neto)
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1707
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1902>
When drmModePageFlip() or drmModeAtomicCommit() unexpectedly failed (e.g.
ENOSPC, which has been seen in the wild), this failure was not handled
very gracefully. The page flip listener for the scanout was left in the
MetaKmsUpdate, meaning when the primary plane composition was later page
flipped, two page flip listeners were added, one for the primary plane,
and one for the scanout. This caused the 'page-flipped' event to be
handled twice, the second time being fatal.
Handle this by making 'no-discard' listener flag be somewhat reversed,
and say 'drop-on-error', and then drop all 'drop-on-error' listeners
when a MetaKmsUpdate failed to be processed.
Also for a "preserve" flagged update, don't ever trigger "discard"
callbacks just yet, as preserved updates are used again for the primary
plane composition, in order to not miss e.g. CRTC gamma updates, or
cursor plane updates, which were added separately.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1809
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1910>
There is an udev rule marking whether a device should be ignored by
mutter or not, but it was only respected on hotplug events not on init,
partly defeating its purpose. Fix this.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1892>
A view is only a 'CoglOnscreen' if it ends up on a CRTC, thus needs a
mode. Other views are for virtual monitors, and require no mode setting,
so exclude them from the pending mode set list.
This avoids a dead lock when we'll be waiting indefinitely for mode
setting on a virtual monitor.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1891>
This object takes over the functionality of meta-idle-monitor-dbus.c,
meta-idle-monitor.c and meta-backend.c, all related to higher level
management of idle watches etc.
The idle D-Bus API is changed to be initialized by the backend instead
of MetaDisplay, as it's more of a backend functionality than what
MetaDisplay usually deals with.
It also takes over the work of implementing "core" idle monitors. The
singleton API is replaced with thin wrapper functions on the backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1859>
Wayland support is not really a "backend" thing, it just lacked a better
place to store its instance pointer. Eventually we'll have a better
place, but prepare for that by initializing it together with the more
similar subsystems.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1833>
Commit 64c9c9c5b0 fixed monitor
screencasting, when fractional screencasting is enabled.
For the remote desktop usage, NotifyPointerMotionAbsolute() submits
the new mouse pointer position in addition to the stream, where the
mouse pointer was moved.
When not using fractional scaling, the mouse pointer position is
correct.
With the usage of fractional scaling, the mouse pointer position is
wrong, as the scale of the position is applied two times.
Fix this behaviour, by reverting the second scale by dividing by the
logical monitor scale, when fractional scaling is used.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1808
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1867>
When finalizing, the MetaDisplay instance will already be gone, so to be
able to gracefully tear down the clipboard integration, make sure to
close sessions before the display is closed, i.e. on prepare-shutdown.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1853>
This commit adds scaling support to clutter_stage_capture_into, which
is currently used when screencasting monitors. This is supposed to
fix graphical issues that arise when using fractional scaling.
Fixes#1131
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1855>
It keeps references to cursors, and cursors keep references to DRM
buffers. In order to be able to clean up on exit, explicitly destroy the
cursor tracker on shutdown.
We can't rely on GObject reference counting, as gjs might hold onto a
reference until it's garbage collected.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
Various things, e.g, the renderer, the stage, either directly or
indirectly depends on GPU objects being alive during tear-down. Make it
so, by moving GPU cleanup after the other cleaning. This will allow
tearing down a couple of more objects.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
The first phase happens early, which discards pending page flips,
meaning the references held by those page flip closures are released.
The second phase happens late, after other units depending on the KMS
abstraction, have been cleaned up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
We already swapped the front buffer, and even if it didn't get
presented, we should still swap our representation of the state, to not
get into a confused buffer tracking state.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1822>
All pointer a11y is a fabrication of Clutter backend-independent
code, with the help of a ClutterVirtualInputDevice and with some
UI on top.
On the other hand, MetaInputSettings is a backend implementation
detail, this has 2 gotchas:
- In the native backend, the MetaInputSettings (and pointer a11y
with it) are initialized early, before the ClutterSeat core
pointer is set up.
- Doing this from the MetaInputSettings also means another dubious
access from the input thread into main thread territory.
Move the pointer a11y into ClutterSettings, making this effectively
backend-independent business, invariably done from the main thread
and ensured to happen after seat initialization.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1765
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1849>
Virtual Kernel Mode Setting (vkms) is a virtual /dev/dri/card* device
not backed by any actual hardware. It's intended for testing purposes,
e.g. to run tests suites with a reproducable setup, or in continuous
integration pipelines.
Currently mutter don't have any tests that can run on top of vkms, but
will eventually get that. To prepare for the ability to do that, and
having said kernel module loaded without causing wierd issues with any
active session, add an udev rule that tells mutter to ignore any vkms
device.
