The new "id" properties for the MetaCrtc* and MetaOuput* objects are 64-bit
values, so take care to pass 64-bit values when calling g_object_new.
Fixes https://gitlab.gnome.org/GNOME/mutter/-/issues/1343.
The ID and name are just moved into the instance private, while the rest
is moved to a `MetaCrtcModeInfo` struct which is used during
construction and retrieved via a getter. Opens up the possibility to
add actual sub types.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Just as with MetaOutput, instead of the home baked "inheritance" system,
using a gpointer and a GDestroyNotify function to keep the what
effectively is sub type details, make MetaCrtc an abstract derivable
type, and make the implementations inherit it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Instead of the home baked "inheritance" system, using a gpointer and a
GDestroyNotify function to keep the what effectively is sub type
details, make MetaOutput an abstract derivable type, and make the
implementations inherit it.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Now set as a property during construction. Only actually set by the
Xrandr backend, as it's the only one currently not supporting all
transforms, which is the default.
While at it, move the 'ALL_TRANFORMS' macro to meta-monitor-tranforms.h.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
It was used during configuration to ensure that we always dealt with
every output and CRTC. Do this without polluting the MetaOutput and
MetaCrtc structs with intermediate variables not used by the
corresponding types themself.
https://gitlab.gnome.org/GNOME/mutter/-/merge_requests/1287
Prior to this commit the stage was drawn separately for each logical
monitor. This allowed to draw different parts of the stage with
different transformations, e.g. with a different viewport to implement
HiDPI support.
Go even further and have one view per CRTC. This causes the stage to
e.g. draw two mirrored monitors twice, instead of using the same
framebuffer on both. This enables us to do two things: one is to support
tiled monitors and monitor mirroring using the EGLStreams backend; the
other is that it'll enable us to tie rendering directly to the CRTC it
will render for. It is also a requirement for rendering being affected
by CRTC state, such as gamma.
It'll be possible to still inhibit re-drawing of the same content
twice, but it should be implemented differently, so that it will still
be possible to implement features requiring the CRTC split.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
To make it more reliable to distinguish between values that are read
from the backend implementation (which is likely to be irrelevant for
anything but the backend implementation), split out those values (e.g.
layout).
This changes the meaning of what was MetaCrtc::rect, to a
MetaCrtcConfig::layout which is the layout the CRTC has in the global
coordinate space.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/1042
This commit introduces, and makes use of, a transactional API used for
setting up KMS state, later to be applied, potentially atomically. From
an API point of view, so is always the case, but in the current
implementation, it still uses legacy drmMode* API to apply the state
non-atomically.
The API consists of various buliding blocks:
* MetaKmsUpdate - a set of configuration changes, the higher level
handle for handing over configuration to the impl backend. It's used to
set mode, assign framebuffers to planes, queue page flips and set
connector properties.
* MetaKmsPlaneAssignment - the assignment of a framebuffer to a plane.
Currently used to map a framebuffer to the primary plane of a CRTC. In
the legacy KMS implementation, the plane assignment is used to derive
the framebuffer used for mode setting and page flipping.
This also means various high level changes:
State, excluding configuring the cursor plane and creating/destroying
DRM framebuffer handles, are applied in the end of a clutter frame, in
one go. From an API point of view, this is done atomically, but as
mentioned, only the non-atomic implementation exists so far.
From MetaRendererNative's point of view, a page flip now initially
always succeeds; the handling of EBUSY errors are done asynchronously in
the MetaKmsImpl backend (still by retrying at refresh rate, but
postponing flip callbacks instead of manipulating the frame clock).
Handling of falling back to mode setting instead of page flipping is
notified after the fact by a more precise page flip feedback API.
EGLStream based page flipping relies on the impl backend not being
atomic, as the page flipping is done in the EGLStream backend (e.g.
nvidia driver). It uses a 'custom' page flip queueing method, keeping
the EGLStream logic inside meta-renderer-native.c.
Page flip handling is moved to meta-kms-impl-device.c from
meta-gpu-kms.c. It goes via an extra idle callback before reaching
meta-renderer-native.c to make sure callbacks are invoked outside of the
impl context.
While dummy power save page flipping is kept in meta-renderer-native.c, the
EBUSY handling is moved to meta-kms-impl-simple.c. Instead of freezing the
frame clock, actual page flip callbacks are postponed until all EBUSY retries
have either succeeded or failed due to some other error than EBUSY. This
effectively inhibits new frames to be drawn, meaning we won't stall waiting on
the file descriptor for pending page flips.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
As with CRTC state, variable connector state is now fetched via the
MetaKmsConnector. The existance of a connector state is equivalent of
the connector being connected. MetaOutputKms is changed to fetch
variable connector state via MetaKmsConnector intsead of KMS directly.
The drmModeConnector is still used for constructing the MetaOutputKms to
find properties used for applying configuration.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
Move reading state into a struct for MetaCrtcKms to use instead of
querying KMS itself. The state is fetched in the impl context, but
consists of only simple data types, so is made accessible publicly. As
of this, MetaCrtcKms construction does not involve any manual KMS
interaction outside of the MetaKms abstraction.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
Add MetaKmsCrtc to represent a CRTC on the associated device. Change
MetaCrtcKms to use the ones discovered by the KMS abstraction. It still
reads the resources handed over by MetaGpuKms, but eventually it will
use only MetaKmsCrtc.