Otherwise, when vkms is loaded, mutter would detect it, assume it's a
regular monitor, configure it as such, thus add a region of the stage
that ends up nowhere, which isn't very helpful. It might also conflict
with running actual tests that need to interact with vkms if the active
session has taken control of it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1740>
With atomic mode setting, commits don't work when CRTCs aren't enabled,
which they aren't when we're power saving. This means the gamma state
fails to being update. To fix night light and for whatever other reason
gamma ramps was changed during power saving by marking the CRTC gamma
state as invalid when leaving power saving, as well as when resuming.
This means that the next frame will append the CRTC gamma state to the
KMS commit.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1755
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1835>
This GSource is not being properly unref nor the variable holding it
cleared. This on one hand leaks the GSource memory, on the other hand
may trigger warnings in keyboard_repeat() as the source may be
(reentrantly) cleared, yet we don't exit early as
seat_impl->repeat_source is never NULL.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1839>
The X server generates a property change notification whenever it processes a
property change request, even if the value of the property is not changing. This
triggers libgdk to probe all display outputs, which can be slow depending on
which display driver and hardware are in use.
#0 0x00007f8e4d5e91a0 in XRRUpdateConfiguration () at /usr/lib/libXrandr.so.2
#1 0x00007f8e505208da in _gdk_x11_screen_size_changed (screen=0x5566e4b7e080, event=0x7ffe0e44bd60) at ../gdk/x11/gdkscreen-x11.c:1199
#2 0x00007f8e505066d1 in gdk_x11_display_translate_event (translator=0x5566e4b5b110, display=0x5566e4b5b110, event=0x7f8dec001b20, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkdisplay-x11.c:1201
#3 0x00007f8e505135a0 in _gdk_x11_event_translator_translate (translator=0x5566e4b5b110, display=0x5566e4b5b110, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkeventtranslator.c:51
#4 0x00007f8e50512c97 in gdk_event_source_translate_event (event_source=0x5566e4b764a0, xevent=0x7ffe0e44bd60) at ../gdk/x11/gdkeventsource.c:243
#5 0x00007f8e50512f57 in _gdk_x11_display_queue_events (display=0x5566e4b5b110) at ../gdk/x11/gdkeventsource.c:341
#6 0x00007f8e50497644 in gdk_display_get_event (display=0x5566e4b5b110) at ../gdk/gdkdisplay.c:442
#7 0x00007f8e5051301f in gdk_event_source_dispatch (source=0x5566e4b764a0, callback=0x0, user_data=0x0) at ../gdk/x11/gdkeventsource.c:363
#8 0x00007f8e516ecf9c in g_main_context_dispatch () at /usr/lib/libglib-2.0.so.0
#9 0x00007f8e51740a49 in () at /usr/lib/libglib-2.0.so.0
#10 0x00007f8e516ec503 in g_main_loop_run () at /usr/lib/libglib-2.0.so.0
#11 0x00007f8e508ef5fd in meta_run_main_loop () at ../src/core/main.c:928
#12 0x00007f8e508ef60e in meta_run () at ../src/core/main.c:943
#13 0x00005566e450842a in ()
#14 0x00007f8e50649b25 in __libc_start_main () at /usr/lib/libc.so.6
When GNOME is animating a display fade when the night light feature is toggled
on or off, it sends a lot of change requests for the CTM property in the
process, which triggers a lot of display probes from gdk. In the case of the
night light feature, the CTM itself is not actually changing, so these requests
are redundant. Fix this by caching the CTM value in the MetaOutputXrandr and
skipping the server requests if it's not being changed.
Fixes: https://gitlab.gnome.org/GNOME/gnome-shell/-/issues/3978
Signed-off-by: Aaron Plattner <aplattner@nvidia.com>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1816>
When we set the matrix, we checked the device mapping mode in the main
thread, then passed along the calculated matrix to the input thread for
application. This could however be racy, as the mapping mode is managed
in the input thread. Fix this by sending the unaltered matrix, having
the input thread checking the mapping mode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1806>
The connector state wasn't properly predicted, as it earlied out if
the connector wasn't part of a mode set connector list.
Instead use the old CRTC to check whether it was used in any mode set,
and whether the connector was part of any new mode set, to predict
whether the connector is inactive or active.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
When a device only had mode sets which turned off monitors, not enabling
anything, there would be no KMS update created and posted, and the
active monitors would remain on.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1821>
On hybrid graphics system, the primary path used to transfer the stage
framebuffer onto the dedicated GPU's video memory preparing for scanout,
is using the dedicated GPU to glBlitFramebuffer() the content from the
iGPU texture onto the scanout buffer.
After we have done this, we reset the current EGL context back to the
one managed by cogl. What we failed to do, however, was to reset the
current EGL context when we inhibited the actual page flip due to having
entered power save mode.
When we later started to paint again, Cogl thought the current EGL
context was still the correct one, but in fact it was the one used for
the iGPU -> dGPU blit, causing various EGL surface errors, and as a side
effect, eventually hitting an assert.
Fix this by making sure we reset to the Cogl managed EGL context also
for this case.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
Destroying the EGLSurface frees the underlying container structs. When
we call gbm_surface_release_buffer() with a gbm_surface the EGLSurface
was created from, doing that after the EGLSurface was destroyed results
in attempts to access freed memory. Fix this by releasing any buffer
first, followed by destroying the EGLSurface, and lastly, the
gbm_surface.
This was not a problem prior to CoglOnscreen turning into a GObject, as
in that case, the dispose-chain was not setup correctly, and the
EGLSurface destruction was done in the native backend implementation.
This also changes a g_return_if_fail() to a g_warn_if_fail(), as if we
hit the unexpected case, we still need to call up to the parent dispose
vfunc to not cause critical issues.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
It's handled by CoglOnscreenEgl's dispose() implementation. It was
failed to be invoked in the past because the old non-GObject web of
vtables were not setup correctly, meaning the old generic EGL layer of
the CoglOnscreen de-init was never invoked.
When the type inheritence was cleaned up, this mistake was not cleaned
up, so do that now.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1803>
Meson doesn't seem to handle depending on generated headers, at least
when those headers are pulled in indirectly via another header file.
Luckily, we don't actually need to include the generated D-Bus boiler
plate in meta-monitor-manager-private.h, since the MetaMonitorManager
type no longer is based on the D-Bus service skeleton.
So, by moving the inclusion of the generated D-Bus header file into
meta-monitor-manager.c, we should hopefully get rid of the sporadic
build issues.
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1682
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1819>
If there was only a single mode, add the common modes to provide options
to select other resolutions than the built in default. This avoids
issues where the connector listed multiple supported modes, but where
the common modes added would exceed the possible bandwidth. We could
probably make an attempt to filter out more modes from the common mode
list to avoid these issues, but it's likely that the driver already
lists suitable modes, meaning there is no point in adding the common
modes.
The common modes were initially added[0] to add modes to connectors with
a single bundled mode, so we shouldn't regress the original bug fix.
[0] https://bugzilla.gnome.org/show_bug.cgi?id=744544
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1232
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1824>
The intel DRM driver is known for not being able to handle multi head
setups when KMS modifiers are enabled, due to the implicitly selected
modifiers, while being more suitable for single head setups, cause
bandwidth issues when a certain number of monitor times resolution and
refresh rate is configured.
We don't yet support automatically finding a combination of modifiers
that work, and have because of this disabled KMS modifiers unless the
driver actually needs it.
Lets flip this configuration the other way around, changing the current
udev rule to decide wen to *disable* KMS modifier support, as it so that
only the Intel driver has this problem, while on the other hand, there
several drivers that requires modifiers to function at all.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1792>
The input thread is in deep water doing the meta_is_*() check itself,
as that pokes the MetaMonitorManager managed by the main thread. Use
the getter from the MetaViewportInfo instead.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1793>
We need to pass this info from the main thread, as that pokes the
MetaMonitorManager underneath. Store it in the MetaViewportInfo
so that the input thread can use this information.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1793>
MetaInputSettings unref:ed the seat on destruction, but it never ref:ed
it on construction, meaning it "stole" the reference from the rightful
owner. Make MetaInputSettings less of a thief.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1775>
XIQueryPointer allocates the button state mask that we were leaking in
some places. We need to manually free this, because there is no XI
function that would do this for us.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1728>
On Wayland MetaInputSettings is part of the input thread. Connecting
a GSettings binding to the default ClutterSettings could result in the
change notification being emitted on the input thread. This then could
end up triggering the same handler from two different threads at the
same time. In the case of the ClutterText layout cache it was attempting
to unref the same layout twice, leading to a crash.
This can be avoided by simply removing the GSettings bind. This does not
cause changes to this setting to be missed by ClutterSettings because it
itself already sets up a bind.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1696
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1776>
This eliminates the need for any render node or device nodes, thus can
be used without any graphics hardware available at all, or with a
graphics driver without any render node available.
The surfaceless mode currently requires EGL_KHR_no_config_context to
configure the initial EGL display.
This also means we can enable the native backend tests in CI, as it
should work without any additional privileges.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The new RecordVirtual API creates a virtual monitor, i.e. a region of
the stage that isn't backed by real monitor hardware. It's intended to
be used by e.g. network screens on active sessions, virtual remote
desktop screens when running headless, and scenarios like that.
A major difference between the current Record* API's is that
RecordVirtual relies on PipeWire itself to negotiate the refresh rate
and size, as it can't rely on any existing monitor, for those details.