MetaKmsCrtc is a type of object that is usable both from an impl task
and from outside. All the API exposed via the non-private header is
expected to be accessible from outside of the meta-kms namespace.
https://gitlab.gnome.org/GNOME/mutter/issues/548https://gitlab.gnome.org/GNOME/mutter/merge_requests/525
The 'underscan' property is a drm connector property, not a CRTC
property, so we would never find it. We also didn't advertise support
for the feature, meaning even if it was on the CRTC, Settings wouldn't
know about it.
Fix this by moving the property to where it belongs: in MetaOutputKms,
and properly advertise support for it if the property is found.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/507
Print the pixel format chosen for an output on a secondary GPU for
debugging. Knowing the format can aid in debugging e.g. red/blue channel
swaps and CPU copy performance issues.
This adds a DRM format printing helper in meta-crtc-kms.h. This header
is included in most native backend files making it widely available,
while DRM formats are specific to the native backend. It could be shared
with Wayland bits, DRM format codes are used there too.
The helper makes the pixel format much more readable than a "%x".
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
These functions allow inspecting which pixel formats a CRTC's primary
plane supports. Future patches will inspect the supported formats and
pick a framebuffer format accordingly instead of hardcoding a format.
The copy list function will be used to initialize a formats list, and
the supports format function will be used to intersect that list against
another CRTC's supported formats.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
This avoids having to hardcode the same fallbacks elsewhere multiple
times when determining what formats might be suitable for a set of
CRTCs. The formats_modifiers hash table is now guaranteed to be
populated with at least something, so future code will not need to
handle it being empty.
The hardcoded fallback formats are a minimal set probably supported by
most hardware. XRGB8888 is the format that, according to ancient lore,
all DRM devices should support, especially if they don't have the
capability to advertise otherwise. Mutter also hardcodes XRGB8888 as the
GBM surface format, so it is already required on primary GPUs.
XBGR8888 matches the most common OpenGL format, sans alpha channel since
scanout hardware has not traditionally supported alpha. XBGR8888 is here
also because Mutter hardcodes that format for secondary GPU outputs when
using the CPU copy path.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
If the IN_FORMATS property is not found, copy the formats from the DRM
plane instead. This is the fallback for getting a list of formats the
primary plane supports when DRM universal planes capability is enabled.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
Rather than picking just one format, parse and store all the formats and
their modifiers.
This gives us a list of supported formats (and modifiers) on a CRTC
primary plane. Later I will be using this list to choose a framebuffer
format instead of hardcoding it.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/341
We haven't supported disabling stage views in the native backend since
commit 70edc7dda4
Author: Jonas Ådahl <jadahl@gmail.com>
Date: Mon Jul 24 12:31:32 2017 +0800
backends/native: Stop supporting stage views being disabled
There were still some left over checks; lets remove them.
https://gitlab.gnome.org/GNOME/mutter/merge_requests/343
The order and way include macros were structured was chaotic, with no
real common thread between files. Try to tidy up the mess with some
common scheme, to make things look less messy.
Now that we have the list of supported modifiers from the monitor
manager (via the CRTCs to the primary planes), we can use this to inform
EGL it can use those modifiers to allocate the GBM surface with. Doing
so allows us to use tiling and compression for our scanout surfaces.
This requires the Mesa commit in:
Mesa 10.3 (08264e5dad4df448e7718e782ad9077902089a07) or
Mesa 10.2.7 (55d28925e6109a4afd61f109e845a8a51bd17652).
Otherwise Mesa closes the fd behind our back and re-importing will fail.
See FDO bug #76188 for details.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
The KMS IN_FORMATS blob property contains a structure defining which
format/modifier combinations are supported for each plane. Use this to
extract a list of acceptable modifiers to use for the primary plane for
XRGB8888, so we can ask EGL to allocate tiled/compressed buffers for
scanout when available.
https://bugzilla.gnome.org/show_bug.cgi?id=785779
The DRM properties container must be destroyed with
drmModeFreeObjectProperties, and the connectors must be freed on every
caller. Also make it sure that gbm_device structs are destroyed with the
MetaRendererNativeGpuData that owns them.
https://bugzilla.gnome.org/show_bug.cgi?id=789984
On a CRTC that doesn't report any transforms at all, setting the normal
transform will fail. Avoid failing by checking if any transforms are
supported before applying it, and early out if no transforms are
supported.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
In order to eventually support multilpe GPUs with their own connectors,
split out related meta data management (i.e. outputs, CRTCs and CRTC
modes) into a new MetaGpu GObject.
The Xrandr backend always assumes there is always only a single "GPU" as
the GPU is abstracted by the X server; only the native backend (aside
from the test backend) will eventually see more than one GPU.
The Xrandr backend still moves some management to MetaGpuXrandr, in
order to behave more similarly to the KMS counterparts.
https://bugzilla.gnome.org/show_bug.cgi?id=785381
Move code dealing with MetaCrtcKms and related functionality to its
own file. Eventually, MetaCrtcKms should become a GObject based on
MetaCrtc, and this commit is in preparation for that.
https://bugzilla.gnome.org/show_bug.cgi?id=785381