This also means that the virtual monitor is not created until the stream
negotiation has finished and a virtual monitor resolution has been
determined.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The area source, window source, and monitor source, currently set up the
stream size up front, given the area, maximum allowed window size or
monitor resolution, but for to be introduced sources, the size will be
negotiated using PipeWire, instead of specified via the D-Bus API. This
commit changes the internal source API to allow for this. There are
currently no users of this new behaviour.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
There may be a race between the ability to turn stream relative input
coordinates and turning them into screen coordinates, due to the future
scenario where the entity backing a stream is created and managed ad-hoc
depending on PipeWire stream negotiations.
When an input event is sent during this time, drop it.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
The testing currently done is:
* Creating a virtual monitor succeeds and gets the right configuration
* Painting a few times results in the expected output
* Changing the content of the stage also changes the painted content
accordingly
* Destroying the virtual monitor works as expected
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This adds a test framework that makes it possible to compare the result
of painting a view against a reference image. Test reference as PNG
images are stored in src/tests/ref-tests/.
Reference images needs to be created for testing to be able to succeed.
Adding a test reference image is done using the
`MUTTER_REF_TEST_UPDATE` environment variable. See meta-ref-test.c for
details.
The image comparison code is largely based on the reference image test
framework in weston; see meta-ref-test.c for details.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Virtual monitors are monitors that isn't backed by any monitor like
hardware. It would typically be backed by e.g. a remote desktop service,
or a network display.
It is currently only supported by the native backend, and whether the
X11 backend will ever see virtual monitors is an open question. This
rest of this commit message describes how it works under the native
backend.
Each virutal monitor consists of virtualized mode setting components:
* A virtual CRTC mode (MetaCrtcModeVirtual)
* A virtual CRTC (MetaCrtcVirtual)
* A virtual connector (MetaOutputVirtual)
In difference to the corresponding mode setting objects that represents
KMS objects, the virtual ones isn't directly tied to a MetaGpu, other
than the CoglFramebuffer being part of the GPU context of the primary
GPU, which is the case for all monitors no matter what GPU they are
connected to. Part of the reason for this is that a MetaGpu in practice
represents a mode setting device, and its CRTCs and outputs, are all
backed by real mode setting objects, while a virtual monitor is only
backed by a framebuffer that is tied to the primary GPU. Maybe this will
be reevaluated in the future, but since a virtual monitor is not tied to
any GPU currently, so is the case for the virtual mode setting objects.
The native rendering backend, including the cursor renderer, is adapted
to handle the situation where a CRTC does not have a GPU associated with
it; this in practice means that it e.g. will not try to upload HW cursor
buffers when the cursor is only on a virtual monitor. The same applies
to the native renderer, which is made to avoid creating
MetaOnscreenNative for views that are backed by virtual CRTCs, as well
as to avoid trying to mode set on such views.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
When rebuilding the monitors (e.g. during hotplug), make sure to detach
the disposed monitors from any outputs before creating the new monitors.
While this isn't currently needed, as outputs are too being recreated,
with the to be introduced virtual outputs that are created for virtual
monitors, this is not always the case anymore, as these virtual outputs
are not regenerated each time anything changes.
Prepare for this by making sure that cleaning up disposed monitors
detach themself properly from the outputs, so new ones can attach
themself to outputs without running into conflicts.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
With this commit, it's possible to run mutter without being DRM master.
It's not yet possible to add virtual monitors, but one can for example
already add virtual input devices.
This currently doesn't try to hook up to any logind session, thus will
not have a real seat assigned. Currently it's hard coded to "seat0".
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Currently our only entry point for DRM devices is MetaKms*, but in order
to run without being DRM master, we cannot use /dev/dri/card*, nor can
we be either of the existing MetaKmsImplDevice implementation (legacy
KMS, and atomic KMS), as they both depend on being DRM master.
Thus to handle running without being DRM master (i.e. headless), add a
"dummy" MetaKmsImplDevice implementation, that doesn't do any mode
setting at all, and that switches to operate on the render node, instead
of the card node itself.
This means we still use the same GBM code paths as the regular native
backend paths, except we never make use of any CRTC backed onscreen
framebuffers.
Eventually, this "dummy" MetaKmsImplDevice will be replaced separating
"KMS" device objects from "render" device objects, but that will require
more significant changes. It will, however, be necessary for e.g. going
from being headless, only having access to a render node, to turning
into a real session, with a seat, being DRM master, and having access to
a card node.
This is currently not hooked up, but will be in a later commit.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Add a flag to MetaSeatNative and MetaSeatImpl that tells it not to
attempt to create a libinput context. This is intended to be used when
mutter is to run headless, as in without any input devices other than
virtual ones.
Currently not hooked up.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
This leaves only the atomic mode setting cap check before creating the
impl device, aiming to make it possible to create a non-mode-setting
MetaKmsImplDevice implementation.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Make it possible to pass --headless as a command line argument in order
to turn the native backend "headless". This currently doesn't do
anything, but the intention is that it should not use logind nor KMS,
and work completely headless with only virtual outputs.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1698>
Input settings requires a valid seat in order to initialize the a11y
settings (since commit 1609d145), however in X11 we never set it and
even if we create the input settings early (as per commit 7547891a) we
never initialize the seat for it.
This leads to startup critical errors on X11:
clutter_seat_get_pointer_a11y_settings: assertion
'CLUTTER_IS_SEAT (seat)' failed
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1763>
This commit adds the events created in the function
`meta_seat_x11_notify_devices` to the clutter events queue, which
are currently only added to the stage queue making the events not
being picked up by the `clutter_seat_handle_event_post` function.
This results in devices not getting added to the device-list of
`MetaInputSettings`.
Fixes the bug in which mouse and touchpad settings are not working in
the settings app during x11 session.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1767>
Since commit 2ceac4a device-related X11 events aren't processed anymore,
causing the input settings not to handle the devices.
This is due to the fact that we may never call clutter_seat_handle_event_post()
for such events.
While this is always happening for the native backend, it doesn't happen in
X11 because the events are removed from the queue as part of
meta_x11_handle_event(), and thus no event was queued to the stage by the
backend events source.
This also makes sure that the event post handler is called after the
event is actually processed, and not before an event is queued.
Fixes: https://gitlab.gnome.org/GNOME/mutter/-/issues/1564
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1769>
The nested backend may need to have an input setting implementation,
while we don't want to change the host settings (re-using an X11 input
settings) we can add a dummy implementation, until something more
complex is needed.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1769>
With commit 7d78768809 we switched to
storing pointer coordinates in MetaInputDeviceNative instead of
ClutterInputDevice, and while we had set the coordinates of the
ClutterInputDevice in ClutterStage when queueing an event, we now set
the MetaInputDeviceNative coordinates in new_absolute_motion_event().
Here a small mistake snuck in: new_absolute_motion_event() only
translates the coordinates of the event, but we call
meta_input_device_native_set_coords() using the x and y variables
(which remain untranslated), so now the input device coordinates are no
longer translated.
Fix that by translating the coordinates of the x and y variables in case
we're we handling a tablet/stylus event instead of only translating the
event coordinates.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1685
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1760>
With commit c985753442 the support for
multiple hardware cursors broke, but those were never properly supported
anyway as we usually assume there's only one hardware cursor around.
With the introduction of the KMS thread in the future, we'll only have
one KMS cursor that gets updated directly from the input thread. So
apart from the fact that it never really makes sense to have two cursors
visible, in this new model having multiple cursors won't work anyway.
So make the cursor we show for stylii a software cursor again.
Eventually the plan is to make the input device that's driving the KMS
cursor interchangeable, so that we can always use hardware cursors.
This reverts commit 165b7369c8.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1645
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1758>
This concerns only the cases when the presentation timestamp is received
directly from the device (from KMS or from GLX). In the majority of
cases this timestamp is already MONOTONIC. When it isn't, after this
commit, the current value of the MONOTONIC clock is sampled instead.
The alternative is to store the clock id alongside the timestamp, with
possible values of MONOTONIC, REALTIME (from KMS) and GETTIMEOFDAY (from
GLX; this might be the same as REALTIME, I'm not sure), and then
"convert" the timestamp to MONOTONIC when needed. An example of such a
conversion was done in compositor.c (removed in this commit). It would
also be needed for the presentation-time Wayland protocol. However, it
seems that the vast majority of up-to-date systems are using MONOTONIC
anyway, making this effort not justified.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
KMS and GLX device timestamps have microsecond precision, and whenever
we sample the time ourselves it's not the real presentation time anyway,
so nanosecond precision for that case is unnecessary.
The presentation timestamp in ClutterFrameInfo is in microseconds, too,
so this commit makes them have the same precision.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
A flag indicating whether the presentation timestamp was provided by the
display hardware (rather than sampled in user space).
It will be used for the presentation-time Wayland protocol.
This is definitely the case for page_flip_handler(), and I'm assuming
this is also the case for the two instances in the GLX code.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1484>
The old calculation was introduced to improve the precision
with commit c16a5ec1cf.
Here, I call the calculation as "revision 2", and the
calculation even older as "revision 1", and the new
calculation introduced with this commit as "reivion 3".
Revision 2 has two problems:
1. The calculation is mixed with fixed-point numbers and
floating-point numbers.
To overcome the precision loss of fixed-point numbers division,
it first "calculates refresh rate in milliHz first for extra
precision", but this requires converting the value back to Hz.
An extra calculation has performance and precision costs.
It is also hard to understand for programmers.
2. The calculation has a bias.
In the process, it does:
refresh += (drm_mode->vtotal / 2);
It prevents the value from being rounded to a smaller value in
a fixed-point integer arithmetics, but it only adds a small
bias (0.0005) and consumes some fraction bits for
floating point arithmetic.
Revision 3, introduced with this commit always uses
double-precision floating-point values for true precision and
to ease understanding of this code. It also removes the bias.
Another change is that it now has two internal values, numerator
and denominator. Revision 1 also calculated those two values
first, and later performed a division with them, which minimizes
the precision loss caused by divisions. This method has risks of
overflowing the two values and revision 1 caused problems due to
that, but revision 3 won't thanks to double-precision. Therefore,
revision 3 will theoretically have the result identical with
the calculation with infinite-precision.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1737>
This removes the responsibility of tracking these from the backend to
the base object. The backends are instead responsible for calling the
function to update the values.
For the native backend, it's important that this happens on the correct
thread, so each time either of these states may change, post a idle
callback on the main thread that sets the, at the time of queuing said
callback, up to date state. This means that things on the main thread
will always be able to get a "new enough but not too new" state when
listening on the 'notify::' signals and getting the property value
after.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1739>
Each next and current scanout buffer has a reference on them making sure
they stay alive. When dumb buffers were used on the secondary GPU state,
this didn't happen, leading to crashes due to unref:ing one time too
many, with backtraces such as
0) g_type_check_instance_is_fundamentally_a ()
1) g_object_unref ()
2) secondary_gpu_release_dumb ()
3) import_shared_framebuffer ()
4) update_secondary_gpu_state_post_swap_buffers ()
5) meta_onscreen_native_swap_buffers_with_damage ()
6) cogl_onscreen_swap_buffers_with_damage ()
7) swap_framebuffer ()
8) clutter_stage_cogl_redraw_view_primary ()
9) clutter_stage_cogl_redraw_view ()
10) _clutter_stage_window_redraw_view ()
11) handle_frame_clock_frame ()
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1746>
Without these devices, things that depend on the existance of input
device classes won't know about the existance of e.g. pointer devices,
if the only pointer device is from a virtual one.
This requires handling situations where e.g. a device doesn't have a
device node thus can't be matched against a udev device.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1688>
Libinput will queue a few initial events when a seat is assigned to the
udev backend; a result of it probing udev adding detected devices. For
us to see these events, we need to dispatch libinput before going idle,
as nothing will show up on the libinput file descriptor until something
else (e.g. keyboard event or mouse movement) wakes us up.
Do this by adding a prepare() function to the libinput GSource, that
checks whether there are any events in the queue already, and return
TRUE if so is the case, causing us to dispatch before going fully idle.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1688>
Currently, when a remote desktop user submits a keycode, it will be
interpreted differently, when using the x11 session, instead of a
wayland session.
In a wayland session, submitting a keycode will have the expected
result (as if the key was pressed locally).
In a x11 session, this is not the case. Instead of getting the expected
key, some other key will be pressed (or sometimes even none).
The reason for this is that the native backend interprets the keycode
as evdev keycode and the x11 backend interprets the keycode as xkb
keycode.
To ensure that both backends produce the same behaviour when submitting
a keycode, fix the x11 backend to always interpret the keycode as evdev
keycode, instead of a xkb keycode.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1732>
When a remote desktop user emits a virtual smooth scrolling event, a
smooth scroll event, that is not emulated, is emitted and on occasion
a discrete scroll event, that is emulated, is emitted.
As base for the discrete scrolling event, the smooth scrolling steps
are accumulated.
When the accumulated smooth scrolling steps surpass the
DISCRETE_SCROLL_STEP, the discrete scrolling event is emitted.
Currently, mutter uses for DISCRETE_SCROLL_STEP the value 10, which is
a terrible value to work with, especially for high resolution mouse
wheels.
When a triple resolution mouse wheel is used, each scrolling step will
have the value 3 1/3.
Three of such events won't however surpass the DISCRETE_SCROLL_STEP.
To fix this situation, add DBL_EPSILON to the calculation step, when
checking for the discrete scroll event to ensure that 3 smooth scroll
events, with each having the value 3 1/3, emit a discrete scrolling
event.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1727>
MetaVirtualInputDeviceX11 currently doesn't handle smooth scroll events
at all.
So, if a user of the remote desktop API uses smooth scroll events, then
only the wayland backend handles these events.
The user of the remote desktop API however, might not know which
backend is being used and actually the user should not even have to
care about it.
Actual smooth events cannot be emulated in the X11 events.
What can be done however is accumulating smooth events and then when
the accumulated steps surpass the DISCRETE_SCROLL_STEP value, emit a
discrete scroll event.
So, do exactly that, to make smooth scroll events work when the remote
desktop API is used with the x11 backend.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1727>
Given X11 nature, the pointer "leaves" the stage anytime it wanders into
a client window, or any other areas that are not deemed part of the
stage input region.
Yet we want to stay correct in those situations, e.g. have the clutter
side reasonably in sync, picking and highlighting to work properly, etc.
In order to achieve that, emulate motion events on XI_RawMotion. These
are as much throttled as our pointer tracking for a11y, in order to avoid
too many XIQueryPointer sync calls. This emulation only kicks in anytime
that X11 notifies us that we are not "on" the stage.
This replaces some sync_pointer() calls in GNOME Shell code that are
there just to compensate for this trait of X11, e.g. in the message tray
code.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1659>
Ensure we issue a motion event for the current pointer position,
as there might be situations where compositor modals get X grabs
from other clients stacked on top, or missed events in between
otherwise.
Ensure the Clutter state is still up-to-date afterwards here. This
replaces some sync_pointer() calls done in GNOME Shell code, always
done after modality changes.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1659>
g_set_error_literal() asserts that the provided message is not NULL.
If it is NULL, the function is entirely no-op.
This resulted in a NULL dereference of the GError, which remained
NULL in this case, when trying to print a warning in
clutter_stage_cogl_redraw_view().
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1715>
PipeWire recently introduced busy buffers, which actually fixes the last remaining
issue that blocked us from downgrading these cogl_framebuffer_finish() calls into
cogl_framebuffer_flush() ones.
Switch to cogl_framebuffer_flush() in all three stream sources.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1701>
When a transfer request is done to the MetaSelectionSourceRemote source,
it's translated to a SelectionTransfer signal, which the remote desktop
server is supposed to respond to with SelectionWrite.
A timeout (set to 15 seconds) is added to handle too long timeouts,
which cancels the transfer request.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1552>
Nothing is hooked up, it only does basic sanity checking i.e. whether
the clipboard was enabled when interacting with it. No actual clipboard
integration is hooked up yet.
This also syncs org.gnome.Mutter.RemoteDesktop.xml from
gnome-remote-desktop.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1552>
The original implementation of ::touch-mode tested for keyboard
presence to know whether the OSK and other touch-only features were
enabled.
However that didn't pan out, every webcam, card reader and kitchen
sink like to live a second life as EV_KEY devices. This made the
detection of actual external keyboards a much harder task than it
sounds, and was thus removed in commit f8e2234ce5.
Try a different approach here, and test for pointer devices, it
doesn't matter if internal or external devices, the rationales:
- It is significantly easier to get this right, there's virtually
no devices with abs/rel axes that don't try to be a real input
device of some sorts.
- It's not as good as testing for keyboard presence, but it's the
next best thing. These usually come in pairs, except in weird
setups.
- It is better than not having anything for a number of situations:
- Non-convertible laptops with a touchscreen will get touch-mode
disabled due to touchpad presence (plus keyboard). There's
been complains about OSK triggering with those.
- Same for desktop machines with USB touchscreens, the mouse
(and presumably keyboard) attached would make touch-mode
get in the middle.
- Convertible laptops with a broken tablet-mode switch get a
chance to work on tablet modes that do disable input devices
(e.g. detachable keyboards, or via firmware)
- Kiosk machines, tablets, and other devices that have a
touchscreen but will not regularly have a mouse/keyboard
will get the touch-mode enabled.
All in all, this seems to cover more situations the way we expect it,
there's only one situation that the OSK would show where it might
not be desirable, and one that might not show when it better should:
- Tablets and kiosk machines that get one keyboard plugged, but not a
mouse, will still show the OSK, despite being able to type right
away.
- Convertible laptops with broken/unreliable tablet-mode switch (e.g.
ignored by the kernel) rely entirely on the device/firmware
characteristics to work. If after folding into tablet mode the
touchpad remains active, touch-mode will not turn on.
Fixing the tablet-mode switch on these devices should be preferred,
as that'll also make libinput magically disable the touchpad.
The latter can be worked around with the a11y toggle. The former is
merely inconvenient, and nothing prevents the user from plugging a mouse
in addition.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1710>
When recording the screen and real time encoding it using a gstreamer
pipeline, that pipeline can stall when the encoder is too slow. Log a
debug message using the new SCREEN_CAST debug topic in that case so we
know when framedrops are happening.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1709>
The other end of the PipeWire stream can set the buffer data type to a
bitmask of supported buffer types. We should respect this, and not
attempt to allocate a DMA buffer if it isn't asked for.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1697>
Instead of getters, pass the width, height and stride around when
relevant. This also removes the redudant "stream_size" and
"stream_height" variables from the src struct, as they are already part
of the video format.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1697>
Mutter needs to fetch the X11 Window ID from the onscreen and did that
by using an X11 specific API on the CoglOnscreen, where the X11 type was
"expanded" (Window -> uint32_t). Change this by introducing an interface
called CoglX11Onscreen, implemented by both the Xlib and GLX onscreen
implementations, that keeps the right type (Window), while avoiding X11
specific API for CoglOnscreen.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Instead of calling "init_onscreen()" on two different separate vtables
from the allocate() funtion, just have the CoglOnscreen sub types
themself implement allocate() and initialize in there.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Thins means that e.g. MetaOnscreenNative now inherits CoglOnscreenEgl,
which inherits CoglOnscreen which inherits CoglFramebuffer, all being
the same GObject instance.
This makes it necessary to the one creating the onscreen to know what it
wants to create. For the X11 backend, the type of renderer (Xlib EGL or
GLX) determines the type, and for the native backend, it's currently
always MetaOnscreenNative.
The "winsys" vfunc entries related to onscreens hasn't been moved yet,
that will come later.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
To get meta-renderer-native.c down to a bit more managable size, and to
isolate "onscreen" functionality from other (at least partly), move out
the things related to CoglOnscreen to meta-onscreen-native.[ch].
A couple of structs are moved to a new shared header file, as
abstracting those types (e.g. (primary, secondary) render devices) will
be dealt with later.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
The mutter naming convention for types and their instance variables is:
Type name:
[Namespace][BaseName][SubType]
Instance name:
[base_name]_[sub_type]
This means that e.g. CoglOnscreenGLX is renamed CoglOnscreenGlx, and
glx_onscreen is renamed onscreen_glx. This is in preparation for
GObjectification.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1514>
Makes sure that monitor specs which may be read from EDID data do not
contain characters that are invalid in XML. Makes it possible to restore
monitor configs of monitor models with characters such as '&' in them.
To make this change not break any tests, the sample monitor configs need
to be adjusted as well. Apostrophes don't strictly have to be escaped in
XML text elements. However, we now do escape the elements in
`<monitorspec>` specifically.
Closes: <https://gitlab.gnome.org/GNOME/mutter/-/issues/1011>
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1685>
If the monitor configuration changed, even though the streamed monitor
didn't change, we'd still fail to continue streaming, as we failed to
update the stage watchers, meaning we wouldn't be notified about when
the stage views were painted.
Fix this by reattaching the stage watches, i.e. update the painted
signalling listeners to listen to the right views, when monitor changes
happens.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1691>
Make the API used more shared and better named.
meta_monitor_manager_on_hotplug() was renamed
meta_monitor_manager_reconfigure(), and meta_monitor_manager_reload()
was introduced to combine reading the current state and reconfiguring.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1689>
It was named "backend_native" and "backend" which is easily confused with
MetaBackendNative and MetaBackend which tends to have those names.
Prepare for introducing the usage of a MetaBackendNative and MetaBackend
pointers here by cleaning up the naming.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1689>
This adds a MetaKmsImplDevice backend using atomic drmMode* API in constrast to
non-atomic legacy drmMode* API used in MetaKmsImplDeviceSimple.
This has various behavioral differences worth noting, compared to the
simple backend:
* We can only commit once per CRTC per page flip.
This means that we can only update the cursor plane once. If a primary
plane composition missed a dead line, we cannot commit only a cursor
update that would be presented earlier.
* Partial success is not possible with the atomic backend.
Cursor planes may fail with the simple backend. This is not the case
with the atomic backend. This will instead later be handled using API
specific to the atomic backend, that will effectively translate into
TEST_ONLY commits.
For testing and debugging purposes, the environment variable
MUTTER_DEBUG_ENABLE_ATOMIC_KMS can be set to either 1 or 0 to
force-enable or force-disable atomic mode setting. Setting it to some
other value will cause mutter to abort().
Closes: https://gitlab.gnome.org/GNOME/mutter/-/issues/548
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>
In order to reliably manage the reference count of the user data passed
to page flip listeners - being the stage view - make the ownership of
this data travel through the different objects that take responsibility
of the next step.
Initially this is the MetaKmsPageFlipListener that belongs to a
MetaKmsUpdate.
When a page flip is successfully queued, the ownership is transferred to
a MetaKmsPageFlipClosure that is part of a MetaKmsPageFlipData. In the
simple impl device, the MetaKmsPageFlipData is passed to
drmModePageFlip(), then returned back via the DRM event. In the future
atomic impl device, the MetaKmsPageFlipData is stored in a table, then
retrieved when DRM event are handled.
When the DRM events are handled, the page flip listener's interface
callbacks are invoked, and after that, the user data is freed using the
passed GDestroyNotify function, in the main context, the same as where
the interface callbacks were called.
When a page flip fails, the ownership is also transferred to a
MetaKmsPageFlipClosure that is part of a MetaKmsPageFlipData. This page
flip data will be passed to the main context via a callback, where it
will discard the page flip, and free the user data using the provided
GDestroyNotify.
Note that this adds back a page flip listener type flag for telling the
KMS implementation whether to actively discard a page flip via the
interface, or just free the user data. Avoiding discarding via the
interface is needed for the direct scanout case, where we immediately
need to know the result in order to fall back to the composite pipeline
if the direct scanout failed. We do in fact also need active discard via
the interface paths, e.g. in the simple impl device when we're
asynchronously retrying a page flip, so replace the ad-hoc discard paths
in meta-renderer-native.c and replace them by not asking for no-discard
page flip error handling.
Part-of: <https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1488>